Synergic Effect of Adsorption and Biodegradation by Microsphere Immobilizing Bacillus velezensis for Enhanced Removal Organics in Slaughter Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Source and Identification of Strains
2.2. Preparation of Carrier Microspheres
2.3. Microsphere Characteristics
2.3.1. Infrared Spectroscopy
2.3.2. SEM Characterization
2.4. Adsorption Ability of Microspheres to Degrading Bacteria
2.5. Slaughter Wastewater for COD Degradation
2.6. Amylase and Protease Activity Assay
3. Results and Conclusions
3.1. Growth Characteristics and Identification of Strains
3.2. Preparation of PVA Microspheres
3.2.1. Effect of PVA Concentration on Microsphere Morphology
3.2.2. Characterization of PVA Microsphere
3.3. Ability of PVA Microspheres to Immobilize Bacillus Velezensis Strain
3.4. The COD Degradation of Microspheres-Immobilized Bacillus velezensis Strain
3.5. Starch and Protein Degradation Assay
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Akinro, A.O.; Ologunagba, I.B.; Yahaya, O. Environmental implications of unhygienic operation of a city abattoir in Akure, western. ARPN J. Eng. Appl. Sci. 2009, 4, 311–315. [Google Scholar]
- Shan, T.C.; Matar, M.A.; Makky, E.A.; Ali, E.N. The use of Moringa oleifera seed as a natural coagulant for wastewater treatment and heavy metals removal. Applied Water Sci. 2016, 7, 1369–1376. [Google Scholar] [CrossRef]
- Mazioti, A.A.; Stasinakis, A.S.; Psoma, A.K.; Thomaidis, N.S.; Andersen, H.R. Hybrid Moving Bed Biofilm Reactor for the biodegradation of benzotriazoles and hydroxy-benzothiazole in wastewater. J. Hazard. Mater. 2017, 323, 299–310. [Google Scholar] [CrossRef] [Green Version]
- Bello, Y.O.; Oyedemi, D.T.A. The Impact of Abattoir Activities and Management in Residential Neighbourhoods: A Case Study of Ogbomoso, Nigeria. J. Soc. Sci. 2017, 19, 121–127. [Google Scholar] [CrossRef]
- Kundu, P.; Debsarkar, A.; Mukherjee, S. Treatment of slaughter house wastewater in a sequencing batch reactor: Performance evaluation and biodegradation kinetics. Biomed Res. Int. 2013, 2013, 134872. [Google Scholar] [CrossRef] [Green Version]
- Agunbiade, M.O.; Van Heerden, E.; Pohl, C.H.; Ashafa, A.T. Flocculating performance of a bioflocculant produced by Arthrobacter humicola in sewage waste water treatment. BMC Biotechnol. 2017, 17, 51. [Google Scholar] [CrossRef]
- Papadopoulou, E.S.; Genitsaris, S.; Omirou, M.; Perruchon, C.; Stamatopoulou, A.; Ioannides, I.; Karpouzas, D.G. Bioaugmentation of thiabendazole-contaminated soils from a wastewater disposal site: Factors driving the efficacy of this strategy and the diversity of the indigenous soil bacterial community. Environ. Pollut. 2018, 233, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yang, R.; Guo, Y.; Zhang, Z.; Kao, C.M.; Chen, S. Investigation of COD and COD/N ratio for the dominance of anammox pathway for nitrogen removal via isotope labelling technique and the relevant bacteria. J. Hazard. Mater. 2019, 366, 606–614. [Google Scholar] [CrossRef]
