Sonication, a Potential Technique for Extraction of Phytoconstituents: A Systematic Review
Abstract
:1. Introduction
2. Systematic Literature Review Methodology
2.1. Search Terms Used
2.2. Inclusion and Exclusion
3. History and Applications of Ultrasound in the Food Industry
4. Types of Ultrasound Equipment
4.1. Ultrasound Bath
4.2. Ultrasound Probe Type
5. Mechanism of Extraction
6. Influence of Treatment Conditions on Extraction
6.1. Influence of Temperature
6.2. Influence of Frequency
6.3. Influence of Time
7. Extraction of Bioactive Compounds
7.1. Extraction of Oils
7.2. Extraction of Pectin
7.3. Extraction of Protein
8. Conclusions, Challenges, and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chemat, F.; Ashokkumar, M. Preface: Ultrasound in the processing of liquid foods, beverages and alcoholic drinks. Ultrason. Sonochem. 2017, 38, 753. [Google Scholar] [CrossRef]
- Alarcon-Rojo, A.D.; Carrillo-Lopez, L.M.; Reyes-Villagrana, R.; Huerta-Jiménez, M.; Garcia-Galicia, I.A. Ultrasound and meat quality: A review. Ultrason. Sonochem. 2019, 55, 369–382. [Google Scholar] [CrossRef]
- Maged, E.A.M.; Alhajhoj, M.R. Importance and Applications of Ultrasonic Technology to Improve Food Quality. In Food Processing; Marc, R.A., Díaz, A.V., Izquierdo, G.D.P., Eds.; IntechOpen: London, UK, 2020. [Google Scholar]
- Gallo, M.; Ferrara, L.; Naviglio, D. Application of ultrasound in food science and technology: A perspective. Foods 2018, 7, 164. [Google Scholar] [CrossRef] [Green Version]
- Chemat, F.; Strube, J. Green Extraction of Natural Products: Theory and Practice; Wiley-VCH Verlag: Weinheim, Germany, 2014; ISBN 9783527676828. [Google Scholar]
- Ranjha, M.M.A.N.; Amjad, S.; Ashraf, S.; Khawar, L.; Safdar, M.N.; Jabbar, S.; Nadeem, M.; Mahmood, S.; Murtaza, M.A. Extraction of Polyphenols from Apple and Pomegranate Peels Employing Different Extraction Techniques for the Development of Functional Date Bars. Int. J. Fruit Sci. 2020, 20, S1201–S1221. [Google Scholar] [CrossRef]
- Alexandru, L.; Binello, A.; Chemat, F.; Cravotto, G.; Giordana, L. Ultrasound-assisted extraction of clove buds using batch- and flow-reactors: A comparative study on a pilot scale. Innov. Food Sci. Emerg. Technol. 2013, 20, 167–172. [Google Scholar] [CrossRef]
- Cravotto, G.; Omiccioli, G.; Stevanato, L. An improved sonochemical reactor. Ultrason. Sonochem. 2005, 12, 213–217. [Google Scholar] [CrossRef] [PubMed]
- Cravotto, G.; Mariatti, F.; Gunjevic, V.; Secondo, M.; Villa, M.; Parolin, J.; Cavaglià, G. Pilot Scale Cavitational Reactors and Other Enabling Technologies to Design the Industrial Recovery of Polyphenols from Agro-Food By-Products, a Technical and Economical Overview. Foods 2018, 7, 130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, J.; Li, Q.; Xue, H.; Tang, J. Ultrasound-assisted enzymatic extraction of anthocyanins from grape skins: Optimization, identification, and antitumor activity. J. Food Sci. 2020, 85, 3731–3744. [Google Scholar] [CrossRef] [PubMed]
- Tzima, K.; Brunton, N.P.; Lyng, J.G.; Frontuto, D.; Rai, D.K. The effect of Pulsed Electric Field as a pre-treatment step in Ultrasound Assisted Extraction of phenolic compounds from fresh rosemary and thyme by-products. Innov. Food Sci. Emerg. Technol. 2021, 69, 102644. [Google Scholar] [CrossRef]
- Liang, Q.; Chen, H.; Zhou, X.; Deng, Q.; Hu, E.; Zhao, C.; Gong, X. Optimized microwave-assistant extraction combined ultrasonic pretreatment of flavonoids from Periploca forrestii Schltr. and evaluation of its anti-allergic activity. Electrophoresis 2017, 38, 1113–1121. [Google Scholar] [CrossRef]
- Pereira, D.T.V.; Zabot, G.L.; Reyes, F.G.R.; Iglesias, A.H.; Martínez, J. Integration of pressurized liquids and ultrasound in the extraction of bioactive compounds from passion fruit rinds: Impact on phenolic yield, extraction kinetics and technical-economic evaluation. Innov. Food Sci. Emerg. Technol. 2021, 67, 102549. [Google Scholar] [CrossRef]
- Ordoñez-Torres, A.; Torres-León, C.; Hernández-Almanza, A.; Flores-Guía, T.; Luque-Contreras, D.; Aguilar, C.N.; Ascacio-Valdés, J. Ultrasound-microwave-assisted extraction of polyphenolic compounds from Mexican “Ataulfo” mango peels: Antioxidant potential and identification by HPLC/ESI/MS. Phytochem. Anal. 2020, 32, 495–502. [Google Scholar]
- Arshad, R.N.; Abdul-Malek, Z.; Roobab, U.; Qureshi, M.I.; Khan, N.; Ahmad, M.H.; Liu, Z.W.; Aadil, R.M. Effective valorization of food wastes and by-products through pulsed electric field: A systematic review. J. Food Process Eng. 2020, 44, e13629. [Google Scholar]
- Tiwari, B.K. Ultrasound: A clean, green extraction technology. TrAC - Trends Anal. Chem. 2015, 71, 100–109. [Google Scholar] [CrossRef]
- Fu, X.; Belwal, T.; Cravotto, G.; Luo, Z. Sono-physical and sono-chemical effects of ultrasound: Primary applications in extraction and freezing operations and influence on food components. Ultrason. Sonochem. 2020, 60, 104726. [Google Scholar] [CrossRef]
- Liu, P.; Xu, Y.F.; Gao, X.D.; Zhu, X.Y.; Du, M.Z.; Wang, Y.X.; Deng, R.X.; Gao, J.Y. Optimization of ultrasonic-assisted extraction of oil from the seed kernels and isolation of monoterpene glycosides from the oil residue of Paeonia lactiflora Pall. Ind. Crops Prod. 2017, 107, 260–270. [Google Scholar] [CrossRef]
- Pinton, M.B.; dos Santos, B.A.; Lorenzo, J.M.; Cichoski, A.J.; Boeira, C.P.; Campagnol, P.C.B. Green technologies as a strategy to reduce NaCl and phosphate in meat products: An overview. Curr. Opin. Food Sci. 2020, 40, 1–5. [Google Scholar] [CrossRef]
