Propagation Velocity of Flames in Inert-Diluted Stoichiometric Propane-Air Mixtures: Pressure and Temperature Dependence
Abstract
:Highlights
- (i)
- propagation velocities of stoichiometric C3H8-air flames diluted by Ar, N2 or CO2 are reported;
- (ii)
- the propagation velocities are examined as functions on initial pressure and temperature;
- (iii)
- the baric and thermal coefficients of propagation velocities are reported;
- (iv)
- the propagation velocities from experiments are examined against those obtained by kinetic modeling;
- (v)
- the comparison of efficiency of the studied inert gases showed that CO2 has the highest influence, followed by N2 and Ar.
1. Introduction
2. Materials and Methods
3. Data Evaluation
4. Computing Programs
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
a [bar] | pressure correction |
b [s] | time correction |
E [–] | expansion coefficient |
k [bar/s3] | coefficient of the cubic law of pressure rise |
LBV [m/s] | laminar burning velocity (Su) |
p [bar] | pressure |
PV [m/s] | propagation velocity of flames (Ss) |
R [m] | vessel radius |
S [m/s] | speed, velocity |
t [s] | time |
T [K] | temperature |
V [m3] | volume |
Greek | |
α [–] | thermal coefficient of the normal burning velocity |
β [–] | baric coefficient of the normal burning velocity |
Δ [–] | variation |
Subscripts | |
f | referring to the flame |
g | gas |
max | maximum value |
u | unburned gas |
s | spatial |
ref | reference value |
p | referring to an isobaric value |
0 | initial condition |
References
- Andrews, G.; Bradley, D. Determination of burning velocities: A critical review. Combust. Flame 1972, 18, 133–153. [Google Scholar] [CrossRef]
- Taylor, S.C. Burning velocity and the influence of flame stretch. Ph.D. Thesis, University of Leeds, Leeds, UK, 1991. [Google Scholar]
- Lewis, B.; Von Elbe, G. Combustion, Flames and Explosion of Gases, 3rd ed.; Academic Press: New York, NY, USA; London, UK, 1987. [Google Scholar]
- Hattwig, M.; Steen, S. Handbook of Explosion Prevention and Protection; Wiley VCH: Weinheim, Germany, 2004. [Google Scholar]
- Zabetakis, M.G. Flammability Characteristics of Combustible Gases and Vapors; Bureau of Mines: Pittsburgh, PA, USA, 1964. [Google Scholar] [CrossRef] [Green Version]
- Bartknecht, W.; Zwahlen, G. Staubexplosionen—Ablauf und Schutzmaßnahmen; Springer: Berlin, Germany, 1993. [Google Scholar]
- Liao, S.Y.; Jiang, D.M.; Cheng, Q.; Gao, J.; Hu, Y. Approximations of Flammability Characteristics of Liquefied Petroleum Gas−Air Mixture with Exhaust Gas Recirculation (EGR). Energy Fuels 2005, 19, 324–325. [Google Scholar] [CrossRef]
- Sun, Z.-Y.; Li, G.-X. Turbulence influence on explosion characteristics of stoichiometric and rich hydrogen/air mixtures in a spherical closed vessel. Energy Convers. Manag. 2017, 149, 526–535. [Google Scholar] [CrossRef]
- Kundu, S.; Zanganeh, J.; Eschebach, D.; Badat, Y.; Moghtaderi, B. Confined explosion of methane-air mixtures under turbulence. Fuel 2018, 220, 471–480. [Google Scholar] [CrossRef]
- Griffiths, J.F.; Barnard, J.A. Flame and Combustion, 3rd ed.; Chapman and Hall: London, UK, 1995. [Google Scholar]
- Glassman, I.; Yetter, R. Combustion, 4th ed.; Academic Press: Cambridge, MA, USA, 2008. [Google Scholar]
- Phylaktou, H.; Andrews, G.E. Gas Explosions in Long Closed Vessels. Combust. Sci. Technol. 1991, 77, 27–39. [Google Scholar] [CrossRef]
