Analysis of the Performance of a Solar Thermoelectric Generator for Variable Leg Geometry with Nanofluid Cooling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Solar Concentration
- The Solar-TEG is in a stationary state; its characteristics do not change over time.
- N-type and p-type semiconductor configurations are the same. PbTe is the same material; both semiconductors and thermoelements are symmetrical with each other.
- The thermoelements are thermally connected in parallel and electrically in series.
- Semiconductor properties are temperature-dependent, but copper and the absorption substrate are constant.
- Radiation heat is only analyzed on the hot side of the Solar-TEG.
- The heat dissipator (sink) is not included in the simulation; its behavior by boundary conditions is described [8].
2.2. Geometric Models
2.3. Nanofluid Cooling
2.4. TEG and Nanofluids System
3. Results and Discussion
3.1. Conventional Cooling
3.1.1. Rectangular Models
3.1.2. Trapezoidal Models
3.2. Nanofluid Cooling
3.2.1. Rectangular Models
3.2.2. Trapezoidal Models
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, X.-D.; Huang, Y.-X.; Cheng, C.-H.; Lin, D.; Kang, C.-H. A three-dimensional numerical modeling of thermoelectric device with consideration of coupling of temperature field and electric potential field. Energy 2012, 47, 488–497. [Google Scholar] [CrossRef]
- Gou, X.; Yang, S.; Xiao, H.; Ou, Q. A dynamic model for thermoelectric generator applied in waste heat recovery. Energy 2013, 52, 201–209. [Google Scholar] [CrossRef]
- Kimmel, J. Thermoelectric Materials. Physics 1999, 152. [Google Scholar]
- Ewert Michael, K. Terrestrial and Aerospace Solar Heat Pump Development: Past, present, and future. Sol. Eng. 1998, 375–382. [Google Scholar]
- Chen, G.; Mu, Y.; Zhai, P.; Li, G.; Zhang, Q. An Investigation on the Coupled Thermal–Mechanical–Electrical Response of Automobile Thermoelectric Materials and Devices. J. Electron. Mater. 2013, 42, 1762–1770. [Google Scholar] [CrossRef]
- Riffat, S.B.; Ma, X. Thermoelectrics: A review of present and potential applications. Appl. Therm. Eng. 2003, 23, 913–935. [Google Scholar] [CrossRef]
- Rowe, D.M. Thermoelectric Handbook: Macro to Nano; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Chen, W.-H.; Wang, C.-C.; Hung, C.-I.; Yang, C.-C.; Juang, R.-C. Modeling and simulation for the design of thermal-concentrated solar termoelectric generator. Energy 2014, 64, 287–297. [Google Scholar] [CrossRef]
- Figueiredo, M.; Marseglia, G.; Moita, A.S.; Panão, M.R.O.; Ribeiro, A.P.C.; Medaglia, C.M.; Moreira, A.L.N. Thermofluid characterization of nanofluid spray cooling combining Phase Doppler Interferometry with high-speed visualization and timeresolved IR thermography. Energies 2020, 13, 5864. [Google Scholar] [CrossRef]
- Sanches, M.; Marseglia, G.; Ribeiro, A.; Moreira, A.; Moita, A. Nanofluids Characterization for Spray Cooling Applications. Symmetry 2021, 13, 788. [Google Scholar] [CrossRef]
- Sandhya, M.; Ramasamy, D.; Sudhakar, K.; Kadirgama, K.; Samykano, M.; Harun, W.; Najafi, G.; Mofijur, M.; Mazlan, M. A systematic review on graphene-based nanofluids application in renewable energy systems: Preparation, characterization, and thermophysical properties. Sustain. Energy Technol. Assess. 2021, 44, 101058. [Google Scholar] [CrossRef]
- Rockendorf, G.; Sillmann, R.; Podlowski, L.; Litzenburger, B. PV-hybrid and thermoelectric collectors. Sol. Energy 1999, 67, 227–237. [Google Scholar] [CrossRef]
