Exposure Assessment of Airborne Bacteria Emitted from Swine Manure Composting Plant
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subject
2.2. Measurement
2.3. Data Analysis
3. Results
3.1. Monthly Concentration Distribution of Airborne Bacteria According to the Type of Swine Manure Composting Plant
3.2. Comparison of Airborne Bacteria Emitted from Swine Manure Composting Plants According to Agitation Time of Compost Pile
3.3. Size Distribution Characteristics of Airborne Bacteria According to the Type of Swine Manure Composting Plant
3.4. Assoiciation between Airborne Bacteria and Environmental Factors in Swine Manure Composting Plants
3.5. Qualitative Analysis of Airborne Bacteria, According to the Type of Swine Manure Composting Plant
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fracchia, L.; Pietronave, S.; Rinaldi, M.; Martinotti, M.G. The assessment of airborne bacterial contamination in three composting plants revealed site-related biological hazard and seasonal variations. J. Appl. Microbiol. 2006, 100, 973–984. [Google Scholar] [CrossRef] [PubMed]
- Bruce, J.M.; Sommer, M. Environmental aspects of respiratory disease in intensive pig and poultry houses, Including the implications for human health. In Proceedings of the EC Meeting, Aberdeen, UK, 29–30 October 1986; EC Commission Publications: Brussels, Belgium, 1987; Volume 10, pp. 29–30. [Google Scholar]
- Olson, D.K.; Bark, S.M. Health hazards affecting the animal confinement farm worker. Am. Assoc. Occup. Health Nurse J. 1996, 44, 198–204. [Google Scholar] [CrossRef]
- Seidl, H.P. Mikrobiologie des Abfalls. In Keimbelastung in der Abfallwirtschaft: Tagung; Mucke, W., Seidl, H.P., Rakoski, A.H., Eckrich, C., Emmerling, G., Pipke, R., Wimmer, M., Eds.; Technische Uni Mchn: Rheine, Germany, 1995; pp. 5–30. [Google Scholar]
- Strom, P.F. Identification of thermophilic bacteria in solid-waste composting. Appl. Environ. Microbial. 1985, 50, 906–913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hryhorczuk, D.; Curtis, L.; Schleff, P.; Chung, J.; Rizzo, M.; Lewis, C.; Keys, N.; Moomey, M. Bioaerosols emission from a suburban yard waste composting facility. Ann. Agric. Environ. Med. 2001, 8, 177–185. [Google Scholar] [PubMed]
- Jager, E.; Ruden, H.; Zeschmar-Lahl, B. Composting facilities. 2. Aerogenic microorganism content at different working areas of composting facilities. Zentralbl. Hyg. Umweltmed. 1994, 196, 367–379. [Google Scholar]
- Reinthaler, F.F.; Marth, E.; Eibel, U.; Enayat, U.; Feenstra, O.; Friedl, H.; Kock, M.; Pichler-Semmeirock, F.P. The assessment of airborne microorganisms in large-scale composting facilties and their immediate surroundings. Aerobiologia 1997, 13, 167–175. [Google Scholar] [CrossRef]
- Kim, K.Y.; Kim, H.T.; Kim, D.; Nakajima, J.; Takashi, H. Distribution characteristics of airborne bacteria and fungi in the feedstuff-manufacturing factories. J. Hazard. Mater. 2009, 169, 1054–1060. [Google Scholar] [CrossRef]
