Optimization of Hydrolysis-Acidogenesis Phase of Swine Manure for Biogas Production Using Two-Stage Anaerobic Fermentation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Feedstock and Seed Inoculum
2.2. Experiment Design
2.2.1. Environmental Parameter Optimization of Methane Production in Batch Mode Operation
Effects of Solid Content on Single-Stage Fermentation
Optimization of Hydrolysis-Acidogenesis Stage in Two-Stage Fermentation
2.2.2. Continuous Operation with the Optimal Environmental Parameter Condition
2.3. Analytical Methods
2.4. Statistical Study
2.5. Molecular Microbial Analysis
- Weigh 0.25 g of sample and add 750 μL of PowerBead solution into the bead tube.
- Add 60 μL of C1 solution and mix well. Heat the bead tube at 65 °C for 10 min. Use a shaker to fix the bead tube horizontally, shake at the maximum speed for 10 min, and then centrifuge the bead tube at a speed of 13,000 rpm for 1 min. Transfer the supernatant to a clean 2 mL collection tube, and obtain approximately 400 to 500 μL of the supernatant.
- Add 250 μL of C2 solution and shake for 5 s, and refrigerate at 2–8 °C for 5 min, then centrifuge the sample tube at 13,000 rpm for 1 min, and transfer 600 μL of supernatant to a clean 2 mL test tube in.
- Add 200 μL of C3 solution and shake for 5 s, and refrigerate at 2–8 °C for 5 min.
- Centrifuge the sample tube at 13,000 rpm for 1 min. Transfer 750 μL of supernatant to a clean 2 mL test tube (the particles in the tube contain non-DNA organic and inorganic substances, including polysaccharides, cell debris, and proteins. In order to obtain the best DNA yield and quality, avoid sampling any particles).
- Add 1200 μL C4 solution to the collection tube and shake for 5 s. Add 650 μL of supernatant to the MB Spin upper filter paper, centrifuge the sample tube at a speed of 13,000 rpm for 1 min, pour out the filtered liquid and repeat the operation until all the supernatant has been processed.
- Add 500 μL of C5 solution and centrifuge the sample tube at 13,000 rpm for 30 s.
- Place the MB centrifuge tube in a clean 2 mL test tube, add 100 μL of C6 solution to the center of the filter paper (sterile DNA-free PCR-grade water or TE buffer can be used), centrifuge the tube at a speed of 13,000 rpm for 1 min, where DNA precipitation occurs, and then store the test tube at −20 to ·80 °C.
- Illumina Miseq models.
3. Results
3.1. Effects of Solid Content
3.2. Optimization of Hydrolysis-Acidogenesis Stage in Two-Stage Fermentation
3.3. Continous Operation
3.3.1. Methane Production Yield in Single- and Two-Stage System
3.3.2. Microbial Community
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ström:, G.; Albihn, A.; Jinnerot, T.; Boqvist, S.; Andersson-Djurfeldt, A.; Sokerya, S.; Osbjer, K.; San, S.; Davun, H.; Magnusson, U. Manure management and public health: Sanitary and socio-economic aspects among urban livestock-keepers in Cambodia. Sci. Total Environ. 2018, 621, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, L.; Sha, G.; Liu, C.; Wang, Z.; Wang, L. Aerobic composting as an effective cow manure management strategy for reducing the dissemination of antibiotic resistance genes: An integrated meta-omics study. J. Hazard. Mater. 2020, 386, 121895. [Google Scholar] [CrossRef] [PubMed]