- Omer, S.A.; Infield, D.G. Design and thermal analysis of a two stage solar concentrator for combined heat and thermoelectric power generation. Energy Convers. Manag. 2000, 41, 737–756. [Google Scholar] [CrossRef]
- Lenoir, B.; Dauscher, A.; Poinas, P.; Scherrer, H.; Vikhor, L. Electrical performance of skutterudites solar thermoelectric generators. Appl. Therm. Eng. 2003, 23, 1407–1415. [Google Scholar] [CrossRef]
- Nuwayhid, R.Y.; Shihadeh, A.; Ghaddar, N. Development and testing of a domestic woodstove thermoelectric generator with natural convection cooling. Energy Convers. Manag. 2005, 46, 1631–1643. [Google Scholar] [CrossRef]
- Kossyvakis, D.; Vossou, C.; Provatidis, C.; Hristoforou, E. Computational analysis and performance optimization of a solar thermoelectric generator. Renew. Energy 2015, 81, 150–161. [Google Scholar] [CrossRef]
- Baranowski, L.L.; Snyder, J.; Toberer, E. Concentrated solar thermoelectric generators. Energy Environ. Sci. 2012, 5, 9055–9067. [Google Scholar] [CrossRef] [Green Version]
- Lamba, R.; Kashik, S.C. Thermodynamic analysis of thermoelectric generator including the influence of Thompson effect and leg geometry configuration. Energy Convers. Manag. 2017, 144, 388–398. [Google Scholar] [CrossRef]
- Kraemer, D.; Poudel, B.; Feng, H.-P.; Caylor, J.C.; Yu, B.; Yan, X.; Ma, Y.; Wang, X.; Wang, D.; Muto, A.; et al. High-performance flat-panel solar thermoelectric generators with high thermal concentration. Nat. Mater. 2011, 10, 532–538. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, A.; Stiewe, C.; Zabrocki, K.; De Boor, J.; Mull, K.; Müller, E. Current assisted sintering of PbTe—Effects on thermoelectric and mechanical properties. Mater. Res. Bull. 2017, 86, 159–166. [Google Scholar] [CrossRef]
- Zhou, M.; He, Y.; Chen, Y. A heat transfer numerical model for thermoelectric generator with cylindrical shell and straight fins under steady-state conditions. Appl. Therm. Eng. 2014, 68, 80–91. [Google Scholar] [CrossRef]
- Huang, Y.-X.; Wang, X.-D.; Cheng, C.-H.; Lin, D. Geometry optimization of thermoelectric coolers using simplified conjugate-gradient method. Energy 2013, 59, 689–697. [Google Scholar] [CrossRef]
- Bahiraei, M.; Hangi, M. Investigation the efficacy of magnetic nanofluid as a coolant in a double-pipe heat exchanger in the presence of the magnetic field. Energy Convers. Manag. 2013, 76, 1125–1133. [Google Scholar] [CrossRef]
- Faizal, M.; Saidur, R.; Mekhilef, S.; Alim, M. Energy, economic and environmental analysis of metal oxides nanofluid for flat-plate solar collector. Energy Convers. Manag. 2013, 76, 162–168. [Google Scholar] [CrossRef]
- Hajian, R.; Layeghi, M.; Sani, K.A. Experimental study of nanofluid effects on the thermal performance with response time of heat pipe. Energy Convers. Manag. 2012, 56, 63–68. [Google Scholar] [CrossRef]
- Koo, J.; Kleinstreuer, C. A new thermal conductivity model for nanofluids. J. Nanopart. Res. 2004, 6, 577–588. [Google Scholar] [CrossRef]
- Peyghambarzadeh, S.; Hashemabadi, S.; Naraki, M.; Vermahmoudi, Y. Experimental study of overall heat transfer coefficient in the application of dilute nanofluids in the car radiator. Appl. Therm. Eng. 2013, 52, 8–16. [Google Scholar] [CrossRef]
- Naraki, M.; Peyghambarzadeh, S.; Hashemabadi, S.; Vermahmoudi, Y. Parametric study of overall heat transfer coefficient of CuO/water nanofluids in a car radiator. Int. J. Therm. Sci. 2013, 66, 82–90. [Google Scholar] [CrossRef]
- Vermahmoudi, Y.; Peyghambarzadeh, S.M.; Hashemabadi, S.H.; Naraki, M. Experimental investigation on heat transfer performance of Fe2O3/water nanofluid in an air-finned heat exchanger. Eur. J. Mech. B/Fluids 2014, 44, 32–41. [Google Scholar] [CrossRef]
