Effect of Air Injection on the Internal Flow Characteristics in the Draft Tube of a Francis Turbine Model
Abstract
:1. Introduction
2. Specifications of the Francis Turbine Model
3. Numerical Analysis Methods
4. Results and Discussion
4.1. Validation of the Numerical Analysis Results
4.2. Internal Flow Characteristics Relative to the Air Injection in the Draft Tube
4.3. Unsteady Pressure Characteristics Relative to the Air Injection in the Draft Tube
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Kim, S.J.; Choi, Y.S.; Cho, Y.; Choi, J.W.; Kim, J.H. Effect of runner blade thickness on flow characteristics of a Francis turbine model at low flowrates. J. Fluids Eng. 2020, 142, 031104. [Google Scholar] [CrossRef]
- Kim, S.J.; Choi, Y.S.; Cho, Y.; Choi, J.W.; Hyun, J.J.; Joo, W.G.; Kim, J.H. Effect of fins on the internal flow characteristics in the draft tube of a Francis turbine model. Energies 2020, 13, 2806. [Google Scholar] [CrossRef]
- Nishi, M.; Liu, S. An outlook on the draft-tube-surge study. Int. J. Fluid Mach. Syst. 2013, 6, 33–48. [Google Scholar] [CrossRef] [Green Version]
- Eichhorn, M.; Taruffi, A.; Bauer, C. Expected load spectra of prototype Francis turbines in low-load operation using numerical simulations and site measurements. J. Phys. Conf. Ser. 2017, 813, 012052. [Google Scholar] [CrossRef] [Green Version]
- Feng, J.J.; Li, W.F.; Wu, H.; Lu, J.L.; Liao, W.L.; Luo, X.Q. Investigation on pressure fluctuation in a Francis turbine with improvement measures. IOP Conf. Ser. Earth Environ. Sci. 2014, 22, 032006. [Google Scholar] [CrossRef] [Green Version]
- Favrel, A.; Müller, A.; Landry, C.; Yamamoto, K.; Avellan, F. Study of the vortex-induced pressure excitation source in a Francis turbine draft tube by particle image velocimetry. Exp. Fluids 2015, 56, 215. [Google Scholar] [CrossRef]
- Platonov, D.; Minakov, A.; Dekterev, D.; Maslennikova, A. An experimental investigation of the air injection effect on the vortex structure and pulsation characteristics in the Francis turbine. Int. J. Fluid Mach. Syst. 2020, 13, 103–113. [Google Scholar] [CrossRef]
- Skripkin, S.G.; Kuibin, P.A.; Shtork, S.I. The effect of air injection on the parameters of swirling flow in a Turbine-99 draft tube model. Tech. Phys. Lett. 2015, 41, 638–640. [Google Scholar] [CrossRef]
- Muntean, S.; Susan-Resiga, R.F.; Campian, V.C.; Dumbrava, C.; Cuzmos, A. In Situ unsteady pressure measurements on the draft tube cone of the Francis turbine with air injection over an extended operating range. UPB Sci. Bull. Ser. D 2014, 76, 173–180. [Google Scholar]
- Chirkov, D.; Scherbakov, P.; Skorospelov, V.; Cherny, S.; Zakharov, A. Numerical simulation of air injection in Francis turbine. IOP Conf. Ser. Earth Environ. Sci. 2019, 240, 022043. [Google Scholar] [CrossRef] [Green Version]
- Yu, A.; Luo, X.W.; Ji, B. Numerical simulation and analysis of the internal flow in a Francis turbine with air admission. IOP Conf. Ser. Mater. Sci. Eng. 2015, 72, 042047. [Google Scholar] [CrossRef] [Green Version]
- Li, W.F.; Feng, J.J.; Wu, H.; Lu, J.L.; Liao, W.L.; Luo, X.Q. Numerical investigation of pressure fluctuation reducing in draft tube of Francis turbines. Int. J. Fluid Mach. Syst. 2015, 8, 202–208. [Google Scholar]
- Foroutan, H.; Yavuzkurt, S. Flow in the simplified draft tube of a Frnacis turbine operating at partial load-Part II: Control of the vortex rope. J. Appl. Mech. 2014, 81, 061010. [Google Scholar] [CrossRef]
- Juposhti, H.J.; Maddahian, R.; Cervantes, M.J. Optimization of axial water injection to mitigate the rotating vortex rope in a Francis turbine. Renew. Energy 2021, 175, 214–231. [Google Scholar] [CrossRef]
- International Electrotechnical Commission. Hydraulic Turbines, Storage Pumps and Pump-Turbines–Model Acceptance Tests; Standard No. IEC 60193; IEC: Geneva, Switzerland, 1999. [Google Scholar]
- ANSYS CFX-19.1. ANSYS CFX-Solver Theory Guide; ANSYS Inc.: Canonsburg, PA, USA, 2018. [Google Scholar]
- Richardson, L.F. IX. The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam. Philos. Trans. R. Soc. London. Ser. AContaining Pap. A Math. Phys. Character 1911, 210, 307–357. [Google Scholar]
- Richardson, L.F.; Gaunt, J.A. VIII. The deferred approach to the limit. Philos. Trans. R. Soc. London. Ser. Acontaining Pap. A Math. Phys. Character 1927, 226, 299–361. [Google Scholar]