- Bui, X.; Wolff, A.; Madsen, M.; Duong Bang, D. Fate and durvival of Campylobacter coli in swine manure at various temperatures. Front. Microbiol. 2011, 2, 262. [Google Scholar] [CrossRef] [Green Version]
- Executive Yuan. Report on the Number of Pigs Survey; Council of Agriculture: Taipei, Taiwan, 2021. [Google Scholar]
- Chae, K.J.; Jang, A.; Yim, S.K.; Kim, I.S. The effects of digestion temperature and temperature shock on the biogas yields from the mesophilic anaerobic digestion of swine manure. Bioresour. Technol. 2008, 99, 1–6. [Google Scholar] [CrossRef]
- Chai, W.S.; Bao, Y.; Jin, P.; Tang, G.; Zhou, L. A review on ammonia, ammonia-hydrogen and ammonia-methane fuels. Renew. Sustain. Energy Rev. 2021, 147, 111254. [Google Scholar] [CrossRef]
- Chai, W.S.; Chew, C.H.; Munawaroh, H.S.H.; Ashokkumar, V.; Cheng, C.K.; Park, Y.-K.; Show, P.L. Microalgae and ammonia: A review on inter-relationship. Fuel 2021, 303, 121303. [Google Scholar] [CrossRef]
- Lay, C.-H.; Vo, T.-P.; Lin, P.-Y.; Abdul, P.M.; Liu, C.-M.; Lin, C.-Y. Anaerobic hydrogen and methane production from low-strength beverage wastewater. Int. J. Hydrog. Energy 2019, 44, 14351–14361. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Lay, C.-H.; Sen, B.; Chu, C.-Y.; Kumar, G.; Chen, C.-C.; Chang, J.-S. Fermentative hydrogen production from wastewaters: A review and prognosis. Int. J. Hydrog. Energy 2012, 37, 15632–15642. [Google Scholar] [CrossRef]
- Liang, Y.; Xu, L.; Bao, J.; Firmin, K.A.; Zong, W. Attapulgite enhances methane production from anaerobic digestion of pig slurry by changing enzyme activities and microbial community. Renew. Energy 2020, 145, 222–232. [Google Scholar] [CrossRef]
- Berhe, S.; Leta, S. Anaerobic co-digestion of tannery wastes using two stage anaerobic sequencing batch reactor: Focus on process performance of hydrolytic–acidogenic step. J. Mater. Cycles Waste Manag. 2019, 21, 666–677. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Lay, C.-H. A nutrient formulation for fermentative hydrogen production using anaerobic sewage sludge microflora. Int. J. Hydrog. Energy 2005, 30, 285–292. [Google Scholar] [CrossRef]
- Pramanik, S.K.; Suja, F.B.; Porhemmat, M.; Pramanik, B.K. Performance and kinetic model of a single-stage anaerobic digestion system operated at different successive operating stages for the treatment of food waste. Processes 2019, 7, 600. [Google Scholar] [CrossRef] [Green Version]
- APHA. Standard Methods for the Examination of Water and Wastewater, 17th ed.; American Public Health Association: Washington, DC, USA, 1989. [Google Scholar]
- Lopez, S.; Newbold, C.J. Analysis of methane. In Measuring Methane Production from Ruminants; Makkar, H.P.S., Vercoe, P.E., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 1–13. ISBN 978-1-4020-6133-2. [Google Scholar]
- Soliva, C.R.; Hess, H.D. Measuring methane emission of ruminants by in vitro and in vivo techniques. In Measuring Methane Production from Ruminants; Makkar, H.P.S., Vercoe, P.E., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 15–31. ISBN 978-1-4020-6133-2. [Google Scholar]