- Tong, S.; Wang, S.; Zhao, Y.; Feng, C.; Xu, B.; Zhu, M. Enhanced alure-type biological system (E-ATBS) for carbon, nitrogen and phosphorus removal from slaughterhouse wastewater: A case study. Bioresour. Technol. 2019, 274, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Qi, X.; Qu, S.; Ling, F.; Wang, G.J.F.; Immunology, S. Dietary supplementation of Bacillus velezensis B8 enhances immune response and resistance against Aeromonas veronii in grass carp. Fish Shellfish Immunol. 2021, 115, 14–21. [Google Scholar] [CrossRef]
- Madureira, J.; Melo, R.; Pimenta, A.I.; Verde, S.C.; Borrely, S.I. Evaluation of e-beam irradiation effects on the toxicity of slaughterhouse wastewaters. Environ. Technol. 2018, 39, 873–877. [Google Scholar] [CrossRef] [PubMed]
- Amanatidou, E.; Samiotis, G.; Trikoilidou, E.; Tsikritzis, L. Particulate organics degradation and sludge minimization in aerobic, complete SRT bioreactors. Water Res. 2016, 94, 288–295. [Google Scholar] [CrossRef]
- Li, Q.; Lu, H.; Yin, Y.; Qin, Y.; Tang, A.; Liu, H.; Liu, Y. Synergic effect of adsorption and biodegradation enhance cyanide removal by immobilized Alcaligenes sp. strain DN25. J. Hazard. Mater. 2019, 364, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Pino-Herrera, D.O.; Pechaud, Y.; Huguenot, D.; Esposito, G.; van Hullebusch, E.D.; Oturan, M.A. Removal mechanisms in aerobic slurry bioreactors for remediation of soils and sediments polluted with hydrophobic organic compounds: An overview. J. Hazard. Mater. 2017, 339, 427–449. [Google Scholar] [CrossRef] [PubMed]
- Wen, Z.D.; Wu, W.M.; Ren, N.Q.; Gao, D.W. Synergistic effect using vermiculite as media with a bacterial biofilm of Arthrobacter sp. for biodegradation of di-(2-ethylhexyl) phthalate. J. Hazard. Mater. 2016, 304, 118–125. [Google Scholar] [CrossRef]
- Kumar, E.; Madhava Rao, T.; Prabhuprasadini; Krishnaiah, N.; Vijaya, K.A. Characterization of Wastewater Effluents Releasing from Slaughterhouses in and around Hyderabad City (India). J. Environ. Sci. Eng. 2014, 56, 303–308. [Google Scholar]
- Dong, Z.; Lu, M.; Huang, W.; Xu, X. Treatment of oilfield wastewater in moving bed biofilm reactors using a novel suspended ceramic biocarrier. J. Hazard. Mater. 2011, 196, 123–130. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.; Liu, M.; Bu, Y.; Zhang, J.; Chen, J.; Zhao, J. Adsorption-synergic biodegradation of diesel oil in synthetic seawater by acclimated strains immobilized on multifunctional materials. Mar. Pollut. Bull. 2015, 92, 195–200. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, W.; Lin, F.; Han, B.; He, C.; Li, Q.; Gao, X.; Cui, Z.; Sun, C.; Zheng, L. Study on immobilization of marine oil-degrading bacteria by carrier of algae materials. World J. Microbiol. Biotechnol. 2018, 34, 70. [Google Scholar] [CrossRef]
- Xue, J.; Wu, Y.; Liu, Z.; Li, M.; Sun, X.; Wang, H.; Liu, B. Characteristic Assessment of Diesel-degrading Bacteria Immobilized on Natural Organic Carriers in Marine Environment: The Degradation Activity and Nutrient. Sci. Rep. 2017, 7, 8635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balasubramani, U.; Venkatesh, R.; Subramaniam, S.; Gopalakrishnan, G.; Sundararajan, V. Alumina/activated carbon nano-composites: Synthesis and application in sulphide ion removal from water. J. Hazard. Mater. 2017, 340, 241–252. [Google Scholar] [CrossRef]
