Anammox-Based Processes for Mature Leachate Treatment in SBR: A Modelling Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Leachate Treatment Plant Description and Operation
2.2. Data Collection
2.3. Landfill Leachate Characteristics
2.4. Buttermilk Characteristics
2.5. Model Set-Up
2.5.1. Modelling—Biokinetic Model
2.5.2. Modelling—Plant Configuration
2.5.3. Model Calibration and Validation
2.5.4. Chemical Analyses and Physical Data
3. Results and Discussion
3.1. Nitrogen Removal Performance
3.2. Model Calibration
3.3. Model Validation
3.4. SBR Cycle Analysis
3.5. Biomass Concentration Trend
3.6. Contribution to Nitrogen Removal of AAO and OHO Biomass
3.7. N2O Production
3.8. Results Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kulikowska, D.; Klimiuk, E. The effect of landfill age on municipal leachate composition. Bioresour. Technol. 2008, 99, 5981–5985. [Google Scholar] [CrossRef]
- Brennan, R.B.; Clifford, E.; Devroedt, C.; Morrison, L.; Healy, M.G. Treatment of landfill leachate in municipal wastewater treatment plants and impacts on effluent ammonium concentrations. J. Environ. Manag. 2017, 188, 64–72. [Google Scholar] [CrossRef] [Green Version]
- Ganigué, R.; Gabarró, J.; Sànchez-Melsió, A.; Ruscalleda, M.; López, H.; Vila, X.; Colprim, J.; Balaguer, M.D. Long-term operation of a partial nitritation pilot plant treating leachate with extremely high ammonium concentration prior to an anammox process. Bioresour. Technol. 2009, 100, 5624–5632. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, H.A.P.; de Castilhos Júnior, A.B.; Nadaleti, W.C.; Lourenço, V.A. Ammonia recovery from air stripping process applied to landfill leachate treatment. Environ. Sci. Pollut. Res. 2020, 27, 45108–45120. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Xiao, D.; Zhang, Q.; Ding, L. Removal of ammonia from landfill leachate by struvite precipitation with the use of low-cost phosphate and magnesium sources. J. Environ. Manag. 2014, 145, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Su, F.J.; Yang, S.; Huang, T.L.; Li, M.; Liu, J.R.; Yao, Y.X. Enhancement of the denitrification in low C/N condition and its mechanism by a novel isolated Comamonas sp. YSF15. Environ. Pollut. 2020, 256, 113294. [Google Scholar] [CrossRef]
- Fernández, I.; Dosta, J.; Mata-Álvarez, J. A critical review of future trends and perspectives for the implementation of partial nitritation/anammox in the main line of municipal WWTPs. Desalination Water Treat. 2016, 57, 27890–27898. [Google Scholar] [CrossRef]
- Liu, X.; Kim, M.; Nakhla, G.; Andalib, M.; Fang, Y. Partial nitrification-reactor configurations, and operational conditions: Performance analysis. J. Environ. Chem. Eng. 2020, 8, 103984. [Google Scholar] [CrossRef]
- Rahimi, S.; Modin, O.; Mijakovic, I. Technologies for biological removal and recovery of nitrogen from wastewater. Biotechnol. Adv. 2020, 43, 107570. [Google Scholar] [CrossRef]
- Iannacone, F.; Di Capua, F.; Granata, F.; Gargano, R.; Esposito, G. Shortcut nitrification-denitrification and biological phosphorus removal in acetate- and ethanol-fed moving bed biofilm reactors under microaerobic/aerobic conditions. Bioresour. Technol. 2021, 330, 124958. [Google Scholar] [CrossRef]