- Manzoor, M.F.; Zeng, X.A.; Rahaman, A.; Siddeeg, A.; Aadil, R.M.; Ahmed, Z.; Li, J.; Niu, D. Combined impact of pulsed electric field and ultrasound on bioactive compounds and FT-IR analysis of almond extract. J. Food Sci. Technol. 2019, 56, 2355–2364. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Tao, F.; Cui, K.; Song, Y.; Nan, L.; Cui, C.; Li, Y.; Yang, J.; Wang, Y.; Jiang, L. Optimization of ultrasonic extraction of anthocyanin in mulberry residue by response surface methodology. IOP Conf. Ser. Earth Environ. Sci. 2020, 559, 012024. [Google Scholar] [CrossRef]
- Alonso-Riaño, P.; Diez, M.T.S.; Blanco, B.; Beltrán, S.; Trigueros, E.; Benito-Román, O. Water ultrasound-assisted extraction of polyphenol compounds from brewer’s spent grain: Kinetic study, extract characterization, and concentration. Antioxidants 2020, 9, 265. [Google Scholar] [CrossRef] [Green Version]
- Medina-Torres, N.; Ayora-Talavera, T.; Espinosa-Andrews, H.; Sánchez-Contreras, A.; Pacheco, N. Ultrasound assisted extraction for the recovery of phenolic compounds from vegetable sources. Agronomy 2017, 7, 47. [Google Scholar] [CrossRef]
- Jovanovic-Malinovska, R.; Kuzmanova, S.; Winkelhausen, E. Application of ultrasound for enhanced extraction of prebiotic oligosaccharides from selected fruits and vegetables. Ultrason. Sonochem. 2015, 22, 446–453. [Google Scholar] [CrossRef]
- Žlabur, J.; Voća, S.; Brnčić, M.; Rimac-Brnčić, S. New Trends in Food Technology for Green Recovery of Bioactive Compounds From Plant Materials. In Role of Materials Science in Food Bioengineering; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1–36. ISBN 9780128115008. [Google Scholar]
- Astráin-Redín, L.; Ciudad-Hidalgo, S.; Raso, J.; Condón, S.; Cebrián, G.; Álvarez, I. Application of High-Power Ultrasound in the Food Industry. In Sonochemical Reactions; IntechOpen: London, UK, 2020. [Google Scholar]
- Kulkarni, V.M.; Rathod, V.K. Mapping of an ultrasonic bath for ultrasound assisted extraction of mangiferin from Mangifera indica leaves. Ultrason. Sonochem. 2014, 21, 606–611. [Google Scholar] [CrossRef]
- Bendicho, C.; Lavilla, I. Ultrasound Extractions. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier Inc.: Amsterdam, The Netherlands, 2018; Volume 3, pp. 1–9. ISBN 9780124095472. [Google Scholar]
- Belwal, T.; Ezzat, S.M.; Rastrelli, L.; Bhatt, I.D.; Daglia, M.; Baldi, A.; Devkota, H.P.; Orhan, I.E.; Patra, J.K.; Das, G.; et al. A critical analysis of extraction techniques used for botanicals: Trends, priorities, industrial uses and optimization strategies. TrAC - Trends Anal. Chem. 2018, 100, 82–102. [Google Scholar] [CrossRef]
- Flórez, N.; Conde, E.; Domínguez, H. Microwave assisted water extraction of plant compounds. J. Chem. Technol. Biotechnol. 2014, 90, 590–607. [Google Scholar] [CrossRef]
- Lavilla, I.; Bendicho, C. Fundamentals of Ultrasound-Assisted Extraction. In Water Extraction of Bioactive Compounds: From Plants to Drug Development; Domínguez, H., González, M.J., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2017; pp. 291–316. ISBN 9780128096154. [Google Scholar]
- Zhu, Y.; Sun, J.; Xu, D.; Wang, S.; Yuan, Y.; Cao, Y. Investigation of (+)-catechin stability under ultrasonic treatment and its degradation kinetic modeling. J. Food Process Eng. 2018, 41, e12904. [Google Scholar] [CrossRef]
- Safdar, M.N.; Kausar, T.; Nadeem, M. Comparison of Ultrasound and Maceration Techniques for the Extraction of Polyphenols from the Mango Peel. J. Food Process. Preserv. 2017, 41, e13028. [Google Scholar] [CrossRef]
- Safdar, M.N. Characterization of Mango and Kinnow Peel Phenolic Compounds for the Development of fruit Bars. Ph.D. Thesis, University of Sargodha, Sargodha, Pakistan, 2016. [Google Scholar]
- Irfan, S.; Ranjha, M.M.A.N.; Mahmood, S.; Saeed, W.; Alam, M.Q. Lemon Peel: A Natural Medicine. Int. J. Biotechnol. Allied Fields 2018, 7, 185–194. [Google Scholar]
- Irfan, S.; Ranjha, M.M.A.N.; Mahmood, S.; Mueen-ud-Din, G.; Rehman, S.; Saeed, W.; Qamrosh Alam, M.; Mahvish Zahra, S.; Yousaf Quddoos, M.; Ramzan, I.; et al. A Critical Review on Pharmaceutical and Medicinal Importance of Ginger. Acta Sci. Nutr. Heal. 2019, 3, 78–82. [Google Scholar]
- Nadeem, H.R.; Akhtar, S.; Ismail, T.; Sestili, P.; Lorenzo, J.M.; Ranjha, M.M.; Jooste, L.; Hano, C.; Aadil, R.M. Heterocyclic Aromatic Amines in Meat: Formation, Isolation, Risk Assessment, and Inhibitory Effect of Plant Extracts. Foods 2021, 10, 1466. [Google Scholar] [CrossRef] [PubMed]
- Ranjha, M.M.A.N.; Irfan, S.; Nadeem, M.; Mahmood, S. A Comprehensive Review on Nutritional Value, Medicinal Uses, and Processing of Banana. Food Rev. Int. 2020, 1–27. [Google Scholar] [CrossRef]
- Ingle, K.P.; Deshmukh, A.G.; Padole, D.A.; Dudhare, M.S.; Moharil, M.P.; Khelurkar, V.C. Phytochemicals: Extraction methods, identification and detection of bioactive compounds from plant extracts. J. Pharmacogn. Phytochem. 2017, 6, 32–36. [Google Scholar]
- Zainal-Abidin, M.H.; Hayyan, M.; Hayyan, A.; Jayakumar, N.S. New horizons in the extraction of bioactive compounds using deep eutectic solvents: A review. Anal. Chim. Acta 2017, 979, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Ranjha, M.M.A.N.; Shafique, B.; Wang, L.; Irfan, S.; Safdar, M.N.; Murtaza, M.A.; Nadeem, M.; Mahmood, S.; Mueen-ud-Din, G.; Nadeem, H.R. A comprehensive review on phytochemistry, bioactivity and medicinal value of bioactive compounds of pomegranate (Punica granatum). Adv. Tradit. Med. 2021. [Google Scholar] [CrossRef]
- Sabtain, B.; Farooq, R.; Shafique, B.; Modassar, M.; Ranjha, A.N. A Narrative Review on the Phytochemistry, Nutritional Profile and Properties of Prickly Pear Fruit. Open Access J. Biog. Sci. Res. 2021, 7. [Google Scholar] [CrossRef]
- Shehzadi, K.; Rubab, Q.; Asad, L.; Ishfaq, M.; Shafique, B.; Modassar, M.; Ranjha, A.N.; Mahmood, S.; Mueen-Ud-Din, G.; Javaid, T.; et al. A Critical Review on Presence of Polyphenols in Commercial Varieties of Apple Peel, their Extraction and Health Benefits. Open Access J. Biog. Sci. Res. 2020, 6, 18. [Google Scholar]