- Sachez-Monedero, M.A.; Stentiford, E.I. Generation and dispersion of airborne microorganisms from composting facilities. Process Saf. Environ. 2003, 81, 166–170. [Google Scholar] [CrossRef]
- Fischer, G.; Muller, T.; Ostrowski, R.; Dott, W. Mycotoxins of Aspergillus Fumigatus in pure culture and in native bioaerosols from compost facilties. Chemosphere 1999, 38, 1745–1755. [Google Scholar] [CrossRef]
- Grisoli, P.; Rodolfi, M.; Villani, S.; Grignani, E.; Cottica, D.; Berri, A.; Picco, A.M.; Dacarro, C. Assessment of airborne microorganism contamination in an industrial area characterized by an open composting facility and wastewater treatment. Environ. Res. 2009, 109, 135–142. [Google Scholar] [CrossRef]
- Jones, A.M.; Harrison, R.M. The effects of meteorological factors on atmospheric bioaerosol concentrations—A review. Sci. Total Environ. 2004, 326, 151–180. [Google Scholar] [CrossRef]
- Folmsbee, M.; Strevett, K. Bioaerosol concentration at an outdoor composting center. J. Air Waste Manag. Assoc. 1999, 49, 554–561. [Google Scholar] [CrossRef] [PubMed]
- Tong, Y.; Lighthart, B. Solar radiation has a lethal effect on natural populations of culturable outdoor atmospheric bacteria. Atmos. Environ. 1997, 31, 897–900. [Google Scholar] [CrossRef]
- Kim, K.Y.; Park, J.B.; Kim, C.N.; Lee, K.J. Distribution of airborne fungi, particulate matter and carbon dioxide in Seoul Metropolitan Subway stations. J. Prev. Med. Public Health 2006, 39, 325–330. [Google Scholar]
- Kim, K.Y.; Park, J.B.; Kim, C.N.; Lee, K.J. Assessment of airborne bacteria and particulate matters distributed in Seoul Metropolitan Subway stations. J. Environ. Health Sci. 2006, 32, 254–261. [Google Scholar]
- Kim, K.Y.; Kim, C.N. Airborne microbiological characteristics in the public buildings of Korea. Build. Environ. 2007, 42, 2188–2196. [Google Scholar] [CrossRef]
- Kim, K.Y.; Roh, Y.M.; Kim, Y.S.; Lee, C.M.; Sim, I.S. Profile of airborne microorganisms distributed in general offices. general offices. J. Korean Soc. Occup. Environ. Hyg. 2008, 18, 11–19. [Google Scholar]
- Kim, K.Y.; Ko, H.J.; Kim, H.T.; Kim, C.N.; Kim, Y.S. Assessment of airborne bacteria and fungi in pig buildings in Korea. Biosys. Eng. 2008, 99, 565–572. [Google Scholar] [CrossRef]
- Byeon, J.H.; Park, C.W.; Yoon, K.Y.; Park, J.H.; Hwang, J. Size distributions of total airborne particles and bioaerosols in a municipal composting facility. Bioresour. Technol. 2008, 99, 5150–5154. [Google Scholar] [CrossRef]
- Kim, K.Y.; Kim, Y.S.; Kim, D. Distribution characteristics of airborne bacteria and fungi in the general hospitals of Korea. Ind. Health 2010, 48, 236–243. [Google Scholar] [CrossRef] [Green Version]
- Marthi, B.; Lighthart, B. Effects of betaine on the enumeration of airborne bacteria. Appl. Envrion. Microbiol. 1990, 56, 1286–1289. [Google Scholar] [CrossRef] [Green Version]
- Walter, M.V.; Marthi, B.; Fieland, V.P.; Ganio, L.M. Effect of aerosolization on subsequent bacterial survival. Appl. Envrion. Microbiol. 1990, 56, 3468–3472. [Google Scholar] [CrossRef] [Green Version]
