The Effect of Initial Conditions with Aerobic Biological Treatment on Aniline Dyeing Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Sludge Domesticated
2.3. Effects of Biomass, Initial pH, and Salinity
2.4. High-Throughput Sequencing
- (1)
- Genome extraction from sludge samples;
- (2)
- Initial PCR amplification;
- (3)
- Second extended amplification sequencing primer;
- (4)
- Quantitative mixing;
- (5)
- Sample database construction and sequencing;
- (6)
- Sequence analysis [12].
3. Results and Discussion
3.1. COD Change in Each Cycle of Sludge Acclimation
3.2. Effect of Biomass on COD Change
3.3. Influence of Initial pH Value on COD and pH Change
3.4. Effect of Salinity on COD and pH Changes
3.5. Results and Analysis of Microbial Community Structure Change
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Long, F. Electrolytic contact oxidation process dyeing wastewater. J. Nanyang Inst. Technol. 2012, 4, 111–115. [Google Scholar]
- Olivier, L.; Rene, M. Treatment of organic pollution in industrial saline wastewater: A literature review. Water Res. 2006, 40, 3671–3682. [Google Scholar]
- Woolard, C.R.; Irvine, R.L. Response of a periodically operated Halophilic biofilm reactor to changes in salt concentration. Water Sci. Technol. 1995, 31, 41–50. [Google Scholar] [CrossRef]
- Lei, Y.; Xie, Q.; Li, Y. The study on the treatment of high salinity wastewater. Environ. Sci. Manag. 2007, 32, 49–53. [Google Scholar]
- Yu, S.; Tao, G. Study on the treatment of waste water with high salinity and high organic contents by evaporation-resource recycling. J. Xuzhou Inst. Archit. Technol. 2006, 6, 38–40. [Google Scholar]
- Zhang, X.; Zhang, Y.; Zhou, X.; Ma, X.; Zhao, J. Studied on the debugging and project of pesticide wastewater with high concentration COD and salt. Ind. Water Treat. 2007, 27, 22–24. [Google Scholar]
- Li, W.; Ma, F.; Su, J.; Wei, L.; Xu, Z. Isolation and identification of a moderately halophilic bacterium and its bioaugmention in intensifying high-salty organic wastewater treatment. J. Hunan Univ. 2008, 35, 84–88. [Google Scholar]
- Zobell, C.E.; Anderson, D.Q.; Smith, W.W. The bacteriostatic and bactericidal action of great salt lake water. J. Bacteriol. 1937, 33, 253–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uygur, R.; Kargi, F. Salt inhibition on biological nutrient removal from saline wastewater in a sequencing batch reactor. Enzym. Microb. Technol. 2004, 34, 313–318. [Google Scholar] [CrossRef]
- Hamoda, M.F.; Al-Atlar, M.S. Effects of high sodium chloride concentrations on activated sludge treatment. Water Sci. Technol. 1995, 31, 61–72. [Google Scholar] [CrossRef]
- He, J. Biological treatment of industrial salinity wastewater. China Biogas 2000, 18, 12–16. [Google Scholar]
- Hong, A.; Liu, D.; Liu, C. Main microbial community in activated sludge and the research method of it. Ind. Water Treat. 2009, 29, 10–14. [Google Scholar]
- Dong, H. The Effects of Anlines Dyeing Wastewater on the Microbial Community Structure in Activated Sludge. Yunnan Chem. Technol. 2020, 3, 55–57. [Google Scholar]
- Dong, H. Experimental Study on the Treatment of the Anilines Dyeing Wastewater by Aerobic Biological—Fenton Oxidation. Master’s Thesis, Zhengzhou University, Zhengzhou, China, 2016. [Google Scholar]
- Wu, Q.L.; Zwart, G.; Schauer, M.; Kamst-van Agterveld, M.P.; Hahn, M.W. Bacterioplankton community composition along a salinity gradient of sixteen high-mountain lakes located on the Tibetan Platean, China. Appl. Environ. Microbiol. 2006, 72, 5478–5485. [Google Scholar] [CrossRef] [Green Version]