- Al Khawli, F.; Pateiro, M.; Domínguez, R.; Lorenzo, J.M.; Gullón, P.; Kousoulaki, K.; Ferrer, E.; Berrada, H.; Barba, F.J. Innovative green technologies of intensification for valorization of seafood and their by-products. Mar. Drugs 2019, 17, 689. [Google Scholar] [CrossRef] [Green Version]
- Pateiro, M.; Gómez-Salazar, J.A.; Jaime-Patlán, M.; Sosa-Morales, M.E.; Lorenzo, J.M. Plant extracts obtained with green solvents as natural antioxidants in fresh meat products. Antioxidants 2021, 10, 181. [Google Scholar] [CrossRef]
- Soquetta, M.B.; de Marsillac Terra, L.; Bastos, C.P. Green technologies for the extraction of bioactive compounds in fruits and vegetables. CYTA J. Food 2018, 16, 400–412. [Google Scholar] [CrossRef]
- Giacometti, J.; Bursać Kovačević, D.; Putnik, P.; Gabrić, D.; Bilušić, T.; Krešić, G.; Stulić, V.; Barba, F.J.; Chemat, F.; Barbosa-Cánovas, G.; et al. Extraction of bioactive compounds and essential oils from mediterranean herbs by conventional and green innovative techniques: A review. Food Res. Int. 2018, 113, 245–262. [Google Scholar] [CrossRef]
- Vega, A.J.D.; Hector, R.E.; Jose, L.G.J.; Paola, H.C.; Raúl, Á.S.; Enrique, O.V.C. Effect of solvents and extraction methods on total anthocyanins, phenolic compounds and antioxidant capacity of Renealmia alpinia (Rottb.) Maas peel. Czech J. Food Sci. 2017, 35, 456–465. [Google Scholar] [CrossRef] [Green Version]
- Wen, C.; Zhang, J.; Zhang, H.; Dzah, C.S.; Zandile, M.; Duan, Y.; Ma, H.; Luo, X. Advances in ultrasound assisted extraction of bioactive compounds from cash crops–A review. Ultrason. Sonochem. 2018, 48, 538–549. [Google Scholar] [CrossRef]
- Mihailović, N.R.; Mihailović, V.B.; Ćirić, A.R.; Srećković, N.Z.; Cvijović, M.R.; Joksović, L.G. Analysis of Wild Raspberries (Rubus idaeus L.): Optimization of the Ultrasonic-Assisted Extraction of Phenolics and a New Insight in Phenolics Bioaccessibility. Plant Foods Hum. Nutr. 2019, 74, 399–404. [Google Scholar] [CrossRef]
- Mehmood, A.; Ishaq, M.; Zhao, L.; Yaqoob, S.; Safdar, B.; Nadeem, M.; Munir, M.; Wang, C. Impact of ultrasound and conventional extraction techniques on bioactive compounds and biological activities of blue butterfly pea flower (Clitoria ternatea L.). Ultrason. Sonochem. 2019, 51, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Rodsamran, P.; Sothornvit, R. Extraction of phenolic compounds from lime peel waste using ultrasonic-assisted and microwave-assisted extractions. Food Biosci. 2019, 28, 66–73. [Google Scholar] [CrossRef]
- Londoño-Londoño, J.; de Lima, V.R.; Lara, O.; Gil, A.; Pasa, T.B.C.; Arango, G.J.; Pineda, J.R.R. Clean recovery of antioxidant flavonoids from citrus peel: Optimizing an aqueous ultrasound-assisted extraction method. Food Chem. 2010, 119, 81–87. [Google Scholar] [CrossRef]
- Muñiz-Márquez, D.B.; Martínez-Ávila, G.C.; Wong-Paz, J.E.; Belmares-Cerda, R.; Rodríguez-Herrera, R.; Aguilar, C.N. Ultrasound-assisted extraction of phenolic compounds from Laurus nobilis L. and their antioxidant activity. Ultrason. Sonochem. 2013, 20, 1149–1154. [Google Scholar] [CrossRef]
- Safdar, M.N.; Kausar, T.; Jabbar, S.; Mumtaz, A.; Ahad, K.; Saddozai, A.A. Extraction and quantification of polyphenols from kinnow (Citrus reticulate L.) peel using ultrasound and maceration techniques. J. Food Drug Anal. 2017, 25, 488–500. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, L.M.; Romanini, E.B.; Silva, E.; Pilau, E.J.; da Costa, S.C.; Madrona, G.S. Camu-camu bioactive compounds extraction by ecofriendly sequential processes (ultrasound assisted extraction and reverse osmosis). Ultrason. Sonochem. 2020, 64, 105017. [Google Scholar] [CrossRef]
- Chakraborty, S.; Uppaluri, R.; Das, C. Optimization of ultrasound-assisted extraction (UAE) process for the recovery of bioactive compounds from bitter gourd using response surface methodology (RSM). Food Bioprod. Process. 2020, 120, 114–122. [Google Scholar] [CrossRef]
- Savic, I.M.; Savic Gajic, I.M. Optimization of ultrasound-assisted extraction of polyphenols from wheatgrass (Triticum aestivum L.). J. Food Sci. Technol. 2020, 57, 2809–2818. [Google Scholar] [CrossRef]
- Bouaoudia-Madi, N.; Boulekbache-Makhlouf, L.; Madani, K.; Silva, A.M.S.; Dairi, S.; Oukhmanou-Bensidhoum, S.; Cardoso, S.M. Optimization of ultrasound-assisted extraction of polyphenols from myrtus communis L. Pericarp. Antioxidants 2019, 8, 205. [Google Scholar] [CrossRef] [Green Version]
- Zeng, W.; Li, F.; Wu, C.; Ge, Y.; Yu, R.; Wu, X.; Shen, L.; Liu, Y.; Li, J. Optimization of ultrasound-assisted aqueous extraction of polyphenols from Psidium guajava leaves using response surface methodology. Sep. Sci. Technol. 2020, 55, 728–738. [Google Scholar] [CrossRef]
- Ciric, A.; Krajnc, B.; Heath, D.; Ogrinc, N. Response surface methodology and artificial neural network approach for the optimization of ultrasound-assisted extraction of polyphenols from garlic. Food Chem. Toxicol. 2020, 135, 110976. [Google Scholar] [CrossRef]
- Xu, D.P.; Zheng, J.; Zhou, Y.; Li, Y.; Li, S.; Li, H. Bin Ultrasound-assisted extraction of natural antioxidants from the flower of Limonium sinuatum: Optimization and comparison with conventional methods. Food Chem. 2017, 217, 552–559. [Google Scholar] [CrossRef]
- Foujdar, R.; Bera, M.B.; Chopra, H.K. Optimization of process variables of probe ultrasonic-assisted extraction of phenolic compounds from the peel of Punica granatum Var. Bhagwa and it’s chemical and bioactivity characterization. J. Food Process. Preserv. 2020, 44, 1–16. [Google Scholar] [CrossRef]