- Agrawal, D. Experimental determination of burning velocity of methane-air mixtures in a constant volume vessel. Combust. Flame 1981, 42, 243–252. [Google Scholar] [CrossRef]
- Warnatz, J.; Maas, U.; Dibble, R. Combustion, 3rd ed.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2001. [Google Scholar]
- Vagelopoulos, C.; Egolfopoulos, F.; Law, C.K. Further considerations on the determination of laminar flame speeds with the counter-flow twin-flame technique. Symp. Combust. 1994, 25, 1341–1347. [Google Scholar] [CrossRef]
- Bosschaart, K.; De Goey, L. The laminar burning velocity of flames propagating in mixtures of hydrocarbons and air measured with the heat flux method. Combust. Flame 2004, 136, 261–269. [Google Scholar] [CrossRef]
- Kwon, S.; Tseng, L.-K.; Faeth, G. Laminar burning velocities and transition to unstable flames in H2/O2/N2 and C3H8/O2/N2 mixtures. Combust. Flame 1992, 90, 230–246. [Google Scholar] [CrossRef] [Green Version]
- Konnov, A.A. The temperature and pressure dependences of the laminar burning velocity: Experiments and modeling. In Proceedings of the 7th European Combustion Meeting, Budapest, Hungary, 30 March–2 April 2015. [Google Scholar]
- Gu, X.; Haq, M.; Lawes, M.; Woolley, R. Laminar burning velocity and Markstein lengths of methane–air mixtures. Combust. Flame 2000, 121, 41–58. [Google Scholar] [CrossRef]
- Huang, Z.; Zhang, Y.; Zeng, K.; Liu, B.; Wang, Q.; Jiang, D. Measurements of laminar burning velocities for natural gas–hydrogen–air mixtures. Combust. Flame 2006, 146, 302–311. [Google Scholar] [CrossRef]
- Mitu, M.; Razus, D.; Giurcan, V.; Oancea, D. Normal burning velocity and propagation speed of ethane–air: Pressure and temperature dependence. Fuel 2015, 147, 27–34. [Google Scholar] [CrossRef]
- Giurcan, V.; Mitu, M.; Razus, D.; Oancea, D. Laminar Flame Propagation in Rich Ethane-Air-Inert Mixtures. Rev. Chim. 2016, 67, 1084–1089. [Google Scholar]
- Zhou, M.; Garner, C. Direct measurements of burning velocity of propane-air using particle image velocimetry. Combust. Flame 1996, 106, 363–367. [Google Scholar] [CrossRef]
- Tang, C.; Zheng, J.; Huang, Z.; Wang, J. Study on nitrogen diluted propane–air premixed flames at elevated pressures and temperatures. Energy Convers. Manag. 2010, 51, 288–295. [Google Scholar] [CrossRef]
- Giurcan, V.; Mitu, M.; Razus, D.; Oancea, D. Experimental study and detailed kinetic modeling of laminar flame propagation in premixed stoichiometric n-butane-air mixture. Rev. Chim. 2019, 70, 1125–1131. [Google Scholar] [CrossRef]
- Babkin, V.S.; Bukharov, V.N.; Mol’Kov, V.V. Normal flame velocity of propane-and-air mixtures at high pressures and temperatures. Combust. Explos. Shock. Waves 1989, 25, 52–57. [Google Scholar] [CrossRef]
- Tanaka, Y. Numerical simulations for combustion of quiescent and turbulent mixtures in confined vessels. Combust. Flame 1989, 75, 123–138. [Google Scholar] [CrossRef]
- Desoky, A.; Abdel-Ghafar, Y.; El-Badrawy, R. Hydrogen, propane and gasoline laminar flame development in a spherical vessel. Int. J. Hydrogen Energy 1990, 15, 895–905. [Google Scholar] [CrossRef]
- Pegg, M.; Amyotte, P.; Chipett, S. Confined and vented deflagrations of propane/air mixtures at initially elevated pressures. In Proceedings of the 7th International Symposium on Loss Prevention and Safety Promotion in the Process Industries, Taormina, Italy, 4–8 May 1992. [Google Scholar]