- Di Biase, A.; Kowalski, M.S.; Devlin, T.R.; Oleszkiewicz, J.A. Moving bed biofilm reactor technology in municipal wastewater treatment: A review. J. Environ. Manag. 2019, 247, 849–866. [Google Scholar] [CrossRef] [PubMed]
- Campo, R.; Sguanci, S.; Caffaz, S.; Mazzoli, L.; Ramazzotti, M.; Lubello, C.; Lotti, T. Efficient carbon, nitrogen and phosphorus removal from low C/N real domestic wastewater with aerobic granular sludge. Bioresour. Technol. 2020, 305, 122961. [Google Scholar] [CrossRef]
- Yan, L.; Liu, S.; Liu, Q.; Zhang, M.; Liu, Y.; Wen, Y.; Chen, Z.; Zhang, Y.; Yang, Q. Improved performance of simultaneous nitrification and denitrification via nitrite in an oxygen-limited SBR by alternating the DO. Bioresour. Technol. 2019, 275, 153–162. [Google Scholar] [CrossRef]
- López, H.; Puig, S.; Ganigué, R.; Ruscalleda, M.; Balaguer, M.D.; Colprim, J. Start-up and enrichment of a granular anammox SBR to treat high nitrogen load wastewaters. J. Chem. Technol. Biotechnol. 2008, 83, 1163–1169. [Google Scholar] [CrossRef]
- Langone, M.; Ferrentino, R.; Cadonna, M.; Andreottola, A. Stoichiometric evaluation of partial nitritation, anammox and denitrification processes in a sequencing batch reactor and interpretation of online monitoring parameters. Chemosphere 2016, 164, 488–498. [Google Scholar] [CrossRef]
- Huang, X.; Lee, P.H. Shortcut nitrification/denitrification through limited-oxygen supply with two extreme COD/N-and-ammonia active landfill leachates. Chem. Eng. J. 2021, 404, 126511. [Google Scholar] [CrossRef]
- Zhang, S.J.; Peng, Y.Z.; Wang, S.Y.; Zheng, S.W.; Guo, J. Organic matter and concentrated nitrogen removal by shortcut nitrification and denitrification from mature municipal landfill leachate. J. Environ. Sci. 2007, 19, 647–651. [Google Scholar] [CrossRef]
- Roots, P.; Sabba, F.; Rosenthal, A.F.; Wang, Y.; Yuan, Q.; Rieger, L.; Yang, F.; Kozak, J.A.; Zhang, H.; Wells, G.F. Integrated shortcut nitrogen and biological phosphorus removal from mainstream wastewater: Process operation and modeling. Environ. Sci. Water Res. Technol. 2020, 6, 566–580. [Google Scholar] [CrossRef]
- Kumwimba, M.N.; Lotti, T.; Şenel, E.; Li, X.; Suanon, F. Anammox-based processes: How far have we come and what work remains? A review by bibliometric analysis. Chemosphere 2020, 238, 124627. [Google Scholar] [CrossRef]
- Baeten, J.E.; Batstone, D.J.; Schraa, O.J.; van Loosdrecht, M.C.M.; Volcke, E.I.P. Modelling anaerobic, aerobic and partial nitritation-anammox granular sludge reactors—A review. Water Res. 2019, 149, 322–341. [Google Scholar] [CrossRef] [PubMed]
- Wett, B. Development and implementation of a robust deammonification process. Water Sci. Technol. 2007, 56, 81–88. [Google Scholar] [CrossRef]
- Tejera, J.; Miranda, R.; Hermosilla, D.; Urra, I.; Negro, C.; Blanco, Á. Treatment of a Mature Landfill Leachate: Comparison between Homogeneous and Heterogeneous Photo-Fenton with Different Pretreatments. Water 2019, 11, 1849. [Google Scholar] [CrossRef] [Green Version]
- EnviroSim Associates LTD. Available online: http://envirosim.com/products/biowin (accessed on 3 February 2020).