- Ryu, D.; Koh, E. Optimization of Ultrasound-Assisted Extraction of Anthocyanins and Phenolic Compounds from Black Soybeans (Glycine max L.). Food Anal. Methods 2019, 12, 1382–1389. [Google Scholar] [CrossRef]
- del Mar Contreras, M.; Lama-Muñoz, A.; Espínola, F.; Moya, M.; Romero, I.; Castro, E. Valorization of olive mill leaves through ultrasound-assisted extraction. Food Chem. 2020, 314, 126218. [Google Scholar] [CrossRef] [PubMed]
- Savic Gajic, I.M.; Savic, I.M.; Gajic, D.G.; Dosic, A. Ultrasound-Assisted Extraction of Carotenoids from Orange Peel Using Olive Oil and Its Encapsulation in Ca-Alginate Beads. Biomolecules 2021, 11, 225. [Google Scholar] [CrossRef]
- Nguyen, T.M.C.; Gavahian, M.; Tsai, P.-J. Ultrasound-assisted extraction of Gac (Momordica cochinchinensis Spreng.) leaves: Effect of maturity stage on phytochemicals and carbohydrate-hydrolyzing enzymes inhibitory activity. Ital. J. Food Sci. 2021, 33, 34–42. [Google Scholar] [CrossRef]
- Ordóñez-Santos, L.E.; Esparza-Estrada, J.; Vanegas-Mahecha, P. Ultrasound-assisted extraction of total carotenoids from mandarin epicarp and application as natural colorant in bakery products. LWT 2021, 139, 110598. [Google Scholar] [CrossRef]
- Irfan, S. A comparative Study of Maceration and Sonication for Extraction of Polyphenols from Lemongrass. In Proceedings of the 30th All Pakistan Food Science Conference & Food Nutrition Expo, Lahore, Pakistan, 24–26 August 2019; p. 378. [Google Scholar]
- Welz, P.J. Edible seed oil waste: Status quo and future perspectives. Water Sci. Technol. 2019, 80, 2107–2116. [Google Scholar] [CrossRef] [PubMed]
- Mushtaq, A.; Roobab, U.; Denoya, G.I.; Inam-Ur-Raheem, M.; Gullón, B.; Lorenzo, J.M.; Aadil, R.M. Advances in green processing of seed oils using ultrasound-assisted extraction: A review. J. Food Process. Preserv. 2020, 44, e14740. [Google Scholar]
- Sicaire, A.G.; Vian, M.A.; Fine, F.; Carré, P.; Tostain, S.; Chemat, F. Ultrasound induced green solvent extraction of oil from oleaginous seeds. Ultrason. Sonochem. 2016, 31, 319–329. [Google Scholar] [CrossRef]
- Hernández-Santos, B.; Rodríguez-Miranda, J.; Herman-Lara, E.; Torruco-Uco, J.G.; Carmona-García, R.; Juárez-Barrientos, J.M.; Chávez-Zamudio, R.; Martínez-Sánchez, C.E. Effect of oil extraction assisted by ultrasound on the physicochemical properties and fatty acid profile of pumpkin seed oil (Cucurbita pepo). Ultrason. Sonochem. 2016, 31, 429–436. [Google Scholar]
- Mohebbi, M.; Heydari, R.; Ramezani, M. Determination of Cu, Cd, Ni, Pb and Zn in edible oils using reversed-phase ultrasonic assisted liquid–liquid microextraction and flame atomic absorption spectrometry. J. Anal. Chem. 2018, 73, 30–35. [Google Scholar] [CrossRef]
- Samaram, S.; Mirhosseini, H.; Tan, C.P.; Ghazali, H.M.; Bordbar, S.; Serjouie, A. Optimisation of ultrasound-assisted extraction of oil from papaya seed by response surface methodology: Oil recovery, radical scavenging antioxidant activity, and oxidation stability. Food Chem. 2015, 172, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Jalili, F.; Jafari, S.M.; Emam-djomeh, Z.; Malekjani, N. Optimization of Ultrasound-Assisted Extraction of Oil from Canola Seeds with the Use of Response Surface Methodology. Food Anal. Methods 2018, 11, 598–612. [Google Scholar] [CrossRef]
- De Mello, B.T.F. Ultrasound-Assisted Extraction of Oil from Chia (Salvia hispânica L.) Seeds: Optimization Extraction and Fatty Acid Profile. J. Food Process Eng. 2015, 40, e12298. [Google Scholar] [CrossRef]
- Hashemi, S.M.B.; Michiels, J.; Asadi Yousefabad, S.H.; Hosseini, M. Kolkhoung (Pistacia khinjuk) kernel oil quality is affected by different parameters in pulsed ultrasound-assisted solvent extraction. Ind. Crops Prod. 2015, 70, 28–33. [Google Scholar] [CrossRef]
- Chanioti, S.; Tzia, C. Optimization of ultrasound-assisted extraction of oil from olive pomace using response surface technology: Oil recovery, unsaponifiable matter, total phenol content and antioxidant activity. LWT Food Sci. Technol. 2017, 79, 178–189. [Google Scholar] [CrossRef]
- Tavares, G.R.; Massa, T.B.; Gonçalves, J.E.; da Silva, C.; dos Santos, W.D. Assessment of ultrasound-assisted extraction of crambe seed oil for biodiesel synthesis by in situ interesterification. Renew. Energy 2017, 111, 659–665. [Google Scholar] [CrossRef]
- da Rosa, A.C.S.; Stevanato, N.; Iwassa, I.; dos Santos Garcia, V.A.; da Silva, C. Obtaining oil from macauba kernels by ultrasound-assisted extraction using ethyl acetate as the solvent. Brazilian J. Food Technol. 2019, 22, 1–10. [Google Scholar] [CrossRef]
- Thi, M.; Doan, N.; Huynh, M.C.; Ngoc, A.; Pham, V.; Quyen, N.D.; Thi, P.; Le, K. Extracting Seed Oil and Phenolic Compounds from Papaya Seeds by Ultrasound-assisted Extraction Method and Their Properties. Chem. Eng. Trans. 2020, 78, 493–498. [Google Scholar]
- Gayas, B.; Kaur, G.; Singh, A. Ultrasound assisted extraction of apricot kernel oil: Effect on physicochemical, morphological characteristics, and fatty acid composition. Acta Aliment. 2020, 49, 23–31. [Google Scholar] [CrossRef]
- Mohammadpour, H.; Sadrameli, S.M.; Eslami, F.; Asoodeh, A. Optimization of ultrasound-assisted extraction of Moringa peregrina oil with response surface methodology and comparison with Soxhlet method. Ind. Crops Prod. 2019, 131, 106–116. [Google Scholar] [CrossRef]
- Naveenkumar, R.; Baskar, G. Ultrasonic assisted extraction of oil from castor seeds: Optimization using response surface methodology, extraction kinetics and characterization. Energy Sources Part A Recover. Util. Environ. Eff. 2019, 1–12. [Google Scholar] [CrossRef]
