Geometric Optimization of an Extracorporeal Centrifugal Blood Pump with an Unshrouded Impeller Concerning Both Hydraulic Performance and Shear Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Original Pump Design
2.2. Optimization Strategy
2.2.1. Optimization Objectives
2.2.2. Optimization Factors and Levels
2.3. Computational Model
3. Results and Discussion
3.1. Hydrodynamic Performance of the Original Pump
3.2. Velocity Distributions in the Impeller and the Volute
3.3. Stress Distribution
3.4. Hemolysis Analysis
4. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lorts, A.; Eghtesady, P.; Mehegan, M.; Adachi, I.; Villa, C.; Davies, R.; Gossett, J.G.; Kanter, K.; Alejos, J.; Koehl, D.; et al. Outcomes of Children Supported with Devices Labeled as “Temporary” or Short Term: A Report from the Pediatric Interagency Registry for Mechanical Circulatory Support. J. Hear. Lung Transplant. 2018, 37, 54–60. [Google Scholar] [CrossRef]
- Colombo, P.C.; Mehra, M.R.; Goldstein, D.J.; Estep, J.D.; Salerno, C.; Jorde, U.P.; Cowger, J.; ClevelandJr, J.C.; Uriel, N.; Sayer, G.; et al. Comprehensive Analysis of Stroke in the Long-Term Cohort of the MOMENTUM 3 Study. Circulation 2019, 139, 155–168. [Google Scholar] [CrossRef]
- Rogers, J.G.; Pagani, F.; Tatooles, A.J.; Bhat, G.; Slaughter, M.S.; Birks, E.J.; Boyce, S.W.; Najjar, S.S.; Jeevanandam, V.; Anderson, A.; et al. Intrapericardial Left Ventricular Assist Device for Advanced Heart Failure. N. Engl. J. Med. 2017, 376, 451–460. [Google Scholar] [CrossRef] [PubMed]
- Virani, S.S.; Alonso, A.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Delling, F.N.; et al. Heart Disease and Stroke Statistics—2020 Update: A Report From the American Heart Association. Circulation 2020, 141, e139–e596. [Google Scholar] [CrossRef] [PubMed]
- van Oeveren, W.; Tielliu, I.F.; de Hart, J. Comparison of Modified Chandler, Roller Pump, and Ball Valve Circulation Models for In Vitro Testing in High Blood Flow Conditions: Application in Thrombogenicity Testing of Different Materials for Vascular Applications. Int. J. Biomater. 2012, 2012, 673163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takami, Y.; Nakazawa, T.; Makinouchi, K.; Benkowski, R.; Glueck, J.; Nosé, Y. Material of the Double Pivot Bearing System in the Gyro C1E3 Centrifugal Pump. Artif. Organs 2008, 21, 143–147. [Google Scholar] [CrossRef] [PubMed]
- Takami, Y.; Nakazawa, T.; Makinouchi, K.; Glueck, J. Biocompatibility of Alumina Ceramic and Polyethylene as Materials for Pivot Bearings of a Centrifugal Blood Pump. J. Biomed. Mater. Res. 1997, 36, 381–386. [Google Scholar] [CrossRef]
- Poder, T.G.; Nonkani, W.G.; Leponkouo, É.T. Blood Warming and Hemolysis: A Systematic Review with Meta-Analysis. Transfus. Med. Rev. 2015, 29, 172–180. [Google Scholar] [CrossRef]
- Katz, J.N.; Jensen, B.C.; Chang, P.P.; Myers, S.L.; Pagani, F.; Kirklin, J.K. A Multicenter Analysis of Clinical Hemolysis in Patients Supported with Durable, Long-Term Left Ventricular Assist Device Therapy. J. Hear. Lung Transplant. 2015, 34, 701–709. [Google Scholar] [CrossRef] [PubMed]
- Ravichandran, A.; Parker, J.; Novak, E.; Joseph, S.M.; Schilling, J.D.; Ewald, G.A.; Silvestry, S. Hemolysis in Left Ventricular Assist Device: A Retrospective Analysis of Outcomes. J. Hear. Lung Transplant. 2014, 33, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, T.; Shimokasa, K.; Funakubo, A.; Higami, T.; Kawamura, T.; Fukui, Y. An Investigation of Blood Flow Behavior and Hemolysis in Artificial Organs. ASAIO J. 2000, 46, 527–531. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, C.; Aka, I.B.; Lazoglu, I. Effect of Blade Curvature on the Hemolytic and Hydraulic Characteristics of a Centrifugal Blood Pump. Int. J. Artif. Organs 2018, 41, 730–737. [Google Scholar] [CrossRef] [PubMed]
- Chan, W.; Wong, Y.; Ding, Y.; Chua, L.; Yu, S. Numerical Investigation of the Effect of Blade Geometry on Blood Trauma in a Centrifugal Blood Pump. Artif. Organs 2002, 26, 785–793. [Google Scholar] [CrossRef]