- Cashdollar, K.L.; Zlochower, I.A.; Green, G.M.; A Thomas, R.; Hertzberg, M. Flammability of methane, propane, and hydrogen gases. J. Loss Prev. Process. Ind. 2000, 13, 327–340. [Google Scholar] [CrossRef]
- Fan, Y.; Crowl, D. Predicting the maximum gas deflagration pressure over the entire flammable range. J. Loss Prev. Process. Ind. 2000, 13, 361–368. [Google Scholar] [CrossRef]
- Jarosiński, J.; Podfilipski, J.; Gorczakowski, A.; Veyssière, B. Experimental study of flame propagation in propane-air mixture near rich flammability limits in microgravity. Combust. Sci. Technol. 2002, 174, 21–48. [Google Scholar] [CrossRef]
- Zhao, Z.; Kazakov, A.; Li, J.; Dryer, F.L. The Initial Temperature and N2dilution Effect on the Laminar Flame Speed of Propane/Air. Combust. Sci. Technol. 2004, 176, 1705–1723. [Google Scholar] [CrossRef]
- Huzayyin, A.; Moneib, H.; Shehatta, M.; Attia, A. Laminar burning velocity and explosion index of LPG–air and propane–air mixtures. Fuel 2008, 87, 39–57. [Google Scholar] [CrossRef]
- Lohrer, C.; Drame, C.; Schalau, B.; Grätz, R. Propane/air deflagrations and CTA measurements of turbulence inducing elements in closed pipes. J. Loss Prev. Process. Ind. 2008, 21, 1–10. [Google Scholar] [CrossRef]
- Razus, D.; Brinzea, V.; Mitu, M.; Oancea, D. Temperature and pressure influence on explosion pressures of closed vessel propane–air deflagrations. J. Hazard. Mater. 2010, 174, 548–555. [Google Scholar] [CrossRef]
- Razus, D.; Oancea, D.; Brinzea, V.; Mitu, M.; Movileanu, C. Experimental and computed burning velocities of propane–Air mixtures. Energy Convers. Manag. 2010, 51, 2979–2984. [Google Scholar] [CrossRef]
- Razus, D.; Brinzea, V.; Mitu, M.; Movileanu, C.; Oancea, D. Temperature and pressure influence on maximum rates of pressure rise during explosions of propane–air mixtures in a spherical vessel. J. Hazard. Mater. 2011, 190, 891–896. [Google Scholar] [CrossRef]
- Abdelkhalik, A.; Askar, E.; Markus, D.; Brandes, E.; El-Sayed, I.; Hassan, M.; Nour, M.; Stolz, T. Explosion regions of propane, isopropanol, acetone, and methyl acetate/inert gas/air mixtures. J. Loss Prev. Process. Ind. 2016, 43, 669–675. [Google Scholar] [CrossRef]
- Giurcan, V.; Mitu, M.; Movileanu, C.; Razus, D. The temperature, pressure and dilution effect on laminar burning velocity of propane-air. Rev. Roum. Chim. 2016, 61, 517–524. [Google Scholar]
- Yelishala, S.C.; Wang, Z.; Metghalchi, H.; Levendis, Y.A.; Kannaiyan, K.; Sadr, R. Effect of Carbon Dioxide on the Laminar Burning Speed of Propane–Air Mixtures. J. Energy Resour. Technol. 2019, 141, 082205. [Google Scholar] [CrossRef]
- Essmann, S.; Markus, D.; Grosshans, H.; Maas, U. Experimental investigation of the stochastic early flame propagation after ignition by a low-energy electrical discharge. Combust. Flame 2020, 211, 44–53. [Google Scholar] [CrossRef]
- Giurcan, V.; Mitu, M.; Movileanu, C.; Razus, D.; Oancea, D. Influence of inert additives on small-scale closed vessel explosions of propane-air mixtures. Fire Saf. J. 2020, 111, 102939. [Google Scholar] [CrossRef]
- Johnson, E. A carbon footprint of HVO biopropane. Biofuels. Bioprod. Biorefining 2017, 11, 887–896. [Google Scholar] [CrossRef] [Green Version]
- Ricardo, A.E.A. Waste and Gaseous Fuels in Transport–Final Report. 2014. Available online: https://www.gov.uk/government/publications/waste-and-gaseous-fuels-in-transportfinal-report (accessed on 4 July 2014).