- Zhang, W.; Pan, Y.G.; Huang, W.; Chen, H.; Yang, H. Optimized ultrasonic-assisted extraction of papaya seed oil from Hainan/Eksotika variety. Food Sci. Nutr. 2019, 7, 2692–2701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ideris, F.; Shamsuddin, A.H.; Nomanbhay, S.; Kusumo, F.; Silitonga, A.S.; Ong, M.Y.; Ong, H.C.; Mahlia, T.M.I. Optimization of ultrasound-assisted oil extraction from Canarium odontophyllum kernel as a novel biodiesel feedstock. J. Clean. Prod. 2021, 288, 125563. [Google Scholar] [CrossRef]
- Yap, Q.J.; Abang Zaidel, D.N.; Mohd Jusoh, Y.M.; Dailin, D.J.; Hashim, Z.; Salleh, E.; Mohd Yusof, A.H.; Muhamad, I.I. Optimisation of swietenia macrophylla seed oil extraction using ultrasound-assisted method. Chem. Eng. Trans. 2021, 83, 79–84. [Google Scholar]
- Alam, I.; Shahi, N.; Lohani, U.; Kumar, A.; Prakash, O. Ultrasound assisted extraction of oil from black cumin (Nigella sativa L.). Int. J. Chem. Stud. 2021, 9, 87–91. [Google Scholar]
- Lara-Espinoza, C.; Carvajal-Millán, E.; Balandrán-Quintana, R.; López-Franco, Y.; Rascón-Chu, A. Pectin and pectin-based composite materials: Beyond food texture. Molecules 2018, 23, 942. [Google Scholar] [CrossRef] [Green Version]
- Ciriminna, R.; Fidalgo, A.; Delisi, R.; Ilharco, L.M.; Pagliaro, M. Pectin production and global market. Agro Food Ind. Hi-Tech. 2016, 27, 17–20. [Google Scholar]
- Yan, J.K.; Wang, C.; Qiu, W.Y.; Chen, T.T.; Yang, Y.; Wang, W.H.; Zhang, H.N. Ultrasonic treatment at different pH values affects the macromolecular, structural, and rheological characteristics of citrus pectin. Food Chem. 2021, 341, 128216. [Google Scholar] [CrossRef] [PubMed]
- Marić, M.; Grassino, A.N.; Zhu, Z.; Barba, F.J.; Brnčić, M.; Rimac Brnčić, S. An overview of the traditional and innovative approaches for pectin extraction from plant food wastes and by-products: Ultrasound-, microwaves-, and enzyme-assisted extraction. Trends Food Sci. Technol. 2018, 76, 28–37. [Google Scholar] [CrossRef]
- Pasandide, B.; Khodaiyan, F.; Mousavi, Z.; Hosseini, S.S. Pectin extraction from citron peel: Optimization by Box–Behnken response surface design. Food Sci. Biotechnol. 2018, 27, 997–1005. [Google Scholar] [CrossRef] [PubMed]
- Asgari, K.; Labbafi, M.; Khodaiyan, F.; Kazemi, M.; Hosseini, S.S. High-methylated pectin from walnut processing wastes as a potential resource: Ultrasound assisted extraction and physicochemical, structural and functional analysis. Int. J. Biol. Macromol. 2019, 152, 1274–1282. [Google Scholar] [CrossRef]
- Banerjee, J.; Vijayaraghavan, R.; Arora, A.; MacFarlane, D.R.; Patti, A.F. Lemon juice based extraction of pectin from mango peels: Waste to wealth by sustainable approaches. ACS Sustain. Chem. Eng. 2016, 4, 5915–5920. [Google Scholar] [CrossRef] [Green Version]
- Bayar, N.; Bouallegue, T.; Achour, M.; Kriaa, M.; Bougatef, A.; Kammoun, R. Ultrasonic extraction of pectin from Opuntia ficus indica cladodes after mucilage removal: Optimization of experimental conditions and evaluation of chemical and functional properties. Food Chem. 2017, 235, 275–282. [Google Scholar] [CrossRef]
- Chuajedton, A.; Karuehanon, W.; Boonkorn, P. Extraction of pectin from peanut shell waste with heating in combination with ultrasonic-assisted extraction. Int. J. GEOMATE 2020, 18, 9–14. [Google Scholar] [CrossRef]
- Freitas de Oliveira, C.; Giordani, D.; Lutckemier, R.; Gurak, P.D.; Cladera-Olivera, F.; Ferreira Marczak, L.D. Extraction of pectin from passion fruit peel assisted by ultrasound. LWT - Food Sci. Technol. 2016, 71, 110–115. [Google Scholar] [CrossRef]
- Grassino, A.N.; Brnčić, M.; Vikić-Topić, D.; Roca, S.; Dent, M.; Brnčić, S.R. Ultrasound assisted extraction and characterization of pectin from tomato waste. Food Chem. 2016, 198, 93–100. [Google Scholar] [CrossRef]
- Hosseini, S.S.; Khodaiyan, F.; Kazemi, M.; Najari, Z. Optimization and characterization of pectin extracted from sour orange peel by ultrasound assisted method. Int. J. Biol. Macromol. 2019, 225, 621–629. [Google Scholar] [CrossRef] [PubMed]
- Kazemi, M.; Khodaiyan, F.; Hosseini, S.S. Eggplant peel as a high potential source of high methylated pectin: Ultrasonic extraction optimization and characterization. LWT 2019, 105, 182–189. [Google Scholar] [CrossRef]
- Ke, J.; Jiang, G.; Shen, G.; Wu, H.; Liu, Y.; Zhang, Z. Optimization, characterization and rheological behavior study of pectin extracted from chayote (Sechium edule) using ultrasound assisted method. Int. J. Biol. Macromol. 2020, 147, 688–698. [Google Scholar] [CrossRef]
- Lin, C.B.; Kai, N.Y.; Ali, A. Ultrasound assisted extraction of pectin from dragon fruit peels. J. Eng. Sci. Technol. 2018, 13, 65–81. [Google Scholar]
- Maran, J.P.; Priya, B. Ultrasound-assisted extraction of pectin from sisal waste. Carbohydr. Polym. 2015, 115, 732–738. [Google Scholar] [CrossRef] [PubMed]
- Maran, J.P.; Priya, B.; Al-Dhabi, N.A.; Ponmurugan, K.; Moorthy, I.G.; Sivarajasekar, N. Ultrasound assisted citric acid mediated pectin extraction from industrial waste of Musa balbisiana. Ultrason. Sonochem. 2017, 35, 204–209. [Google Scholar] [CrossRef]
- Minjares-Fuentes, R.; Femenia, A.; Garau, M.C.; Meza-Velázquez, J.A.; Simal, S.; Rosselló, C. Ultrasound-assisted extraction of pectins from grape pomace using citric acid: A response surface methodology approach. Carbohydr. Polym. 2014, 106, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Moorthy, I.G.; Maran, J.P.; Ilakya, S.; Anitha, S.L.; Sabarima, S.P.; Priya, B. Ultrasound assisted extraction of pectin from waste Artocarpus heterophyllus fruit peel. Ultrason. Sonochem. 2017, 34, 525–530. [Google Scholar] [CrossRef] [PubMed]
- Moorthy, I.G.; Maran, J.P.; Surya, S.M.; Naganyashree, S.; Shivamathi, C.S. Response surface optimization of ultrasound assisted extraction of pectin from pomegranate peel. Int. J. Biol. Macromol. 2015, 72, 1323–1328. [Google Scholar] [CrossRef] [PubMed]