- Li, H.; Chan, W.K. Inverse Design and CFD Investigation of Blood Pump Impeller. Crit. Rev. Biomed. Eng. 2000, 28, 75–80. [Google Scholar] [CrossRef]
- Yu, S.; Ng, B.; Chan, W.; Chua, L. The Flow Patterns within the Impeller Passages of a Centrifugal Blood Pump Model. Med. Eng. Phys. 2000, 22, 381–393. [Google Scholar] [CrossRef]
- Mozafari, S.; Rezaienia, M.A.; Paul, G.; Rothman, M.T.; Wen, P.; Korakianitis, T. The Effect of Geometry on the Efficiency and Hemolysis of Centrifugal Implantable Blood Pumps. ASAIO J. 2017, 63, 53–59. [Google Scholar] [CrossRef]
- Kannojiya, V.; Das, A.K.; Das, P.K. Numerical Simulation of Centrifugal and Hemodynamically Levitated LVAD for Performance Improvement. Artif. Organs 2020, 44, E1–E19. [Google Scholar] [CrossRef]
- Wu, J.; Paden, B.E.; Borovetz, H.S.; Antaki, J.F. Computational Fluid Dynamics Analysis of Blade Tip Clearances on Hemodynamic Performance and Blood Damage in a Centrifugal Ventricular Assist Device. Artif. Organs 2009, 34, 402–411. [Google Scholar] [CrossRef] [Green Version]
- Kim, N.J.; Diao, C.; Ahn, K.H.; Lee, S.J.; Kameneva, M.V.; Antaki, J.F. Parametric Study of Blade Tip Clearance, Flow Rate, and Impeller Speed on Blood Damage in Rotary Blood Pump. Artif. Organs 2009, 33, 468–474. [Google Scholar] [CrossRef]
- Aka, I.B.; Ozturk, C.; Lazoglu, I. Numerical Investigation of Volute Tongue Design on Hemodynamic Characteristics and Hemolysis of the Centrifugal Blood Pump. SN Appl. Sci. 2021, 3, 1–9. [Google Scholar] [CrossRef]
- Zhou, B.; Bentham, J.; Di Cesare, M.; Bixby, H.; Danaei, G.; Cowan, M.J.; Paciorek, C.J.; Singh, G.; Hajifathalian, K.; Bennett, J.E.; et al. Worldwide Trends in Blood Pressure from 1975 to 2015: A Pooled Analysis of 1479 Population-Based Measurement Studies with 19·1 Million Participants. Lancet 2017, 389, 37–55. [Google Scholar] [CrossRef] [Green Version]
- Brandfonbrener, M.; Landowne, M.; Shock, N.W. Changes in Cardiac Output with Age. Circulation 1955, 12, 557–566. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Gellman, B.; Koert, A.; Dasse, K.A.; Gilbert, R.J.; Griffith, B.P.; Wu, Z.J. Computational and Experimental Evaluation of the Fluid Dynamics and Hemocompatibility of the CentriMag Blood Pump. Artif. Organs 2006, 30, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Ganushchak, Y.; Lichtenbelt, W.V.M.; Van Der Nagel, T.; De Jong, D. Hydrodynamic Performance and Heat Generation by Centrifugal Pumps. Perfusion 2006, 21, 373–379. [Google Scholar] [CrossRef]
- Boës, S.; Thamsen, B.; Haas, M.; Daners, M.S.; Meboldt, M.; Granegger, M. Hydraulic Characterization of Implantable Rotary Blood Pumps. IEEE Trans. BioMed. Eng. 2018, 66, 1618–1627. [Google Scholar] [CrossRef] [PubMed]
- Stepanoff, A.J. Centrifugal and Axial Flow Pumps; John Wiley & Sons: New York, NY, USA, 1957. [Google Scholar]
- Ni, Y.Y.; Yuan, S.Q.; Yuan, J.P.; Zhang, J.F. Model of Enlarged Flow Design for Low Specific Speed Centrifugal Pump. Drain. Irrig. Mach. 2008, 26, 21–24. [Google Scholar]
- Sutera, S.; Mehrjardi, M. Deformation and Fragmentation of Human Red Blood Cells in Turbulent Shear Flow. Biophys. J. 1975, 15, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Rooney, J.A. Hemolysis near an Ultrasonically Pulsating Gas Bubble. Science 1970, 169, 869–871. [Google Scholar] [CrossRef]
- Giersiepen, M.; Wurzinger, L.; Opitz, R.; Reul, H. Estimation of Shear Stress-Related Blood Damage in Heart Valve Prostheses—In Vitro Comparison of 25 Aortic Valves. Int. J. Artif. Organs 1990, 13, 300–306. [Google Scholar] [CrossRef]
- Bludszuweit, C. Model for a General Mechanical Blood Damage Prediction. Artif. Organs 1995, 19, 583–589. [Google Scholar] [CrossRef]
- Arvand, A.; Hormes, M.; Reul, H. A Validated Computational Fluid Dynamics Model to Estimate Hemolysis in a Rotary Blood Pump. Artif. Organs 2005, 29, 531–540. [Google Scholar] [CrossRef]