- Deuri, P.; Sood, N.; Wadhwa, M.; Bakshi, M.P.S.; Salem, A.Z.M. Screening of tree leaves for bioactive components and their impact on in vitro fermentability and methane production from total mixed ration. Agrofor. Syst. 2020, 94, 1455–1468. [Google Scholar] [CrossRef]
- Melesse, A.; Steingass, H.; Schollenberger, M.; Holstein, J.; Rodehutscord, M. Nutrient compositions and in vitro methane production profiles of leaves and whole pods of twelve tropical multipurpose tree species cultivated in Ethiopia. Agrofor. Syst. 2019, 93, 135–147. [Google Scholar] [CrossRef]
- Filer, J.; Ding, H.H.; Chang, S. Biochemical methane potential (BMP) assay method for anaerobic digestion research. Water 2019, 11, 921. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.-Y.; Lu, W.-B.; Wu, J.-F.; Chang, J.-S. Enhancing phototrophic hydrogen production of Rhodopseudomonas palustris via statistical experimental design. Int. J. Hydrog. Energy 2007, 32, 940–949. [Google Scholar] [CrossRef]
- Lay, C.-H.; Chen, C.-C.; Lin, H.-C.; Lin, C.-Y.; Lee, C.-W.; Lin, C.-Y. Optimal pH and substrate concentration for fermentative hydrogen production from preserved fruits soaking solution. J. Environ. Eng. Manag. 2010, 20, 35–41. [Google Scholar]
- Brown, D.; Shi, J.; Li, Y. Comparison of solid-state to liquid anaerobic digestion of lignocellulosic feedstocks for biogas production. Bioresour. Technol. 2012, 124, 379–386. [Google Scholar] [CrossRef]
- Kainthola, J.; Kalamdhad, A.S.; Goud, V. V Optimization of methane production during anaerobic co-digestion of rice straw and hydrilla verticillata using response surface methodology. Fuel 2019, 235, 92–99. [Google Scholar] [CrossRef]
- Cremonez, P.A.; Teleken, J.G.; Weiser Meier, T.R.; Alves, H.J. Two-stage anaerobic digestion in agroindustrial waste treatment: A review. J. Environ. Manag. 2021, 281, 111854. [Google Scholar] [CrossRef]
- Lay, C.-H.; Kumar, G.; Mudhoo, A.; Lin, C.-Y.; Leu, H.-J.; Shobana, S.; Thi Nguyen, M.-L. Recent trends and prospects in biohythane research: An overview. Int. J. Hydrog. Energy 2020, 45, 5864–5873. [Google Scholar] [CrossRef]
- Lay, C.-H.; Sen, B.; Chen, C.-C.; Lin, C.-Y. Continuous anaerobic hydrogen and methane production using water hyacinth feedstock. Arab. J. Sci. Eng. 2016, 41, 2563–2571. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Z.; Zhang, Q.; Li, G.; Xia, C. Comparison of bio-hydrogen and bio-methane production performance in continuous two-phase anaerobic fermentation system between co-digestion and digestate recirculation. Bioresour. Technol. 2020, 318, 124269. [Google Scholar] [CrossRef]
- De Vrieze, J.; Hennebel, T.; Boon, N.; Verstraete, W. Methanosarcina: The rediscovered methanogen for heavy duty biomethanation. Bioresour. Technol. 2012, 112, 1–9. [Google Scholar] [CrossRef]
- Conklin, A.; Stensel, H.D.; Ferguson, J. Growth kinetics and competition between Methanosarcina and Methanosaeta in mesophilic anaerobic digestion. Water Environ. Res. 2006, 78, 486–496. [Google Scholar] [CrossRef]