- Glockner, F.O.; Fuchs, B.M.; Amamn, R. Bacterioplankton compositions of lakes and oceans:a first comparison based on fluorescence in situ hybridization. Appl. Environ. Microbiol. 1999, 65, 3721–3726. [Google Scholar] [CrossRef] [Green Version]
- Kirchman, D.L.; Dittel, A.I.; Malmstrom, R.R.; Cottrell, M.T. Biogeography of major bacterial groups in the Delaware Estuary. Limnol. Oceanogr. 2005, 50, 1697–1706. [Google Scholar] [CrossRef]
- Zwart, G.; Crump, B.C.; Kamst-van Agterveld, M.P.; Hagen, F.; Han, S.K. Typical freshwater bacteria: An analysis of available 16S rRNA gene sequences from plankton lakes and rivers. Aquat. Microb. Ecol. 2002, 28, 141–155. [Google Scholar] [CrossRef] [Green Version]
- Sjöstedt, J.; Koch-Schmidt, P.; Pontarp, M.; Canbäck, B.; Tunlid, A.; Lundberg, P.; Hagström, Å.; Riemann, L. Recruitment of members from the biosphere of marine bacterioplankton communities after an environmental disturbance. Appl. Environ. Microbiol. 2012, 78, 1316–1369. [Google Scholar] [CrossRef] [Green Version]
- Zhao, R. Studies of Cultivated Marine Bacterial Diversities in Two Specific Ecological Environments in Qingdao Coastal Area and Taxonomic Analysis of Three Novel Bacteria. Ph.D. Thesis, Ocean University of China, Qingdao, China, 2012. [Google Scholar]
- Wang, L.; Zhou, Z.; Wu, G.; Chen, M.; Lin, M.; Zhang, W.; Chen, W. Falsirhodobacter deserti sp. nov., isolated from sandy soil in the Takla Makan desert edge of China. Int. J. Syst. Evol. Microbiol. 2014, 65, 650–655. [Google Scholar] [CrossRef]
Item | COD (mg/L) | BOD5 (mg/L) | NH3-N (mg/L) | pH | COD (mg/L) | Salinity (%) | SO42− (mg/L) |
---|---|---|---|---|---|---|---|
Data | 30,000 | 12,000 | 12.61 | 11.03 | 600 | 17 | 70,480 |
Domestication Cycle | COD Removal Rate (%) | Average Reaction Rate (mg/L COD•h−1) |
---|---|---|
1 | 28.0 | 15.60 |
2 | 28.9 | 16.85 |
3 | 30.9 | 18.56 |
4 | 37.4 | 32.76 |
5 | 52.6 | 34.04 |
6 | 52.2 | 46.88 |
MLSS | Parameter | Measured S0 (mg/L) | ||
---|---|---|---|---|
K1 (h−1) | S0 (mg/L) | R2 | ||
1 | 12.69214 | 2679.3 | 0.96768 | 2692 |
3 | 26.39976 | 2737.5 | 0.96541 | 2816 |
6 | 47.85004 | 2704.4 | 0.97706 | 2816 |
9 | 61.95709 | 2766.1 | 0.98306 | 2866 |
The Initial pH | Parameter | Measured S0 (mg/L) | ||
---|---|---|---|---|
K1 (h−1) | S0 (mg/L) | R2 | ||
1 | 20.65072 | 2706.9 | 0.91887 | 15.60 |
2 | 36.83511 | 2723.5 | 0.93609 | 16.85 |
3 | 56.64190 | 2765.0 | 0.99844 | 18.56 |
4 | 53.84208 | 2908.1 | 0.97076 | 32.76 |
5 | 20.65072 | 2706.9 | 0.91887 | 34.04 |
6 | 36.83511 | 2723.5 | 0.93609 | 46.88 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, H.; Liu, H.; Yang, X.; Gong, H.; Zhang, H.; Wang, R.; Yan, L.; Mai, W. The Effect of Initial Conditions with Aerobic Biological Treatment on Aniline Dyeing Wastewater. Processes 2021, 9, 1329. https://doi.org/10.3390/pr9081329
Dong H, Liu H, Yang X, Gong H, Zhang H, Wang R, Yan L, Mai W. The Effect of Initial Conditions with Aerobic Biological Treatment on Aniline Dyeing Wastewater. Processes. 2021; 9(8):1329. https://doi.org/10.3390/pr9081329
Chicago/Turabian StyleDong, Huancheng, Hongmei Liu, Xue Yang, Houjie Gong, Heng Zhang, Runkai Wang, Lili Yan, and Wenning Mai. 2021. "The Effect of Initial Conditions with Aerobic Biological Treatment on Aniline Dyeing Wastewater" Processes 9, no. 8: 1329. https://doi.org/10.3390/pr9081329
APA StyleDong, H., Liu, H., Yang, X., Gong, H., Zhang, H., Wang, R., Yan, L., & Mai, W. (2021). The Effect of Initial Conditions with Aerobic Biological Treatment on Aniline Dyeing Wastewater. Processes, 9(8), 1329. https://doi.org/10.3390/pr9081329