Development of Simpler Coarse-Grain Model for Analyzing Behavior of Particles in Fluid Flow
Abstract
:1. Introduction
2. Simulation Method
3. SCG Model for Fluid Drag Force
4. Comparisons of Particle Behaviors on Simple Flow Fields
5. Comparison of Particle Behavior in Classifier
6. Conclusions
- (1)
- The model can be implemented without changing simulation codes because the CG particle density is only changed to follow .;
- (2)
- Physical meaning of the model is simple because the CG particle density is only modeled such that the acceleration of the CG particles is the same as that of the original particle;
- (3)
- The model is specialized to the particle behavior in the dilute particle-concentration systems in which the particles rarely collide.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Barrios, G.; de Carvalho, R.M.; Kwade, A.; Tavares, L.M. Contact parameter estimation for DEM simulation of iron ore pellet handling. Powder Technol. 2013, 248, 84–93. [Google Scholar] [CrossRef]
- Elskamp, F.; Kruggel-Emden, H. Review and benchmarking of process models for batch screening based on discrete element simulations. Adv. Powder Technol. 2015, 26, 679–697. [Google Scholar] [CrossRef]
- Wu, K.; Sun, W.; Liu, S.; Zhang, X. Study of shear behavior of granular materials by 3D DEM simulation of the triaxial test in the membrane boundary condition. Adv. Powder Technol. 2021, 32, 1145–1156. [Google Scholar] [CrossRef]
- Ishihara, S.; Kushimoto, K.; Kano, J. Analysis of the Effect of Ventilation Bars on the Packing Structure of Sinter Bed by DEM Simulation. Energies 2020, 13, 3836. [Google Scholar] [CrossRef]
- Kobayakawa, M.; Miyai, S.; Tsuji, T.; Tanaka, T. Interaction between dry granular materials and an inclined plate (comparison between large-scale DEM simulation and three-dimensional wedge model). J. Terramech. 2020, 90, 3–10. [Google Scholar] [CrossRef]
- Paulick, M.; Morgeneyer, M.; Kwade, A. Review on the influence of elastic particle properties on DEM simulation results. Powder Technol. 2015, 283, 66–76. [Google Scholar] [CrossRef]
- Kushimoto, K.; Ishihara, S.; Pinches, S.; Sesso, M.L.; Usher, S.P.; Franks, G.V.; Kano, J. Development of a method for determining the maximum van der Waals force to analyze dispersion and aggregation of particles in a suspension. Adv. Powder Technol. 2020, 31, 2267–2275. [Google Scholar] [CrossRef]
- Taya, S.; Natsui, S.; De Castro, J.A.; Nogami, H. Numerical Analysis of Raceway Formation in Isothermal and Non-reactive Packed Bed. ISIJ Int. 2020, 60, 2669–2677. [Google Scholar] [CrossRef]
- Ono, K.; Kushimoto, K.; Ishihara, S.; Kano, J. Development of the Simulation for Deformation Behavior of Metal Particles by Distinct Element Method. J. Soc. Powder Technol. Jpn. 2019, 56, 58–65. [Google Scholar] [CrossRef] [Green Version]
- Murugaratnam, K.; Utili, S.; Petrinic, N. A combined DEM–FEM numerical method for Shot Peening parameter optimisation. Adv. Eng. Softw. 2015, 79, 13–26. [Google Scholar] [CrossRef]
