Modeling, Control, and Optimization of Multi-Generation and Hybrid Energy Systems
1. Introduction
2. Multi-Generation and District Energy Systems
3. Hybrid Power Generation Applications
4. Grid and Micro-Grid Applications
5. Conclusions
Funding
Conflicts of Interest
References
- Mohammadi, K.; Saghafifar, M.; Ellingwood, K.; Powell, K. Hybrid concentrated solar power (CSP)-desalination systems: A review. Desalination 2019, 468, 114083. [Google Scholar] [CrossRef]
- Mohammadi, K.; Khanmohammadi, S.; Khorasanizadeh, H.; Powell, K. A comprehensive review of solar only and hybrid solar driven multigeneration systems: Classifications, benefits, design and prospective. Appl. Energy 2020, 268, 114940. [Google Scholar] [CrossRef]
- Rashid, K.; Safdarnejad, S.M.; Powell, K.M. Process intensification of solar thermal power using hybridization, flexible heat integration, and real-time optimization. Chem. Eng. Process. Process. Intensif. 2019, 139, 155–171. [Google Scholar] [CrossRef] [Green Version]
- Rashid, K.; Ellingwood, K.; Safdarnejad, S.M.; Powell, K.M. Designing Flexibility into a Hybrid Solar Thermal Power Plant by Real-Time, Adaptive Heat Integration. Comput. Aided Chem. Eng. 2019, 2019, 457–462. [Google Scholar] [CrossRef]
- Zheng, L.; Wang, X.; Jiang, B. Multi-Objective Optimal Configuration of the CCHP System. Processes 2020, 8, 351. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Luo, Z.; Zhu, Z.; Zhang, Z.; Qin, J.; Wang, H.; Gao, Z.; Yang, Z. A Three-Stage Coordinated Optimization Scheduling Strategy for a CCHP Microgrid Energy Management System. Processes 2020, 8, 245. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Wang, S. An Optimization Method for an Integrated Energy System Scheduling Process Based on NSGA-II Improved by Tent Mapping Chaotic Algorithms. Processes 2020, 8, 426. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Cai, L.; Chen, T. Energetic and Exergetic Investigations of Hybrid Configurations in an Absorption Refrigeration Chiller by Aspen Plus. Processes 2019, 7, 609. [Google Scholar] [CrossRef] [Green Version]
- Shahzad, M.K.; Rehan, M.A.; Ali, M.; Mustafa, A.; Abbas, Z.; Mujtaba, M.; Akram, M.I.; Yousaf, M.R. Cooling Performance Assessment of a Slinky Closed Loop Lake Water Heat Pump System under the Climate Conditions of Pakistan. Processes 2019, 7, 553. [Google Scholar] [CrossRef] [Green Version]
- Hanus, K.; Variny, M.; Illés, P. Assessment and Prediction of Complex Industrial Steam Network Operation by Combined Thermo-Hydrodynamic Modeling. Processes 2020, 8, 622. [Google Scholar] [CrossRef]
- Quah, T.; Machalek, D.; Powell, K.M. Comparing Reinforcement Learning Methods for Real-Time Optimization of a Chemical Process. Processes 2020, 8, 1497. [Google Scholar] [CrossRef]
- Al-Kouz, W.; Almuhtady, A.; Abu-Libdeh, N.; Nayfeh, J.; Boretti, A. A 140 MW Solar Thermal Plant in Jordan. Processes 2020, 8, 668. [Google Scholar] [CrossRef]
- Hamed, Y.S.; Aly, A.A.; Saleh, B.; Alogla, A.F.; Aljuaid, A.M.; Alharthi, M.M. Nonlinear Structural Control Analysis of an Offshore Wind Turbine Tower System. Processes 2019, 8, 22. [Google Scholar] [CrossRef] [Green Version]
- Niegodajew, P.; Marek, M.; Elsner, W.; Kowalczyk, Ł. Power Plant Optimisation—Effective Use of the Nelder-Mead Approach. Processes 2020, 8, 357. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Fracaro, S.G.; Chmielewski, D.J. Integrated Process Design and Control for Smart Grid Coordinated IGCC Power Plants Using Economic Linear Optimal Control. Processes 2020, 8, 288. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.; Sun, H.; Zhao, B.; Yi, J.; Weng, S.; Chen, J.; Dou, C. Distributed Optimal Frequency Regulation for Multiple Distributed Power Generations with an Event-Triggered Communication Mechanism. Processes 2020, 8, 169. [Google Scholar] [CrossRef] [Green Version]
- Weng, S.; Xue, Y.; Luo, J.; Li, Y. Distributed Secondary Control for Islanded Microgrids Cluster Based on Hybrid-Triggered Mechanisms. Processes 2020, 8, 370. [Google Scholar] [CrossRef] [Green Version]
- Luo, Z.; Zhu, Z.; Zhang, Z.; Qin, J.; Wang, H.; Gao, Z.; Yang, Z. Multi-Time-Scale Rolling Optimal Dispatch for Grid-Connected AC/DC Hybrid Microgrids. Processes 2019, 7, 961. [Google Scholar] [CrossRef] [Green Version]
- Simmons, C.R.; Arment, J.R.; Powell, K.M.; Hedengren, J.D. Proactive Energy Optimization in Residential Buildings with Weather and Market Forecasts. Processes 2019, 7, 929. [Google Scholar] [CrossRef] [Green Version]
- Sheha, M.; Powell, K. Using Real-Time Electricity Prices to Leverage Electrical Energy Storage and Flexible Loads in a Smart Grid Environment Utilizing Machine Learning Techniques. Processes 2019, 7, 870. [Google Scholar] [CrossRef] [Green Version]
- Sheha, M.N.; Powell, K.M. Dynamic Real-Time Optimization of Air-Conditioning Systems in Residential Houses with a Battery Energy Storage under Different Electricity Pricing Structures. Comput. Aided Chem. Eng. 2018, 44, 2527–2532. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Powell, K.M.; Mohammadi, K. Modeling, Control, and Optimization of Multi-Generation and Hybrid Energy Systems. Processes 2021, 9, 1125. https://doi.org/10.3390/pr9071125
Powell KM, Mohammadi K. Modeling, Control, and Optimization of Multi-Generation and Hybrid Energy Systems. Processes. 2021; 9(7):1125. https://doi.org/10.3390/pr9071125
Chicago/Turabian StylePowell, Kody M., and Kasra Mohammadi. 2021. "Modeling, Control, and Optimization of Multi-Generation and Hybrid Energy Systems" Processes 9, no. 7: 1125. https://doi.org/10.3390/pr9071125
APA StylePowell, K. M., & Mohammadi, K. (2021). Modeling, Control, and Optimization of Multi-Generation and Hybrid Energy Systems. Processes, 9(7), 1125. https://doi.org/10.3390/pr9071125