- Shivamathi, C.S.; Moorthy, I.G.; Kumar, R.V.; Soosai, M.R.; Maran, J.P.; Kumar, R.S.; Varalakshmi, P. Optimization of ultrasound assisted extraction of pectin from custard apple peel: Potential and new source. Carbohydr. Polym. 2019, 225, 115240. [Google Scholar] [CrossRef]
- Wang, W.; Ma, X.; Xu, Y.; Cao, Y.; Jiang, Z.; Ding, T.; Ye, X.; Liu, D. Ultrasound-assisted heating extraction of pectin from grapefruit peel: Optimization and comparison with the conventional method. Food Chem. 2015, 178, 106–114. [Google Scholar] [CrossRef]
- Karbuz, P.; Tugrul, N. Microwave and ultrasound assisted extraction of pectin from various fruits peel. J. Food Sci. Technol. 2021, 58, 641–650. [Google Scholar] [CrossRef] [PubMed]
- Li-Chan, E.C.Y.; Lacroix, I.M.E. Properties of proteins in food systems: An introduction. In Proteins in food processing; Woodhead Publishing: Sawston, UK, 2018; pp. 1–25. [Google Scholar]
- Aryee, A.N.A.; Agyei, D.; Udenigwe, C.C. Impact of processing on the chemistry and functionality of food proteins. In Proteins in food processing; Woodhead Publishing: Sawston, UK, 2018; pp. 27–45. [Google Scholar]
- Zou, Y.; Wang, L.; Li, P.; Cai, P.; Zhang, M.; Sun, Z.; Sun, C.; Geng, Z.; Xu, W.; Xu, X.; et al. Effects of ultrasound assisted extraction on the physiochemical, structural and functional characteristics of duck liver protein isolate. Process Biochem. 2017, 52, 174–182. [Google Scholar] [CrossRef]
- Abadía-García, L.; Castaño-Tostado, E.; Ozimek, L.; Romero-Gómez, S.; Ozuna, C.; Amaya-Llano, S.L. Impact of ultrasound pretreatment on whey protein hydrolysis by vegetable proteases. Innov. Food Sci. Emerg. Technol. 2016, 37, 84–90. [Google Scholar] [CrossRef]
- Lv, S.; Taha, A.; Hu, H.; Lu, Q.; Pan, S. Effects of Ultrasonic-Assisted Extraction on the Physicochemical Properties of Different Walnut Proteins. Molecules 2019, 24, 4260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hildebrand, G.; Poojary, M.M.; O’Donnell, C.; Lund, M.N.; Garcia-Vaquero, M.; Tiwari, B.K. Ultrasound-assisted processing of Chlorella vulgaris for enhanced protein extraction. J. Appl. Phycol. 2020, 32, 1709–1718. [Google Scholar] [CrossRef]
- Wen, L.; Álvarez, C.; Zhang, Z.; Poojary, M.M.; Lund, M.N.; Sun, D.W.; Tiwari, B.K. Optimisation and characterisation of protein extraction from coffee silverskin assisted by ultrasound or microwave techniques. Biomass Convers. Biorefinery 2020, 1–11. [Google Scholar] [CrossRef]
- Vernès, L.; Abert-Vian, M.; El Maâtaoui, M.; Tao, Y.; Bornard, I.; Chemat, F. Application of ultrasound for green extraction of proteins from spirulina. Mechanism, optimization, modeling, and industrial prospects. Ultrason. Sonochem. 2019, 54, 48–60. [Google Scholar] [CrossRef]
- Görgüç, A.; Bircan, C.; Yılmaz, F.M. Sesame bran as an unexploited by-product: Effect of enzyme and ultrasound-assisted extraction on the recovery of protein and antioxidant compounds. Food Chem. 2019, 283, 637–645. [Google Scholar] [CrossRef]
- Dabbour, M.; He, R.; Ma, H.; Musa, A. Optimization of ultrasound assisted extraction of protein from sunflower meal and its physicochemical and functional properties. J. Food Process Eng. 2018, 41, e12799. [Google Scholar] [CrossRef]
- Ochoa-Rivas, A.; Nava-Valdez, Y.; Serna-Saldívar, S.O.; Chuck-Hernández, C. Microwave and Ultrasound to Enhance Protein Extraction from Peanut Flour under Alkaline Conditions: Effects in Yield and Functional Properties of Protein Isolates. Food Bioprocess Technol. 2017, 10, 543–555. [Google Scholar] [CrossRef]
- Li, K.; Ma, H.; Li, S.; Zhang, C.; Dai, C. Effect of Ultrasound on Alkali Extraction Protein from Rice Dreg Flour. J. Food Process Eng. 2017, 40, e12377. [Google Scholar] [CrossRef]
- Roselló-Soto, E.; Barba, F.J.; Parniakov, O.; Galanakis, C.M.; Lebovka, N.; Grimi, N.; Vorobiev, E. High Voltage Electrical Discharges, Pulsed Electric Field, and Ultrasound Assisted Extraction of Protein and Phenolic Compounds from Olive Kernel. Food Bioprocess Technol. 2015, 8, 885–894. [Google Scholar] [CrossRef]
Material | Pre-Treatment | Extraction Type | Extraction Conditions | Solid-Liquid Ratio | Solvent Conc. | Yield | TPC | TFC | Antioxidant Activity | Ref. | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
DPPH | FRAP | IC50 | ||||||||||
Grape skin | NR | Ultrasound-assisted enzymatic | Time: 28 min; Temp.: 50 °C; Power: 400 W; Pectinase: 0.16% | 1:30 g/mL | 60% EtOH | 3.0 mg/g 1 | NR | NR | NR | NR | NR | [10] |
Rosemary by-product | PEF freq.: 10 Hz; Pulse width: 30µs; Pulses:167; Electric field: 1.1 kV/cm; Specific energy input: 0.36 kJ/kg; 24 g of 0.1% NaCl (1: 1.4 w/v) | Ultrasound-assisted | Time: 28 min; Temp.: 50 °C; Power: 400 W; Pectinase: 0.16% | 1:20 g/mL | 55.19% EtOH | NR | 297 mg GAE/ 100 g FW | NR | 593 mg TE/ 100 g FW | NR | NR | [11] |
Thyme by-product | PEF freq.: 10 Hz; Pulse width: 30µs; Pulses:167; Electric field: 1.1 kV/cm; Specific energy input: 0.46 kJ/kg; 24 g of 0.1% NaCl (1: 1.5 w/v) | 460 mg GAE/ 100 g FW | 570 mg TE/ 100 g FW | |||||||||
Periploca forrestii Schltr | Ultrasound freq.: 40 kHz; Power: 200 w; Time: 15–35 min | Microwave-assisted extraction | Microwave conditions: | 1:21 g/mL | 60% EtOH | NR | NR | 9.1% 2 | NR | NR | 1.033 mg/mL | [12] |
Time: 210 s; Power: 140–350 W | ||||||||||||
Passion fruit rinds | NR | UAPLE | Time: 68.5 min; Temp.: 60 °C; Ultrasonic intensities: 360 W/cm2; Pressure: 10 MPa; Solvent flow rate: 10 g/min | S/F: 14.6 kg solvent/kg fresh rinds | 70% EtOH | 6.8% | 1.7 mg GAE/g DW | NR | NR | 7.5 mg TE/g DW | NR | [13] |
Mango peels (Ataulfo variety) | NR | UMAE | Time: 10 min; | 1:5 g/mL | 50% EtOH | NR | 54.2 mg/g DW | 94% | NR | NR | [14] | |
Microwave freq.: 2450 MHz; | ||||||||||||
Ultrasound freq.: 25 kHz |