- Celik, I.B.; Ghia, U.; Roache, P.J.; Freitas, C.J.; Coleman, H.; Raad, P.E.; Coleman, H.P. Procedure for Estimation and Reporting of Uncertainty Due to Discretization in {CFD} Applications. J. Fluids Eng. 2008, 130, 078001. [Google Scholar]
- Kim, S.J.; Choi, Y.S.; Cho, Y.; Choi, J.W.; Hyun, J.J.; Joo, W.G.; Kim, J.H. Analysis of the numerical grids of a Francis turbine model through grid convergence index method. KSFM J. Fluid Mach. 2020, 23, 16–22. (In Korean) [Google Scholar] [CrossRef]
- Zwart, P.J.; Gerber, A.G.; Belamri, T. A two-phase flow model for predicting cavitation dynamics. In Proceedings of the Fifth International Conference on Multiphase Flow, Yokohama, Japan, 30 May–3 June 2004. [Google Scholar]
- Egorov, Y.; Menter, F. Development and application of SST-SAS turbulence model in the DESIDER project. In Advances in Hybrid RANS-LES Modelling; Springer Science & Business Media: Heidelberg, Germany, 2008; pp. 261–270. [Google Scholar]
- Menter, F.R.; Egorov, Y. The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 1 Theory Model Description. Flow Turbul. Combust. 2010, 85, 113–138. [Google Scholar]
- Widmer, C.; Staubli, T.; Ledergerber, N. Unstable characteristics and rotating stall in turbine brake operation of pump-turbines. J. Fluids Eng. 2011, 133, 041101. [Google Scholar] [CrossRef]
- Moritz, R.A.C. Transient CFD-Analysis of a High Head Francis Turbine. Master’s thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2014. [Google Scholar]
- Kim, S.J.; Cho, Y.; Choi, J.W.; Hyun, J.J.; Kim, S.W.; Kim, J.H. Flow Characteristics according to the air-injection in the draft tube of a Francis turbine model. KSFM J. Fluid Mach. 2021, 24, 24–31. (In Korean) [Google Scholar] [CrossRef]
- Korea Agency for Infrastructure Technology Advancement. Report Development of Construction Technology for Medium Sized Hydropower Plant; Report No. 20IFIP-B128593-04; Korea Agency for Infrastructure Technology Advancement: Anyang-si, Korea, 2020. [Google Scholar]
- Chen, Z.; Singh, P.M.; Choi, Y.D. Francis turbine blade design on the basis of port area and loss analysis. Energies. 2016, 9, 164. [Google Scholar] [CrossRef] [Green Version]
- Senoo, Y.; Kawaguchi, N.; Nagata, T. Swirl flow in conical diffusers. Bull. JSME 1978, 21, 112–119. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.K.; Lilley, D.G.; Syred, N. Swirl Flows; Abacus Press: Tunbridge Wells, UK, 1984. [Google Scholar]
- Favrel, A.; Pereira Jr, J.G.; Landry, C.; Müller, A.; Nicolet, C.; Avellan, F. New insight in Francis turbine cavitation vortex rope: Role of the runner outlet flow swirl number. J. Hydraul. Res. 2018, 56, 367–379. [Google Scholar] [CrossRef]
- Nicolet, C.; Zobeiri, A.; Maruzewski, P.; Avellan, F. Experimental investigations on upper part load vortex rope pressure fluctuations in francis turbine draft tube. Int. J. Fluid Mach. Syst. 2011, 4, 179–190. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.J.; Suh, J.W.; Choi, Y.S.; Park, J.; Park, N.H.; Kim, J.H. Inter-blade vortex and vortex rope characteristics of a pump-turbine in turbine mode under low flow rate conditions. Water 2019, 11, 2554. [Google Scholar] [CrossRef] [Green Version]
Specifications | Values |
---|---|
Energy coefficient, EnD (-) | 4.35 |
Discharge coefficient, QED (-) | 0.33 |
Speed factor, nED (-) | 0.48 |
Diameter of runner outlet, D2 (m) | 0.35 |
Number of stay vanes | 20 |
Number of guide vanes | 20 |
Number of runner blades | 12 |
Title 1 | ϕ = Efficiency |
---|---|
N1, N2, N3 | 14.74 × 106, 7.05 × 106, 3.59 × 106 |
r21 | 1.28 |
r32 | 1.25 |
ϕ1 | 1 |
ϕ2 | 0.9952 |
ϕ3 | 0.9808 |
p | 5.20 |
0.22% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-J.; Cho, Y.; Kim, J.-H. Effect of Air Injection on the Internal Flow Characteristics in the Draft Tube of a Francis Turbine Model. Processes 2021, 9, 1182. https://doi.org/10.3390/pr9071182
Kim S-J, Cho Y, Kim J-H. Effect of Air Injection on the Internal Flow Characteristics in the Draft Tube of a Francis Turbine Model. Processes. 2021; 9(7):1182. https://doi.org/10.3390/pr9071182
Chicago/Turabian StyleKim, Seung-Jun, Yong Cho, and Jin-Hyuk Kim. 2021. "Effect of Air Injection on the Internal Flow Characteristics in the Draft Tube of a Francis Turbine Model" Processes 9, no. 7: 1182. https://doi.org/10.3390/pr9071182
APA StyleKim, S. -J., Cho, Y., & Kim, J. -H. (2021). Effect of Air Injection on the Internal Flow Characteristics in the Draft Tube of a Francis Turbine Model. Processes, 9(7), 1182. https://doi.org/10.3390/pr9071182