- Macher, J.M.; Huang, F.Y.; Flores, M. A two-year study of microbiological indoor air quality in a new apartment. Arch. Environ. Health 1991, 46, 25–29. [Google Scholar] [CrossRef]
- Li, C.S.; Hsu, L.Y. Home dampness and childhood respiratory symptoms in a subtropical climate. Arch. Environ. Health 1996, 51, 42–46. [Google Scholar] [CrossRef]
- Kim, K.Y.; Ko, H.J.; Lee, K.J.; Park, J.B.; Kim, C.N. Temporal and spatial distribution of aerial contaminants in an enclosed pig building in winter. Environ. Res. 2005, 99, 150–157. [Google Scholar] [CrossRef]
- DeKoster, J.A.; Thorne, P.S. Bioaerosol concentrations in noncompliant, complaint and intervention homes in the Midwest. Am. Ind. Hyg. Assoc. J. 1985, 56, 576–580. [Google Scholar]
- Gorny, R.L.; Dutkiewicz, J.; Krysinska-Traczyk, E. Size distribution of bacterial and fungal bioaerosols in indoor air. Ann. Agric. Environ. Med. 1999, 6, 105–113. [Google Scholar]
- Pastuszk, J.S.; Paw, U.K.T.; Lis, D.O.; Walzo, A.; Ulfig, K. Bacterial and fungal aerosol in indoor environment in Upper Silesia, Poland. Atmos. Environ. 2000, 34, 3833–3842. [Google Scholar] [CrossRef]
Site | Reactor Type | Turning Mode | Treatment Capacity | Location |
---|---|---|---|---|
1 | Cross | Screw | 10 (7.5) * ton/day | Jeju |
2 | Cross | Rotary | 5 (1) ton/day | |
3 | Pile | Natural dry | 3 (1.5) ton/day |
Airborne Bacteria | Temp. | RH | TSP | PM10 | PM2.5 | PM1 | Odor | |
---|---|---|---|---|---|---|---|---|
Airborne bacteria | ||||||||
Temp. | 0.219 | |||||||
RH | −0.157 | −0.367 | ||||||
TSP | 0.045 | 0.078 | 0.470 * | |||||
PM10 | 0.201 | −0.266 | 0.615 ** | 0.752 ** | ||||
PM2.5 | −0.008 | −0.776 ** | 0.383 | −0.303 | 0.150 | |||
PM1 | 0.060 | −0.419 | 0.127 | −0.302 | −0.178 | 0.722 ** | ||
Odor | −0.132 | 0.150 | 0.043 | −0.017 | 0.009 | 0.069 | 0.144 |
Screw Type | Rotary Type | Dry Type | |
---|---|---|---|
Aeromonas spp. | 0.2 * | 0.4 | 0.6 |
Bacillus spp. | 5.5 | 2.8 | 5.3 |
Corynebacterium spp. | 4.1 | 4.4 | 4.2 |
Enterobacteriaceae spp. | 10.8 | 10.2 | 10.2 |
Enterococcus spp. | 11.9 | 14.3 | 13.5 |
Escherichia(E-coli) spp. | 12.6 | 15.4 | 22.1 |
Micrococcus spp. | 23.3 | 24.1 | 18.9 |
Nocardia spp. | 3.8 | 4.4 | 3.1 |
Pseudomonas spp. | 1.8 | 1.5 | 3.8 |
Staphylococcus spp. | 19.3 | 12.8 | 11.7 |
Streptococcus spp. | 2.5 | 3.4 | 2.3 |
Unknown | 4.2 | 4.3 | 4.3 |
Total | 100.0 | 100.0 | 100.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.-Y. Exposure Assessment of Airborne Bacteria Emitted from Swine Manure Composting Plant. Processes 2021, 9, 1283. https://doi.org/10.3390/pr9081283
Kim K-Y. Exposure Assessment of Airborne Bacteria Emitted from Swine Manure Composting Plant. Processes. 2021; 9(8):1283. https://doi.org/10.3390/pr9081283
Chicago/Turabian StyleKim, Ki-Youn. 2021. "Exposure Assessment of Airborne Bacteria Emitted from Swine Manure Composting Plant" Processes 9, no. 8: 1283. https://doi.org/10.3390/pr9081283
APA StyleKim, K. -Y. (2021). Exposure Assessment of Airborne Bacteria Emitted from Swine Manure Composting Plant. Processes, 9(8), 1283. https://doi.org/10.3390/pr9081283