- Xing, L.; Yang, S.; Yin, Q.; Xie, S.; Strong, P.J.; Wu, G. Effects of carbon source on methanogenic activities and pathways incorporating metagenomic analysis of microbial community. Bioresour. Technol. 2017, 244, 982–988. [Google Scholar] [CrossRef] [PubMed]
- Boucias, D.G.; Cai, Y.; Sun, Y.; Lietze, V.-U.; Sen, R.; Raychoudhury, R.; Scharf, M.E. The hindgut lumen prokaryotic microbiota of the termite Reticulitermes flavipes and its responses to dietary lignocellulose composition. Mol. Ecol. 2013, 22, 1836–1853. [Google Scholar] [CrossRef] [PubMed]
- Fotidis, I.A.; Karakashev, D.; Angelidaki, I. Bioaugmentation with an acetate-oxidising consortium as a tool to tackle ammonia inhibition of anaerobic digestion. Bioresour. Technol. 2013, 146, 57–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, L.; Pope, P.B.; Eijsink, V.G.H.; Schnürer, A. Characterization of microbial community structure during continuous anaerobic digestion of straw and cow manure. Microb. Biotechnol. 2015, 8, 815–827. [Google Scholar] [CrossRef] [Green Version]
- Venkiteshwaran, K.; Bocher, B.; Maki, J.; Zitomer, D. Relating anaerobic digestion microbial community and process function. Microbiol. Insights 2015, 8 (S2), 37–44. [Google Scholar] [CrossRef] [Green Version]
Feedstock | CH4 (mL) | CH4 Content (%) | Modified Gompertz Equation Parameter Value | MPRmax (mL/L-d) | MY (mL/g VSadd) | TCOD Removal (%) | TS Removal (%) | |||
---|---|---|---|---|---|---|---|---|---|---|
P (mL) | Rm (mL/d) | λ (d) | R2 | |||||||
Supernatant liquid | 120 ± 13.8 | 57 ± 6 | 114 ± 10 | 11.1 ± 0.2 | 0.42 ± 0.1 | 0.9765 | 139 ± 3 | 316 ± 37 | 57 ± 7 | 37 ± 2 |
Raw swine wastewater | 408 ± 15.9 | 59 ± 9 | 399 ± 14 | 42.4 ± 0.3 | 1.20 ± 0.2 | 0.9943 | 530 ± 4 | 178 ± 7 | 59 ± 9 | 25 ± 2 |
Settled sludge | 676 ± 19.9 | 56 ± 8 | 725 ± 18 | 48.6 ± 0.4 | 1.44 ± 0.3 | 0.9891 | 608 ± 6 | 160 ± 5 | 56 ± 9 | 16 ± 1 |
Run | Coded Variables | Natural Variables | CH4 (mL) | CH4 Content (%) | Modified Gompertz Equation Parameter Value | MPRmax (mL/L-d) | MY (mL/g VSadd) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
X1 | X2 | pH | Time (d) | P (mL) | Rm (mL/d) | λ (d) | R2 | |||||
1 | −1 | −1 | 5.5 | 1.0 | 39.2 | 44.0 | 38.6 | 6.16 | 0.83 | 0.9878 | 61.6 | 24.65 |
2 | −1 | 1 | 5.5 | 2.0 | 28.4 | 41.5 | 31.7 | 3.67 | 0.80 | 0.9831 | 36.7 | 17.86 |
3 | 1 | −1 | 8.5 | 1.0 | 29.2 | 49.0 | 30.7 | 5.80 | 1.02 | 0.9863 | 58.0 | 18.36 |
4 | 1 | 1 | 8.5 | 2.0 | 28.4 | 43.9 | 29.5 | 6.55 | 1.08 | 0.9926 | 65.5 | 17.86 |
5 | 0 | 0 | 7.0 | 1.5 | 42.5 | 46.2 | 43.4 | 8.00 | 1.03 | 0.9932 | 80.0 | 26.73 |
6 | 0 | 0 | 7.0 | 1.5 | 44.1 | 48.0 | 47.9 | 8.50 | 1.01 | 0.9922 | 85.0 | 27.74 |
7 | 0 | 0 | 7.0 | 1.5 | 46.3 | 49.7 | 52.6 | 7.59 | 0.96 | 0.9878 | 75.9 | 29.12 |
8 | 2 | 0 | 10.0 | 1.5 | 26.4 | 43.0 | 53.9 | 2.85 | 0.78 | 0.9829 | 28.5 | 16.60 |
9 | −2 | 0 | 4.0 | 1.5 | 27.4 | 46.5 | 38.9 | 4.58 | 0.94 | 0.9810 | 45.8 | 17.23 |
10 | 0 | 2 | 7.0 | 2.5 | 24.7 | 31.2 | 35.1 | 4.28 | 1.01 | 0.9626 | 42.8 | 15.53 |
11 | 0 | −2 | 7.0 | 0.5 | 19.3 | 35.7 | 26.8 | 2.86 | 2.57 | 0.9579 | 28.6 | 12.14 |
Source | df | Sum of Squares | Mean Square | F-Value | p-Value * |