- EnviroSim Associates Ltd. Biowin 6 Help Manual; EnviroSim Associates Ltd: Ontario, Canada, 2019; p. 1071. [Google Scholar]
- Rieger, L.; Gillot, S.; Gillot, S.; Langerg, G.; Ohtsuki, T.; Shaw, A.; Takács, I.; Winkler, S. Guidelines for Using Activated Sludge Models; IWA Scientific and Technical Report; IWA Publishing: London, UK, 2012. [Google Scholar]
- Rice, E.W.; Baird, R.B.; Eaton, A.D. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; APHA: Washington, DC, USA, 2017. [Google Scholar]
- Nhat, P.T.; Biec, H.N.; Tuyet Mai, N.T.; Thanh, B.X.; Dan, N.P. Application of a partial nitritation and anammox system for the old landfill leachate treatment. Int. Biodeterior. Biodegrad. 2014, 95, 144–150. [Google Scholar] [CrossRef]
- Wang, C.C.; Kumar, M.; Lan, C.J.; Lin, J.G. Landfill-leachate treatment by simultaneous partial nitrification, anammox and denitrification (SNAD) process. Desalination Water Treat. 2011, 32, 4–9. [Google Scholar] [CrossRef] [Green Version]
- van der Lubbe, J.; van Haandel, A. Handbook Biological Waste Water Treatment Design and Optimisation of Activated Sludge Systems, 2nd ed.; Quist Publishing: Leidschendam, The Netherlands, 2007. [Google Scholar]
- Taylor, A.E.; Bottomley, P.J. Nitrite production by Nitrosomonas europaea and Nitrosospira sp. AV in soils at different solution concentrations of ammonium. Soil Biol. Biochem. 2006, 38, 828–836. [Google Scholar] [CrossRef]
- Stehr, G.; Böttcher, B.; Dittberner, P.; Rath, G.; Koops, H.P. The ammonia-oxidizing nitrifying population of the River Elbe estuary. FEMS Microbiol. Ecol. 1995, 17, 177–186. [Google Scholar] [CrossRef]
- Laanbroek, R.; Bodelier, P.L.E.; Gerards, S. Oxygen consumption kinetics of Nitrosomonas europaea and Nitrobacter hamburgensis grown in mixed continuous cultures at different oxygen concentrations. Arch. Microbiol. 1994, 161, 156–162. [Google Scholar] [CrossRef]
- Salem, S.; Moussa, M.S.; van Loosdrecht, M.C.M. Determination of the Decay Rate of Nitrifying Bacteria. Biotechnol. Bioeng. 2006, 94, 252–262. [Google Scholar] [CrossRef] [PubMed]
- Munz, G.; Lubello, C.; Oleszkiewicz, J.A. Modeling the decay of ammonium oxidizing bacteria. Water Res. 2011, 45, 557–564. [Google Scholar] [CrossRef]
- Melcer, H.; Dold, P.L.; Jones, R.M.; Bye, C.M.; Takacs, I.; Stensel, H.D.; Wilson, A.W.; Sun, P.; Bury, S. Methods for Wastewater Characterization in Activated Sludge Modeling; Water Environment Research Foundation: Alexandria, VA, USA, 2003. [Google Scholar]
- Manser, R.; Gujer, W.; Siegrist, H. Decay processes of nitrifying bacteria in biological wastewater treatment systems. Water Res. 2006, 40, 2416–2426. [Google Scholar] [CrossRef] [PubMed]
- Vadivelu, J.K.; Vel, M.; Yuan, Z.; Fux, C. Stoichiometric and Kinetic Characterisation of Nitrobacter in Mixed Culture by Decoupling the Growth and Energy Generation Processes. Biotechnol. Bioeng. 2006, 94, 1176–1188. [Google Scholar] [CrossRef]
- Liu, W.; Peng, Y.; Ma, B.; Ma, L.; Jia, F.; Li, X. Dynamics of microbial activities and community structures in activated sludge under aerobic starvation. Bioresour. Technol. 2017, 244, 588–596. [Google Scholar] [CrossRef] [PubMed]