- Natsui, S.; Hirai, A.; Terui, K.; Kashihara, Y.; Murao, A.; Miki, Y.; Nogami, H. Method for Simulating Gas Permeability of a Coke Bed Including Fines Based on 3D Imaging on the Coke Particle Morphology. ISIJ Int. 2021, 61, 1814–1825. [Google Scholar] [CrossRef]
- Ishihara, S.; Kano, J. Development of ADEM-SPH Coupling Model for Analysis of Solid to Liquid Phase Transition Behaviors. ISIJ Int. 2020, 60, 1469–1478. [Google Scholar] [CrossRef]
- Cundall, P.A.; Strack, O.D.L. A discrete numerical model for granular assemblies. Géotechnique 1979, 29, 47–65. [Google Scholar] [CrossRef]
- Washino, K.; Hsu, C.-H.; Kawaguchi, T.; Tsuji, Y. Similarity Model for DEM Simulation of Fluidized Bed. J. Soc. Powder Technol. Jpn. 2007, 44, 198–205. [Google Scholar] [CrossRef]
- Sakano, M.; Yaso, T.; Nakanishi, H. Numerical simulation of two-dimensional fluidized bed using discrete element method with imaginary sphere model. Jpn. J. Multiph. Flow 2000, 14, 66–73. [Google Scholar] [CrossRef]
- Kuwagi, K.; Takeda, H.; Horio, M. The similar particle assembly (SPA) model: An approach to large-scale discrete element (DEM) simulation. In Proceedings of the International Conference on Fluidization Engineering XI, Ischia, Naples, 9–14 May 2004; pp. 243–250. [Google Scholar]
- Mokhtar, M.A.; Kuwagi, K.; Takami, T.; Hirano, H.; Horio, M. Validation of the similar particle assembly (SPA) model for the fluidization of Geldart’s group A and D particles. AIChE J. 2011, 58, 87–98. [Google Scholar] [CrossRef]
- Lin, J.; Luo, K.; Wang, S.; Hu, C.; Fan, J. An augmented coarse-grained CFD-DEM approach for simulation of fluidized beds. Adv. Powder Technol. 2020, 31, 4420–4427. [Google Scholar] [CrossRef]
- Sakai, M.; Abe, M.; Shigeto, Y.; Mizutani, S.; Takahashi, H.; Viré, A.; Percival, J.R.; Xiang, J.; Pain, C.C. Verification and validation of a coarse grain model of the DEM in a bubbling fluidized bed. Chem. Eng. J. 2014, 244, 33–43. [Google Scholar] [CrossRef]
- Hilton, J.E.; Cleary, P. Comparison of non-cohesive resolved and coarse grain DEM models for gas flow through particle beds. Appl. Math. Model. 2014, 38, 4197–4214. [Google Scholar] [CrossRef]
- Hu, C.; Luo, K.; Wang, S.; Sun, L.; Fan, J. Influences of operating parameters on the fluidized bed coal gasification process: A coarse-grained CFD-DEM study. Chem. Eng. Sci. 2019, 195, 693–706. [Google Scholar] [CrossRef]
- Sakai, M.; Koshizuka, S.; Takeda, H. Development of Advanced Representative Particle Model-Application of DEM Simulation to Large-scale Powder Systems. J. Soc. Powder Technol. Jpn. 2006, 43, 4–12. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.; Rai, K.; Tsuji, T.; Washino, K.; Tanaka, T.; Oshitani, J. Upscaled DEM-CFD model for vibrated fluidized bed based on particle-scale similarities. Adv. Powder Technol. 2020, 31, 4598–4618. [Google Scholar] [CrossRef]
- Di Renzo, A.; Napolitano, E.; Di Maio, F. Coarse-Grain DEM Modelling in Fluidized Bed Simulation: A Review. Processes 2021, 9, 279. [Google Scholar] [CrossRef]
- Nagata, Y.; Minagawa, M.; Hisatomi, S.; Tsunazawa, Y.; Okuyama, K.; Iwamoto, M.; Sekine, Y.; Tokoro, C. Investigation of optimum design for nanoparticle dispersion in centrifugal bead mill using DEM-CFD simulation. Adv. Powder Technol. 2019, 30, 1034–1042. [Google Scholar] [CrossRef]