- Ge, L.; Dasi, L.P.; Sotiropoulos, F.; Yoganathan, A.P. Characterization of Hemodynamic Forces Induced by Mechanical Heart Valves: Reynolds vs. Viscous Stresses. Ann. Biomed. Eng. 2007, 36, 276–297. [Google Scholar] [CrossRef] [Green Version]
- Taskin, M.E.; Fraser, K.H.; Zhang, T.; Wu, C.; Griffith, B.P.; Wu, Z.J. Evaluation of Eulerian and Lagrangian models for hemolysis estimation. Asaio J. 2012, 58, 363–372. [Google Scholar] [CrossRef] [PubMed]
- Heuser, G.; Opitz, R. A Couette Viscometer for Short Time Shearing of Blood. Biorheology 1980, 17, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Bludszuweit, C. Three-Dimensional Numerical Prediction of Stress Loading of Blood Particles in a Centrifugal Pump. Artif. Organs 1995, 19, 590–596. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.I.; Kensey, K.R. Effects of the Non-Newtonian Viscosity of Blood on Flows in a Diseased Arterial Vessel. Part 1: Steady Flows. Biorheology 1991, 28, 241–262. [Google Scholar] [CrossRef]
- Fraser, K.; Zhang, T.; Taskin, M.E.; Griffith, B.P.; Wu, Z.J. A Quantitative Comparison of Mechanical Blood Damage Parameters in Rotary Ventricular Assist Devices: Shear Stress, Exposure Time and Hemolysis Index. J. Biomech. Eng. 2012, 134, 081002–08100211. [Google Scholar] [CrossRef]
- Kannojiya, V.; Das, A.K.; Das, P.K. Proposal of Hemodynamically Improved Design of an Axial Flow Blood Pump for LVAD. Med. Biol. Eng. Comput. 2019, 58, 401–418. [Google Scholar] [CrossRef]
- Eggels, J.G.M.; Unger, F.; Weiss, M.H.; Westerweel, J.; Adrian, R.J.; Friedrich, R.; Nieuwstadt, F.T.M. Fully Developed Turbulent Pipe Flow: A Comparison between Direct Numerical Simulation and Experiment. J. Fluid Mech. 1994, 268, 175–210. [Google Scholar] [CrossRef]
- American Society for Testing and Materials. Standard Practice for Assessment of Hemolysis in Continuous Flow Blood Pumps. In Annual Book of ASTM Standards; ASTM International: West Conshohocken, PA, USA, 1998; Volume 13.01. [Google Scholar]
Parameter | Value |
---|---|
Impeller inlet diameter D1 (mm) | 17 |
Impeller outlet diameter D2 (mm) | 50 |
Blade inlet angle β1 (°) | 25 |
Blade outlet angle β2 (°) | 26 |
Blade wrap angle θw (°) | 70 |
Number of impeller blades N | 4 |
Width of the impeller outlet b2 (mm) | 3 |
Width of the volute inlet b3 (mm) | 6 |
Volute tongue angle θt (°) | 55 |
No. | Volute Tongue Angle θt (°) | Blade Wrap Angle θw (°) |
---|---|---|
1 | 30 | 60 |
2 | 55 | 60 |
3 | 30 | 70 |
4 | 55 | 70 |
5 | 30 | 80 |
6 | 55 | 80 |
7 | 30 | 90 |
8 | 55 | 90 |
9 | 30 | 100 |
10 | 55 | 100 |
No. | Pressure Rise/mmHg | Maximum SSS/Pa |
---|---|---|
1 | 143.9 | 132.4 |
2 | 145.7 | 138.1 |
3 | 143.0 | 104.1 |
4 | 144.0 | 104.9 |
5 | 145.6 | 143.0 |
6 | 150.0 | 208.6 |
7 | 146. 9 | 313.0 |
8 | 150.5 | 285.7 |
9 | 148.5 | 127.1 |
10 | 149.8 | 132.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, B.; Guo, M.; Lu, B.; Wu, Q.; Zuo, Z.; Liu, S. Geometric Optimization of an Extracorporeal Centrifugal Blood Pump with an Unshrouded Impeller Concerning Both Hydraulic Performance and Shear Stress. Processes 2021, 9, 1211. https://doi.org/10.3390/pr9071211
Huang B, Guo M, Lu B, Wu Q, Zuo Z, Liu S. Geometric Optimization of an Extracorporeal Centrifugal Blood Pump with an Unshrouded Impeller Concerning Both Hydraulic Performance and Shear Stress. Processes. 2021; 9(7):1211. https://doi.org/10.3390/pr9071211
Chicago/Turabian StyleHuang, Bo, Miao Guo, Bin Lu, Qingyu Wu, Zhigang Zuo, and Shuhong Liu. 2021. "Geometric Optimization of an Extracorporeal Centrifugal Blood Pump with an Unshrouded Impeller Concerning Both Hydraulic Performance and Shear Stress" Processes 9, no. 7: 1211. https://doi.org/10.3390/pr9071211
APA StyleHuang, B., Guo, M., Lu, B., Wu, Q., Zuo, Z., & Liu, S. (2021). Geometric Optimization of an Extracorporeal Centrifugal Blood Pump with an Unshrouded Impeller Concerning Both Hydraulic Performance and Shear Stress. Processes, 9(7), 1211. https://doi.org/10.3390/pr9071211