- Johnson, E. New biofuel debut: Biopropane. Biofuels Bioprod. Biorefin. 2015, 9, 627–629. [Google Scholar] [CrossRef]
- Razus, D.M.; Oancea, D.; Movileanu, C. Burning velocity evaluation from pressure evolution during the early stage of closed-vessel explosions. J. Loss Prev. Process. Ind. 2006, 19, 334–342. [Google Scholar] [CrossRef]
- Brinzea, V.; Mitu, M.; Razus, D.; Oancea, D. Overall activation parameters of propane oxidation in flames from normal burning velocities. Rev. Roum. Chim. 2010, 55, 55–61. [Google Scholar]
- Mitu, M.; Giurcan, V.; Razus, D.; Oancea, D. Temperature and Pressure Influence on Ethane–Air Deflagration Parameters in a Spherical Closed Vessel. Energy Fuels 2012, 26, 4840–4848. [Google Scholar] [CrossRef]
- Razus, D.M.; Brinzea, V.; Mitu, M.; Movileanu, C.; Oancea, D. Burning Velocity of Propane–Air Mixtures from Pressure–Time Records during Explosions in a Closed Spherical Vessel. Energy Fuels 2012, 26, 901–909. [Google Scholar] [CrossRef]
- COSILAB, Version 3.0.3; Rotexo-Softpredict-Cosilab GmbH & Co KG: Bad Zwischenhahn, Germany, 2012.
- Giurcan, V.; Razus, D.M.; Mitu, M.; Oancea, D. Numerical study of the laminar flame propagation in ethane-air mixtures. Open Chem. 2014, 12, 391–402. [Google Scholar] [CrossRef]
- Mitu, M.; Razus, D.; Giurcan, V.; Oancea, D. Experimental and Numerical Study of Laminar Burning Velocity of Ethane–Air Mixtures of Variable Initial Composition, Temperature and Pressure. Energy Fuels 2014, 28, 2179–2188. [Google Scholar] [CrossRef]
- Razus, D.; Mitu, M.; Brinzea, V.; Oancea, D. Pressure evolution during confined deflagration of n-butane/air mixtures. Rev. Chim. 2007, 58, 1170–1175. [Google Scholar]
- Brinzea, V.; Mitu, M.; Movileanu, C.; Musuc, A.; Razus, D.; Oancea, D. Propagation velocities of propane-air deflagrations at normal and elevated pressures and temperatures. Rev. Chim. 2012, 63, 289–292. [Google Scholar]
- Mitu, M.; Giurcan, V.; Razus, D.; Oancea, D. Inert Gas Influence on Propagation Velocity of Methane-air Laminar Flames. Rev. Chim. 2018, 69, 196–200. [Google Scholar] [CrossRef]
- Cardona, C.A.; Amell, A.A. Laminar burning velocity and interchangeability analysis of biogas/C3H8/H2 with normal and oxygen-enriched air. Int. J. Hydrogen Energy 2013, 38, 7994–8001. [Google Scholar] [CrossRef]
- Kishore, V.R.; Duhan, N.; Ravi, M.; Ray, A. Measurement of adiabatic burning velocity in natural gas-like mixtures. Exp. Therm. Fluid Sci. 2008, 33, 10–16. [Google Scholar] [CrossRef]
- Akram, M.; Kishore, V.R.; Kumar, S. Laminar Burning Velocity of Propane/CO2/N2–Air Mixtures at Elevated Temperatures. Energy Fuels 2012, 26, 5509–5518. [Google Scholar] [CrossRef]
- Metghalchi, M.; Keck, J. Laminar burning velocity of propane-air mixtures at high temperature and pressure. Combust. Flame 1980, 38, 143–154. [Google Scholar] [CrossRef]
p0/bar | E0 | ||
---|---|---|---|
Ar | N2 | CO2 | |
0.50 | 6.883 | 6.755 | 6.501 |
0.75 | 6.908 | 6.776 | 6.520 |
1.00 | 6.923 | 6.791 | 6.533 |
1.25 | 6.937 | 6.801 | 6.543 |