- Kerwick, M.I.; Reddy, S.M.; Chamberlain, A.H.L.; Holt, D.M. Electrochemical disinfection, an environmentally acceptable method of drinking water disinfection. Electrochim. Acta 2005, 50, 5270–5277. [Google Scholar] [CrossRef]
- Drees, K.P.; Abbaszadegan, M.; Maier, R.M.J.W.R. Comparative electrochemical inactivation of bacteria and bacteriophage. Water Res. 2003, 37, 2291–2300. [Google Scholar] [CrossRef]
- Ali, M.; Oshiki, M.; Rathnayake, L.; Ishii, S.; Satoh, H.; Okabe, S. Rapid and successful start-up of anammox process by immobilizing the minimal quantity of biomass in PVA-SA gel beads. Water Res. 2015, 79, 147–157. [Google Scholar] [CrossRef] [Green Version]
- Ruan, B.; Wu, P.; Chen, M.; Lai, X.; Chen, L.; Yu, L.; Gong, B.; Kang, C.; Dang, Z.; Shi, Z.; et al. Immobilization of Sphingomonas sp. GY2B in polyvinyl alcohol-alginate-kaolin beads for efficient degradation of phenol against unfavorable environmental factors. Ecotoxicol. Environ. Saf. 2018, 162, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Kadimpati, K.K. Design of hybrid PVA-CA-Jania rubens biomatrix for removal of lead. Int. J. Phytoremediation 2017, 19, 183–190. [Google Scholar] [CrossRef]
- Gholami, P.; Khataee, A.; Soltani, R.D.C.; Dinpazhoh, L.; Bhatnagar, A. Photocatalytic degradation of gemifloxacin antibiotic using Zn-Co-LDH@biochar nanocomposite. J. Hazard. Mater. 2020, 382, 121070. [Google Scholar] [CrossRef]
- Seo, M.G.; Ouh, I.O.; Choi, E.; Kwon, O.D.; Kwak, D. Molecular Detection and Phylogenetic Analysis of Anaplasma phagocytophilum in Horses in Korea. Korean J. Parasitol. 2018, 56, 559–565. [Google Scholar] [CrossRef]
- Li, W.; Jia, M.X.; Deng, J.; Wang, J.H.; Lin, Q.L.; Liu, C.; Wang, S.S.; Tang, J.X.; Zeng, X.X.; Ma, L.; et al. Isolation, genetic identification and degradation characteristics of COD-degrading bacterial strain in slaughter wastewater. Saudi J. Biol. Sci. 2018, 25, 1800–1805. [Google Scholar] [CrossRef] [PubMed]
- Abdelhay, A.; Jum’h, I.; Abdulhay, E.; Al-Kazwini, A.; Alzubi, M. Anodic oxidation of slaughterhouse wastewater on boron-doped diamond: Process variables effect. Water Sci. Technol. 2017, 76, 3227–3235. [Google Scholar] [CrossRef] [PubMed]
- Kanimozhi, K.; Khaleel Basha, S.; Sugantha Kumari, V. Processing and characterization of chitosan/PVA and methylcellulose porous scaffolds for tissue engineering. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 61, 484–491. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, J.A.; Almeida-Naranjo, C.E.; Villamar Ayala, C.A. Improvement of nutrients removal from domestic wastewater by activated-sludge encapsulation with polyvinyl alcohol (PVA). J. Environ. Sci. Health Part A Tox Hazard. Substances Environ. Eng. 2019, 54, 721–727. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.; Du, C.; Zeng, G.; Huang, D.; Zhang, J.; Yin, L.; Tan, S.; Huang, L.; Chen, H.; Yu, G.; et al. A novel biosorbent prepared by immobilized Bacillus licheniformis for lead removal from wastewater. Chemosphere 2018, 200, 173–179. [Google Scholar] [CrossRef]