- Cuce, E.; Guclu, T.; Cuce, P.M. Improving thermal performance of thermoelectric coolers (TECs) through a nanofluid driven water to air heat exchanger design: An experimental research. Energy Convers. Manag. 2020, 214, 112893. [Google Scholar] [CrossRef]
- Xing, J.-J.; Wu, Z.-H.; Xie, H.-Q.; Wang, Y.-Y.; Li, Y.-H.; Mao, J.-H. Performance of thermoelectric generator with graphene nanofluid cooling. Chin. Phys. B 2017, 26, 104401. [Google Scholar] [CrossRef]
- Mohammadian, S.K.; Zhang, Y. Analysis of nanofluid effects on thermoelectric cooling by micro-pin-fin heat exchangers. Appl. Therm. Eng. 2014, 70, 282–290. [Google Scholar] [CrossRef]
- Selimefendigil, F.; Öztop, H. Identification of pulsating flow effects with CNT nanoparticles on the performance enhancements of thermoelectric generator (TEG) module in renewable energy applications. Renew. Energy 2020, 162, 1076–1086. [Google Scholar] [CrossRef]
- Wiriyasart, S.; Suksusron, P.; Hommalee, C.; Siricharoenpanich, A.; Naphon, P. Heat transfer enhancement of thermoelectric cooling module with nanofluid and ferrofluid as base fluids. Case Stud. Therm. Eng. 2021, 24, 100877. [Google Scholar] [CrossRef]
Equivalent Geometry | Dimensions |
---|---|
Model A | |
Model B | |
Model C |
997 | 2250 | 4181.7 | 1400 |
Shape | Surface Tension/ | |||||
Distilled water | 0.6 | 7.47797 | 997 | 4181.7 | - | 72.13 |
0.025-wt% nanofluids dispersed in graphene | 0.68 | 8.94441 | 1028.575 | 3952.767 | Hexagonal | 70.94 |
0.05-wt% nanofluids dispersed in graphene | 0.705 | 9.24397 | 1060.15 | 3737.470 | Hexagonal | 69.77 |
0.075-wt% nanofluids dispersed in graphene | 0.73 | 9.52621 | 1091.725 | 3534.628 | Hexagonal | 68.03 |
0.1-wt% nanofluids dispersed in graphene | 0.752 | 9.97062 | 1123.3 | 3343.188 | Hexagonal | 66.3 |
Coolant | Property |
---|---|
Air |
No. Substrate | Area (mm2) | Thermal Concentration Ratio | ||
---|---|---|---|---|
Geometry A | Geometry B | Geometry C | ||
1 | 40 × 40 | 50 | 25.51 | 6.38 |
2 | 80 × 80 | 200 | 102.04 | 25.51 |
3 | 100 × 100 | 312.5 | 159.44 | 39.86 |
4 | 110 × 110 | 378.13 | 192.12 | 48.23 |
No. Substrate | Area (mm2) | Thermal Concentration Ratio | |
---|---|---|---|
Trapezoidal Model A | Trapezoidal Model B | ||
1 | 40 × 20 | 11.11 | 4 |
2 | 50 × 30 | 20.833 | 7.5 |
3 | 60 × 40 | 33.333 | 12 |
4 | 70 × 50 | 48.611 | 17.5 |
5 | 80 × 60 | 66.666 | 24 |
6 | 90 × 70 | 87.5 | 31.5 |
7 | 100 × 80 | 111.111 | 40 |
8 | 110 × 90 | 137.5 | 49.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos-Castañeda, C.F.; Olivares-Robles, M.A.; Méndez-Méndez, J.V. Analysis of the Performance of a Solar Thermoelectric Generator for Variable Leg Geometry with Nanofluid Cooling. Processes 2021, 9, 1352. https://doi.org/10.3390/pr9081352
Ramos-Castañeda CF, Olivares-Robles MA, Méndez-Méndez JV. Analysis of the Performance of a Solar Thermoelectric Generator for Variable Leg Geometry with Nanofluid Cooling. Processes. 2021; 9(8):1352. https://doi.org/10.3390/pr9081352
Chicago/Turabian StyleRamos-Castañeda, Cristian Francisco, Miguel Angel Olivares-Robles, and Juan Vicente Méndez-Méndez. 2021. "Analysis of the Performance of a Solar Thermoelectric Generator for Variable Leg Geometry with Nanofluid Cooling" Processes 9, no. 8: 1352. https://doi.org/10.3390/pr9081352
APA StyleRamos-Castañeda, C. F., Olivares-Robles, M. A., & Méndez-Méndez, J. V. (2021). Analysis of the Performance of a Solar Thermoelectric Generator for Variable Leg Geometry with Nanofluid Cooling. Processes, 9(8), 1352. https://doi.org/10.3390/pr9081352