1.50 | 6.947 | 6.810 | 6.550 |
1.75 | 6.955 | 6.816 | 6.556 |
2.00 | 6.962 | 6.822 | 6.561 |
C3H8–Air–Diluent | T0/K | Ss,ref/(cm/s) | −β | rn2 |
---|---|---|---|---|
Ar | 300 | 262.2 | 0.182 ± 0.026 | 0.904 |
333 | 289.5 | 0.191 ± 0.016 | 0.966 | |
363 | 301.2 | 0.214 ± 0.015 | 0.975 | |
396 | 324.3 | 0.190 ± 0.010 | 0.987 | |
423 | 363.7 | 0.199 ± 0.024 | 0.933 | |
N2 | 300 | 221.9 | 0.201 ± 0.012 | 0.983 |
333 | 241.7 | 0.228 ± 0.004 | 0.998 | |
363 | 263.8 | 0.240 ± 0.240 | 0.998 | |
396 | 287.3 | 0.221 ± 0.008 | 0.994 | |
423 | 311.9 | 0.203 ± 0.010 | 0.987 | |
CO2 | 300 | 152.7 | 0.267 ± 0.016 | 0.979 |
333 | 164.9 | 0.232 ± 0.008 | 0.993 | |
363 | 178.7 | 0.196 ± 0.014 | 0.974 | |
396 | 195.5 | 0.201 ± 0.011 | 0.987 | |
423 | 221.9 | 0.187 ± 0.023 | 0.939 |
Diluent T0/K | Ar | N2 | CO2 |
---|---|---|---|
300 | 0.319 ± 0.001 | 0.340 ± 0.001 | 0.383 ± 0.004 |
333 | 0.312 ± 0.001 | 0.331 ± 0.002 | 0.375 ± 0.004 |
363 | 0.305 ± 0.001 | 0.323 ± 0.002 | 0.366 ± 0.003 |
396 | 0.296 ± 0.001 | 0.314 ± 0.002 | 0.357 ± 0.003 |
423 | 0.288 ± 0.002 | 0.308 ± 0.002 | 0.349 ± 0.003 |
Inert | β from Su [40] | β from Ss (Present Data) |
---|---|---|
Ar | −0.253 | −0.319 |
N2 | −0.276 | −0.340 |
CO2 | −0.237 | −0.383 |
Inert | Ss,ref/(cm/s) | |||
---|---|---|---|---|
CH4–Air + 10% Diluent [56] | C3H8–Air + 10% Diluent (Present Data) | |||
Experimental | Calculated | Experimental | Calculated | |
Ar | 256.6 | 225.0 | 262.2 | 311.5 |
N2 | 234.8 | 200.9 | 221.9 | 283.3 |
CO2 | 128.7 | 130.2 | 152.7 | 194.6 |
Diluent p0/bar | Ar | N2 | CO2 |
---|---|---|---|
0.50 | 0.918 ± 0.025 | 0.989 ± 0.049 | 0.890 ± 0.034 |
0.75 | 0.746 ± 0.051 | 0.990 ± 0.052 | 0.871 ± 0.096 |
1.00 | 0.918 ± 0.105 | 1.010 ± 0.035 | 1.107 ± 0.113 |
1.25 | 0.872 ± 0.093 | 0.996 ± 0.044 | 1.094 ± 0.055 |
1.50 | 0.877 ± 0.086 | 1.014 ± 0.059 | 1.037 ± 0.068 |
1.75 | 0.809 ± 0.094 | 1.042 ± 0.096 | 1.131 ± 0.059 |
2.00 | 0.809 ± 0.073 | 0.990 ± 0.050 | 1.084 ± 0.062 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giurcan, V.; Mitu, M.; Movileanu, C.; Razus, D.; Oancea, D. Propagation Velocity of Flames in Inert-Diluted Stoichiometric Propane-Air Mixtures: Pressure and Temperature Dependence. Processes 2021, 9, 997. https://doi.org/10.3390/pr9060997
Giurcan V, Mitu M, Movileanu C, Razus D, Oancea D. Propagation Velocity of Flames in Inert-Diluted Stoichiometric Propane-Air Mixtures: Pressure and Temperature Dependence. Processes. 2021; 9(6):997. https://doi.org/10.3390/pr9060997
Chicago/Turabian StyleGiurcan, Venera, Maria Mitu, Codina Movileanu, Domnina Razus, and Dumitru Oancea. 2021. "Propagation Velocity of Flames in Inert-Diluted Stoichiometric Propane-Air Mixtures: Pressure and Temperature Dependence" Processes 9, no. 6: 997. https://doi.org/10.3390/pr9060997
APA StyleGiurcan, V., Mitu, M., Movileanu, C., Razus, D., & Oancea, D. (2021). Propagation Velocity of Flames in Inert-Diluted Stoichiometric Propane-Air Mixtures: Pressure and Temperature Dependence. Processes, 9(6), 997. https://doi.org/10.3390/pr9060997