Material | Extraction Device | Extraction Conditions | Solid-Liquid Ratio (g/mL) | Solvent Conc. | Yield | TPC | Antioxidant Activity | Ref. | |||
---|---|---|---|---|---|---|---|---|---|---|---|
DPPH | FRAP | ABTS | SRSP | ||||||||
Mango peel | Ultrasound bath | Time: 60 min; Temp.: 45 °C; Ampl.: 100% | 1:20 | 80% EtOH | NR | 67.6 mg GAE/g | 83.2% | 31.5 mM/100 g | NR | 67.2% | [33] |
100% MeOH | NR | 49.1 mg GAE/g | 59.2% | 24.8 mM/100 g | NR | 52.0% | |||||
Wild raspberry fruit | Ultrasound bath | Time: 15 min; | 1:10.04 | 20% MeOH | NR | 383 mg GAE/g | 29.0 μmol TE/g | NR | 39.5 μmol TE/g | NR | [50] |
Temp.: 80 °C | |||||||||||
Blue butterfly pea flower | Vibra cell crusher | Time: 150 min; | 1:15 | Double distilled water | ∼29% | 87 mg GAE/g | 931.5 μg Trolox/g | 5834.6 μg Trolox/g | 13,488 μg Trolox/g | NR | [51] |
Temp.: 50 °C; | |||||||||||
Ampl.: 70% | |||||||||||
Lime peel | Ultrasonic processor VCX 750 | Time: 4 min; | 1:30 | 55% EtOH | NR | 54 mg GAE/g | 19 μM Trolox/g | NR | 465 μM Trolox/g | NR | [52] |
Temp.: 50 °C; | |||||||||||
Ampl.: 38% | |||||||||||
Lime peel | Ultrasound bath | Time: 30 min; Temp.: 40 °C | 1:10 | Double distilled water | 40.25 mg/g | 74.8 mg GAE/g | NR | NR | NR | NR | [53] |
Orange peel | 66.4 mg GAE/g | ||||||||||
Tangerine peel | 58.7 mg GAE/g | ||||||||||
Laurus nobilis L. | Ultrasound bath | Time: 40 min; | 1:12 | 35% EtOH | NR | 17.3 mg GAE/g | 94.7% | NR | NR | NR | [54] |
Temp.: room temp | |||||||||||
Kinnow mandarin peel | Ultrasound bath | Time: 45 min; | 1:15 | 80% MeOH | 19.24% | 32.5 mg GAE/g | 72.8% | 27.7 mM/100 g | NR | 64.8% | [55] |
Temp.: 45 °C | |||||||||||
Myrciaria dubia | Ultrasound probe | Time: 5 min; | 1:4 | Water | NR | 25.8 mg GAE/g | NR | NR | 216.2 mmol TE/g | NR | [56] |
Temp.: 60 °C; | |||||||||||
Ampl.: 30% | |||||||||||
Bitter gourd | Ultrasound probe | Time: 12 min; | 0.25:1 | Water | NR | 104.5 mg GAE/g | 77.9% | NR | NR | NR | [57] |
Temp.: 68.4 °C | |||||||||||
Wheatgrass | Ultrasound bath | Time: 28 min; | 1:10 | 56% EtOH | NR | 15.5 mg GAE/g | NR | NR | NR | NR | [58] |
Temp.: 59 °C | |||||||||||
Myrtus communis L. pericarp | Ultrasound bath | Time: 7.5 min; | 1:28 | 70% EtOH | NR | 235.5 mg GAE/g | 90.7% | NR | NR | NR | [59] |
Temp.: 60 °C; | |||||||||||
Ampl.: 30% | |||||||||||
Psidium guajava leaves | Ultrasound bath | Time: 38 min; | 1:40 | Deionized water | NR | 59.8 mg GAE/g | NR | NR | NR | NR | [60] |
Temp.: 63 °C | |||||||||||
Garlic | Ultrasound bath | Time: 13.5 min; | 1:20 | 71% MeOH | NR | 19.5 mg GAE/g | NR | NR | NR | NR | [61] |
Temp.: 59 °C | |||||||||||
Limonium sinuatum flower | Ultrasound bath | Time: 9.8 min; | 1:56.9 | 60% EtOH | NR | NR | 483.0 μmol Trolox/g | NR | NR | NR | [62] |
Temp.: 40 °C | |||||||||||
Pomegranate fruits (Bhagwa) | Ultrasound probe | Time: 15 min; | 1:20 | 70% EtOH | 42.5% | 354.7 mg GAE/g | 94.8% | NR | NR | NR | [63] |
Temp.: 50 °C; | |||||||||||
Ampl.: 30% | |||||||||||
Black soybeans | Ultrasound probe | Time: 8.59 min; | 1:49.1 | Distilled water | NR | 941.0 mg GAE/100 g | NR | NR | 242.5 mg/100 g | NR | [64] |
Temp.: 20 °C; | |||||||||||
Ampl.: 81.4% | |||||||||||
Olive mill leaves | Ultrasound bath | Time: 50 min; | 1:5.9 | 47% EtOH | 17.8% | 2420 mg GAE/100 g | NR | NR | NR | NR | [65] |
Temp.: 20 °C | |||||||||||
Orange peel | Ultrasound bath | Time: 35 min; Temp.: 42 °C; Freq.: 40 kHz; Power: 150 W | 1:15 | 6 L Olive oil | 1.85 mg/100 g DW 1 | NR | NR | NR | NR | NR | [66] |
Fresh Gac leave (Momordica cochinchinensis Spreng.) Young leave | Ultrasound bath | Time: 20 min; | NR | 50% EtOH | NR | 4897 mg GAE/100 g DW | NR | NR | NR | NR | [67] |
Power: 150 W; | |||||||||||
Temp.: 25 °C | |||||||||||
Mandarin epicarp (Oneco variety) | Ultrasonic Cleaner HB-S49DHT | Time: 60 min; | 0.0004:1 | NR | 140.7 mg β-carotene/100 g DW | NR | NR | NR | NR | NR | [68] |
Temp.: 60 °C | |||||||||||
Apple peel Pomegranate Peel | Ultrasound bath | Time: 60 min; | 1:20 | 75% Acetone | 25.45% | 44.71 mg GAE/g | 81.05% | NR | NR | NR | [6] |
Temp.: 45 °C | 50% MeOH | 31.45% | 72.21 mg GAE/g | 93.84% | |||||||
Lemongrass leaves | Ultrasound bath | Time: 60 min; | 1:20 | 50% EtOH | 26.68% | 61 mg GAE/g | NR | NR | NR | NR | [69] |
Temp.: 45 °C | 70% EtOH | NR | NR | 73.85% |
Material | Extraction Device | Extraction Conditions | Solid-Liquid Ratio (g/mL) | Solvent | Oil Yield | Reference |
---|---|---|---|---|---|---|
Papaya seed | Ultrasound bath | Time: 38.5 min; Temp.: 62.5 °C; Freq.: 40 kHz | 1:∼7 | n-Hexane | 23.3% | [75] |
Canola seed | Ultrasound bath | Time: 87 min; Temp.: 55 °C; Freq.: 35 kHz | 1:6.39 | Hexane | 22.4% | [76] |
Time: 69.5 min; Temp.: 55 °C; Freq.: 35 kHz | 1:9.12 | Hexane–isopropanol mixture (3:2) | 30.7% | |||
Chia seed | Ultrasound bath | Time: 40 min; Temp.: 50 °C; Freq.: 40 kHz | 1:12 | Ethyl acetate | 27.2% | [77] |
Kolkhoung kernel | Ultrasound bath | Time: 20 min; Temp.: 50 °C; Freq.: 30 kHz | 1:4 | n-Hexane | 77.5% | [78] |
Olive pomace | Ultrasound cleaning bath | Time: NR; Temp.: 60 °C; Freq.: 60 kHz | 1:12 | n-Hexane | 11.0% | [79] |
Crambe seed | Ultrasound bath | Time: 90 min; Temp.: 60 °C; Freq.: 25 kHz | 1:10 | Mixture of methyl acetate and n-hexane | ~37% | [80] |
Macauba kernels | Ultrasound bath | Time: 45 min; Temp.: 60 °C; Freq.: 40 kHz | 1:12 | Ethyl acetate | 40.6% | [81] |
Papaya Seeds | Ultrasound bath | Time: 30 min; Temp.: 50 °C | 1:25 | n-Hexane | 25.3% | [82] |
Apricot kernel oil | Ultrasound bath | Time: 43.95 min; Temp.: 51.72 °C; Freq.: 40 kHz | 1:19.8 | n-Hexane | 44.7% | [83] |
Moringa peregrina oil | Ultrasound bath | Time: 26.3 min; Temp.: 30 °C; Freq.: 20 kHz | 1: 17.8 | n-Hexane | 53.1% | [84] |
Paeonia lactiflora Pall. Seeds | Ultrasound bath | Time: 26.3 min; Temp.: 30 °C; Freq.: 20 kHz | 1:12 | n-Hexane | 28.9% | [18] |