---|---|---|---|---|---|
Model | 5 | 3851.97 | 770.39 | 425 | 0.0428 |
A-pH | 1 | 0.1904 | 0.1904 | 0.0001 | 0.9751 |
B-Time | 1 | 0.5950 | 0.5950 | 0.0033 | 0.9559 |
AB | 1 | 254.40 | 254.40 | 1.40 | 0.2750 |
A2 | 1 | 1946.5 | 1946.5 | 10.73 | 0.0136 |
B2 | 1 | 2118.89 | 2118.89 | 11.68 | 0.0112 |
Std. Dev. | 13.47 | ||||
Adj-R2 | 0.5749 | ||||
Lack of Fit | 3 | 1228.35 | 409.45 | 39.32 | 0.0020 |
Pure Error | 4 | 41.65 | 10.41 | ||
Cor Total | 12 | 5121.97 |
Source | df | Sum of Squares | Mean Square | F-Value | p-Value * |
---|---|---|---|---|---|
Model | 5 | 339.44 | 67.89 | 7.56 | 0.096 |
A-pH | 1 | 6.45 | 6.45 | 0.7177 | 0.4249 |
B-Time | 1 | 0.7786 | 0.7786 | 0.0867 | 0.7770 |
AB | 1 | 9.89 | 9.89 | 1.10 | 0.3289 |
A2 | 1 | 126.93 | 126.93 | 14.13 | 0.0071 |
B2 | 1 | 234.96 | 234.96 | 26.16 | 0.0014 |
Std. Dev. | 3.00 | ||||
Adj-R2 | 0.7321 | ||||
Lack of Fit | 3 | 59.01 | 19.67 | 20.37 | 0.0069 |
Pure Error | 4 | 3.86 | 0.9657 | ||
Cor Total | 12 | 402.31 |
Parameters | Unit | Single-Stage System | Two-Stage System | |
---|---|---|---|---|
HAD * | MD * | |||
HRT | days | 30 | 1.5 | 28.5 |
Temperature | °C | 35 | 35 | 35 |
pH | - | 7.0 ± 0.4 | 6.5 ± 0.4 | 7.0 ± 0.4 |
Working volume | L | 2 | 1 | 2 |
Feedstock | ||||
Total solid | g/L | 5.0 ± 1.2 | 5.0± 1.2 | - |
Organic loading rate | g COD/L-d | 4.0 ± 0.3 | 4.0 ± 0.3 | - |
Effluent of total solid | % | 2.9 ± 0.4 | 4.5 ± 0.3 | 2.3 ± 0.2 |
Total solid reduction | % | 39 ± 3 | 10 ± 2 | 52 ± 4 |
Effluent of volatile solid | % | 1.4 ± 0.2 | 1.5 ± 0.3 | 1.1 ± 0.3 |
Volatile solid reduction | % | 63 ± 3 | 60 ± 3 | 72 ± 4 |
Effluent of total COD | g/L | 35 ± 5 | 80 ± 6 | 24 ± 36 |
Total COD reduction | % | 61 ± 4 | 11 ± 2 | 70 ± 3 |
Biogas production rate | mL/L-d | 300 ± 213 | ND * | 320 ± 225 |
Biogas production yield | mL/g-VSadd | 60 ± 4 | ND | 64 ± 6 |
CH4 content | % | 30 ± 5 | 9 ± 4 | 60 ± 6 |
CH4 production rate | mL/L-d | 101 ± 85 | ND | 163 ± 103 |
CH4 production yield | mL/g-VSadd | 18 ± 2 | ND | 38 ± 6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, C.-Y.; Chai, W.S.; Lay, C.-H.; Chen, C.-C.; Lee, C.-Y.; Show, P.L. Optimization of Hydrolysis-Acidogenesis Phase of Swine Manure for Biogas Production Using Two-Stage Anaerobic Fermentation. Processes 2021, 9, 1324. https://doi.org/10.3390/pr9081324
Lin C-Y, Chai WS, Lay C-H, Chen C-C, Lee C-Y, Show PL. Optimization of Hydrolysis-Acidogenesis Phase of Swine Manure for Biogas Production Using Two-Stage Anaerobic Fermentation. Processes. 2021; 9(8):1324. https://doi.org/10.3390/pr9081324
Chicago/Turabian StyleLin, Chiu-Yue, Wai Siong Chai, Chyi-How Lay, Chin-Chao Chen, Chun-Yi Lee, and Pau Loke Show. 2021. "Optimization of Hydrolysis-Acidogenesis Phase of Swine Manure for Biogas Production Using Two-Stage Anaerobic Fermentation" Processes 9, no. 8: 1324. https://doi.org/10.3390/pr9081324
APA StyleLin, C. -Y., Chai, W. S., Lay, C. -H., Chen, C. -C., Lee, C. -Y., & Show, P. L. (2021). Optimization of Hydrolysis-Acidogenesis Phase of Swine Manure for Biogas Production Using Two-Stage Anaerobic Fermentation. Processes, 9(8), 1324. https://doi.org/10.3390/pr9081324