- Dong, Y.; Zhang, Y.; Tu, B. Immobilization of ammonia-oxidizing bacteria by polyvinyl alcohol and sodium alginate. Braz. J. Microbiol. 2017, 48, 515–521. [Google Scholar] [CrossRef] [PubMed]
- Takei, T.; Ikeda, K.; Ijima, H.; Kawakami, K. Fabrication of poly(vinyl alcohol) hydrogel beads crosslinked using sodium sulfate for microorganism immobilization. Process Biochem. 2011, 46, 566–571. [Google Scholar] [CrossRef]
- Wang, Y.; Hsieh, Y.L. Immobilization of lipase enzyme in polyvinyl alcohol (PVA) nanofibrous membranes. J. Membr. Sci. 2008, 309, 73–81. [Google Scholar] [CrossRef]
Group | Initial Value | OD Value after 5 h | Bearing Rate |
---|---|---|---|
Control group | 0.205 ± 0.029 | 0.546 ± 0.047 | None |
PVA microspheres | 0.211 ± 0.021 | 0.413 ± 0.039 | 36.99% |
Samples | Blank Sample | Control Group | PVA Group | |
---|---|---|---|---|
24 h | 36 h | |||
V1(mL) | 6.80 ± 0.134 | 6.30 ± 0.122 | 5.60 ± 0.107 | 5.40 ± 0.084 |
V2(mL) | 30.0 | 30.0 | 30.0 | 30.0 |
K | 0.93 | 0.93 | 0.93 | 0.93 |
Potassium permanganate index (O2, mg/L) | 16.304 | 15.064 | 13.328 | 12.832 |
Reduction(O2, mg/L) | 0 | 1.240 | 2.976 | 3.224 |
Degradation rate (%) | 0 | 7.61 | 16.99 | 20.08 |
Samples | Blan Sample | Control Group | PVA Group | |
---|---|---|---|---|
24 h | 36 h | |||
V1(mL) | 5.3 ± 0.124 | 4.9 ± 0.113 | 4.3 ± 0.103 | 4.2 ± 0.071 |
V2(mL) | 60.0 | 60.0 | 60.0 | 60.0 |
K | 0.93 | 0.93 | 0.93 | 0.93 |
Potassium permanganate index (O2, mg/L) | 6.012 | 5.51 | 4.77 | 4.648 |
Reduction(O2, mg/L) | 0 | 0.673 | 1.24 | 1.364 |
Degradation rate (%) | 0 | 8.35 | 20.63 | 22.69 |
Groups | Absorbance | Starch Concentration (%) | Degradation Rate (%) |
---|---|---|---|
control | 1.343 ± 0.0062 | 1.651 ± 0.0071 | 17.5 |
PVA | 1.302 ± 0.0059 | 1.599 ± 0.0067 | 20.1 |
Groups | Absorbance | Casein Concentration (%) | Degradation Rate (%) |
---|---|---|---|
control | 1.29 ± 0.0059 | 0.316 ± 0.0022 | 37.2 |
PVA | 1.18 ± 0.0064 | 0.289 ± 0.0019 | 42.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, J.; Chen, Q.; Hu, B.; Li, W.; Jia, M.; Shi, Y.; Xiong, S.; Bai, J.; Yin, H. Synergic Effect of Adsorption and Biodegradation by Microsphere Immobilizing Bacillus velezensis for Enhanced Removal Organics in Slaughter Wastewater. Processes 2021, 9, 1145. https://doi.org/10.3390/pr9071145
Deng J, Chen Q, Hu B, Li W, Jia M, Shi Y, Xiong S, Bai J, Yin H. Synergic Effect of Adsorption and Biodegradation by Microsphere Immobilizing Bacillus velezensis for Enhanced Removal Organics in Slaughter Wastewater. Processes. 2021; 9(7):1145. https://doi.org/10.3390/pr9071145
Chicago/Turabian StyleDeng, Jing, Qijue Chen, Boyong Hu, Wen Li, Mingxi Jia, Yi Shi, Shouyao Xiong, Jie Bai, and Huaqun Yin. 2021. "Synergic Effect of Adsorption and Biodegradation by Microsphere Immobilizing Bacillus velezensis for Enhanced Removal Organics in Slaughter Wastewater" Processes 9, no. 7: 1145. https://doi.org/10.3390/pr9071145
APA StyleDeng, J., Chen, Q., Hu, B., Li, W., Jia, M., Shi, Y., Xiong, S., Bai, J., & Yin, H. (2021). Synergic Effect of Adsorption and Biodegradation by Microsphere Immobilizing Bacillus velezensis for Enhanced Removal Organics in Slaughter Wastewater. Processes, 9(7), 1145. https://doi.org/10.3390/pr9071145