Castor seeds | Ultrasound probe | Time: 9 min; Temp.: 50 °C; Freq.: 50 kHz | 1:16 | Isopropanol: Methanol (1:3) | 70.1% | [85] |
Hainan/Eksotika papaya seeds | Ultrasound bath | Time: 20 min; Temp.: 50 °C | 1:16 | n-Hexane | 32.3% | [86] |
Canarium odontophyllum kernel (COK) | Qsonica Q500 sonicator | Time: 45.79 min; Freq.: 20 kHz; Power: 500 W; Ampl.: 38.30%; | 1:50 | n-hexane | 63.5% | [87] |
Swietenia macrophylla seed | Ultrasonic processors | Time: 14.4 min; Temp.: 60 ± 5 °C; Freq.: 20 kHz; Power: 750 W; Ampl.: 90%; | 1:4.5 | Ethanol | 27.7% | [88] |
Black cumin seed | Ultrasound probe | Time: 45 min; Freq.: 20 kHz; Power: 200 W | 1:20 | Hexane | 94.8% | [89] |
Material | Extraction Device | Extraction Conditions | Solid-liquid Ratio (g/mL) | Solvent | Acidifying Agent | pH | Pectin Yield | Reference |
---|---|---|---|---|---|---|---|---|
Walnut green husk | Ultrasound probe | Time: 10 min; Temp.: NR; Freq.: 20 kHz | 1:15 | Distilled water | Citric acid | 1.5 | 12.8% | [95] |
Mango Peels | Ultrasonic bath | Time: 20 min; Temp.: 80 °C; Freq.: 37 kHz | 1:20 | Water | Lemon juice | 2.5 | ∼27% | [96] |
Opuntia ficus indica cladodes | Ultrasonic bath | Time: 70 min; Temp.: 70 °C; Freq.: 40 kHz | 1:30 | Water | NR | 1.5 | 18.1% | [97] |
Peanut shell waste | Ultrasonic bath | Time: 10 min; Temp.: 80 °C; Freq.: 40 kHz | 1:3.03 | Distilled water | HCl | 2.0 | 1.7% | [98] |
Passion fruit peel | Ultrasound probe | Time: 10 min; Temp.: 85 °C; Freq.: 20 kHz | 1:30 | Water | HNO3 | 2.0 | 12.7% | [99] |
Tomato Waste | Ultrasonic bath | Time: 15 min; Temp.: 80 °C; Freq.: 37 kHz | NR | NR | NR | NR | 35.7% | [100] |
Sour Orange peel | Ultrasound probe | Time: 10 min; Temp.: 30 ◦C; Freq.: 20 kHz | 1:20 | Distilled water | Citric acid | 1.5 | 28.1% | [101] |
Eggplant peel | Ultrasound probe | Time: 30 min; Temp.: NR; Freq.: NR | 1:20 | Distilled water | NR | 1.5 | 35.4% | [102] |
Chayote | Ultrasonic bath | Time: 40 min; Temp.: 70 °C; Freq.: NR | 1:50 | NR | NR | NR | 6.2% | [103] |
Dragon fruit peel | Ultrasonic bath | Time: 25 min; Temp.: 70.8 °C; Freq.: 37 kHz | 1:35.6 | Water | Citric acid | 2.0 | 7.5% | [104] |
Sisal waste | Ultrasound probe | Time: 26 min; Temp.: 50 °C; Freq.: 20 kHz | 1:28 | Distilled water | NR | NR | 29.3% | [105] |
Musa balbisiana waste | Ultrasound probe | Time: 27 min; Temp.: NR; Freq.: 20 kHz | 1:15 | Water | Citric acid | 3.2 | 9.0% | [106] |
Grape pomace | Ultrasonic bath | Time: 60 min; Temp.: 75 °C; Freq.: 37 kHz | 1:10 | Water | Citric acid | 2.0 | ∼32.3% | [107] |
Jackfruit peel | Ultrasound probe | Time: 24 min; Temp.: 60 °C; Freq.: NR | 1:15 | Distilled water | NR | 1.6 | 14.5% | [108] |
Pomegranate peel | Ultrasound probe | Time: 28.31 min; Temp.: 61.90 °C; Freq.: 20 kHz | 1:17.52 | Distilled water | NR | 1.27 | 23.9% | [109] |
Custard apple peel | Ultrasound probe | Time: 18.04 min; Temp.: 63.22 °C; Freq.: 20 kHz | 1:23.52 | Water | HCl | 2.36 | 8.9% | [110] |
Grapefruit peel | Ultrasound probe | Time: 27.95 min; Temp.: 66.71 °C; Freq.: 20 kHz | 1:50 | Deionized water | HCl | 1.5 | 27.3% | [111] |
Lemon peel | Ultrasonic water bath | Time: 45 min; Temp.: 75 | 1:30 | HNO3 HCl | NR | 2 | 10.1% | [112] |
Mandarin peel | 11.3% | |||||||
Kiwi peel | 17.3% |
Material | Extraction Device | Extraction Conditions | Solid-Liquid Ratio (g/mL) | Solvent | Recovery Rate | Reference |
---|---|---|---|---|---|---|
Rice bran | Ultrasound probe | Time: 10 min; Temp.: Room temp.; Freq.: 20 kHz | 0.5:10 | Water | 75.6% | [115] |
Chlorella vulgaris | Ultrasound probe | Time: 10 min; Temp.: 20 °C; Freq.: NR | 1:10 | 0.4 M NaOH 0.4 M HCl | 79.1% | [118] |
Coffee Silverskin | Ultrasonic generator | Time: 10 min; Temp.: 50 °C; Freq.: NR | 1:40 | 0.2 M NaOH 0.6 M HCl | 13.5% 14.0% | [119] |
Spirulina | Ultrasound probe | Time: 20 min; Temp.: 24 °C; Freq.: 20 kHz | 1:2 | Distilled water | 49.8% | [120] |
Sesame bran | Ultrasonic equipment | Time: 65 min; Temp.: 55 °C; Freq.: 35 kHz | 1:10 | Deionized water | 58.5% | [121] |
Sunflower meal | Ultrasound probe | Time: 15 min; Temp.: 45 °C; Freq.: 35 kHz | 1:20 | Deionized water | 54.3% | [122] |
Peanut flour | Ultrasound probe | Time: 15 min; Temp.: 23 °C; Freq.: 24 kHz | 1:10 | Distilled water | 100% | [123] |
Rice Dreg Flour | Ultrasound probe | Time: 40 min; Temp.: 40 °C; Freq.: 20 kHz | 1:20 | NaOH | 88.4% | [124] |
Olive Kernel | Ultrasound probe | Time: 20 min; Temp.: 25 °C; Freq.: 24 kHz | 1:20 | Ethanol | 25% | [125] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ranjha, M.M.A.N.; Irfan, S.; Lorenzo, J.M.; Shafique, B.; Kanwal, R.; Pateiro, M.; Arshad, R.N.; Wang, L.; Nayik, G.A.; Roobab, U.; et al. Sonication, a Potential Technique for Extraction of Phytoconstituents: A Systematic Review. Processes 2021, 9, 1406. https://doi.org/10.3390/pr9081406
Ranjha MMAN, Irfan S, Lorenzo JM, Shafique B, Kanwal R, Pateiro M, Arshad RN, Wang L, Nayik GA, Roobab U, et al. Sonication, a Potential Technique for Extraction of Phytoconstituents: A Systematic Review. Processes. 2021; 9(8):1406. https://doi.org/10.3390/pr9081406
Chicago/Turabian StyleRanjha, Muhammad Modassar A. N., Shafeeqa Irfan, José M. Lorenzo, Bakhtawar Shafique, Rabia Kanwal, Mirian Pateiro, Rai Naveed Arshad, Lufeng Wang, Gulzar Ahmad Nayik, Ume Roobab, and et al. 2021. "Sonication, a Potential Technique for Extraction of Phytoconstituents: A Systematic Review" Processes 9, no. 8: 1406. https://doi.org/10.3390/pr9081406
APA StyleRanjha, M. M. A. N., Irfan, S., Lorenzo, J. M., Shafique, B., Kanwal, R., Pateiro, M., Arshad, R. N., Wang, L., Nayik, G. A., Roobab, U., & Aadil, R. M. (2021). Sonication, a Potential Technique for Extraction of Phytoconstituents: A Systematic Review. Processes, 9(8), 1406. https://doi.org/10.3390/pr9081406