- Washino, K.; Chan, E.L.; Kaji, T.; Matsuno, Y.; Tanaka, T. On large scale CFD–DEM simulation for gas–liquid–solid three-phase flows. Particuology 2020. [Google Scholar] [CrossRef]
- Queteschiner, D.; Lichtenegger, T.; Pirker, S.; Schneiderbauer, S. Multi-level coarse-grain model of the DEM. Powder Technol. 2018, 338, 614–624. [Google Scholar] [CrossRef]
- Che, H.; O’Sullivan, C.; Sufian, A.; Smith, E.R. A novel CFD-DEM coarse-graining method based on the Voronoi tessellation. Powder Technol. 2021, 384, 479–493. [Google Scholar] [CrossRef]
- Chu, K.; Chen, J.; Yu, A. Applicability of a coarse-grained CFD–DEM model on dense medium cyclone. Miner. Eng. 2016, 90, 43–54. [Google Scholar] [CrossRef]
- Chan, E.L.; Washino, K. Coarse grain model for DEM simulation of dense and dynamic particle flow with liquid bridge forces. Chem. Eng. Res. Des. 2018, 132, 1060–1069. [Google Scholar] [CrossRef]
- Nakamura, H.; Takimoto, H.; Kishida, N.; Ohsaki, S.; Watano, S. Coarse-grained discrete element method for granular shear flow. Chem. Eng. J. Adv. 2020, 4, 100050. [Google Scholar] [CrossRef]
- Crowe, C.T.; Schwarzkopf, J.D.; Sommerfeld, M.; Tsuji, Y. Multiphase Flows with Droplets and Particles, 2nd ed.; CRC Press: New York, NY, USA, 2011; pp. 26–29. [Google Scholar]
Particle Diameter [mm] | Particle Density [g/cm3] | |
---|---|---|
Without SCG Model | With SCG Model | |
1.0 (original particle) | 1.0 | 1.0 |
2.0 | 1.0 | 0.25 |
4.0 | 1.0 | 0.0625 |
8.0 | 1.0 | 0.015625 |
Particle Diameter [μm] | Particle Density [g/cm3] | |
---|---|---|
Without SCG Model | With SCG Model | |
10.0 (original particle) | 1.0 | 1.0 |
20.0 | 1.0 | 0.25 |
40.0 | 1.0 | 0.0625 |
80.0 | 1.0 | 0.015625 |
Original particle | ||
Diameter | 100, 160, 220, 280 | μm |
Density | 0.1 | g/cm3 |
CG particles with SCG model | ||
Diameter | 200, 320, 440, 560 | μm |
Density | 0.025 | g/cm3 |
CG particles without SCG model | ||
Diameter | 200, 320, 440, 560 | μm |
Density | 0.1 | g/cm3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kushimoto, K.; Suzuki, K.; Ishihara, S.; Soda, R.; Ozaki, K.; Kano, J. Development of Simpler Coarse-Grain Model for Analyzing Behavior of Particles in Fluid Flow. Processes 2021, 9, 1098. https://doi.org/10.3390/pr9071098
Kushimoto K, Suzuki K, Ishihara S, Soda R, Ozaki K, Kano J. Development of Simpler Coarse-Grain Model for Analyzing Behavior of Particles in Fluid Flow. Processes. 2021; 9(7):1098. https://doi.org/10.3390/pr9071098
Chicago/Turabian StyleKushimoto, Kizuku, Kaya Suzuki, Shingo Ishihara, Rikio Soda, Kimihiro Ozaki, and Junya Kano. 2021. "Development of Simpler Coarse-Grain Model for Analyzing Behavior of Particles in Fluid Flow" Processes 9, no. 7: 1098. https://doi.org/10.3390/pr9071098
APA StyleKushimoto, K., Suzuki, K., Ishihara, S., Soda, R., Ozaki, K., & Kano, J. (2021). Development of Simpler Coarse-Grain Model for Analyzing Behavior of Particles in Fluid Flow. Processes, 9(7), 1098. https://doi.org/10.3390/pr9071098