- Scaglione, D.; Caffaz, S.; Bettazzi, E.; Lubello, C. Experimental determination of Anammox decay coefficient. J. Chem. Technol. Biotechnol. 2009, 84, 1250–1254. [Google Scholar] [CrossRef]
- Koch, G.; Egli, K.; van der Meer, J.R.; Siegrist, H. Mathematical modeling of autotrophic denitrification in a nitrifying biofilm of a rotating biological contactor. Water Sci. Technol. 2000, 41, 191–198. [Google Scholar] [CrossRef]
- Azari, M.; Lübken, M.; Denecke, M. Simulation of simultaneous anammox and denitrification for kinetic and physiological characterization of microbial community in a granular biofilm system. Biochem. Eng. J. 2017, 127, 206–216. [Google Scholar] [CrossRef]
- Strous, M.; Kuenen, J.G.; Jetten, M.S.M. Key physiology of anaerobic ammonium oxidation. Appl. Environ. Microbiol. 1999, 65, 3248–3250. [Google Scholar] [CrossRef] [Green Version]
- Laanbroek, H.J.; Gerards, S. Competition for limiting amounts of oxygen between grown in mixed continuous cultures. Arch. Microbiol. 1993, 159, 453–459. [Google Scholar] [CrossRef]
- Kayee, P.; Rongsayamanont, C.; Kunapongkiti, P.; Limpiyakorn, T. Ammonia half-saturation constants of sludge with different community compositions of ammonia-oxidizing bacteria. Environ. Eng. Res. 2016, 21, 140–144. [Google Scholar] [CrossRef]
- Anthonisen, A.C.; Loehr, R.C.; Prakasam, T.B.; Srinath, E.G. Inhibition of Nitrification by Ammonia and Nitrous Acid. Water Pollut. Control Fed. 1976, 48, 835–852. [Google Scholar]
- Kim, D.J.; Lee, D.I.; Cha, G.C.; Keller, J. Analysis of Free Ammonia Inhibition of Nitrite Oxidizing Bacteria Using a Dissolved Oxygen Respirometer. Environ. Eng. Res. 2008, 13, 125–130. [Google Scholar] [CrossRef] [Green Version]
- Jiménez, E.; Giménez, J.B.; Ruano, M.V.; Ferrer, J.; Serralta, J. Effect of pH and nitrite concentration on nitrite oxidation rate. Bioresour. Technol. 2011, 102, 8741–8747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiménez, E.; Giménez, J.B.; Seco, A.; Ferrer, J.; Serralta, J. Effect of pH, substrate and free nitrous acid concentrations on ammonium oxidation rate. Bioresour. Technol. 2012, 124, 478–484. [Google Scholar] [CrossRef]
- Seuntjens, D.; Carvajal-Arroyo, J.M.; Ruopp, M.; Bunse, P.; De Mulder, C.P.; Lochmatter, S.; Agrawal, S.; Boon, N.; Lackner, S.; Vlaeminck, S.E. High-resolution mapping and modeling of anammox recovery from recurrent oxygen exposure. Water Res. 2018, 144, 522–531. [Google Scholar] [CrossRef] [PubMed]
- Oshiki, M.; Satoh, H.; Okabe, S. Ecology and physiology of anaerobic ammonium oxidizing bacteria. Environ. Microbiol. 2016, 18, 2784–2796. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Padín, J.; Fernádez, I.; Figueroa, M.; Mosquera-Corral, A.; Campos, J.L.; Méndez, R. Applications of Anammox based processes to treat anaerobic digester supernatant at room temperature. Bioresour. Technol. 2009, 100, 2988–2994. [Google Scholar] [CrossRef]
- Yan, J.; Op den Camp, H.J.M.; Jetten, M.S.M.; Hu, Y.Y.; Haaijer, S.C.M. Induced cooperation between marine nitrifiers and anaerobic ammonium-oxidizing bacteria by incremental exposure to oxygen. Syst. Appl. Microbiol. 2010, 33, 407–415. [Google Scholar] [CrossRef]
- Yan, Y.; Wang, W.; Wu, M.; Jetten, M.S.M.; Guo, J.; Ma, J.; Wang, H.; Dai, X.; Wang, Y. Transcriptomics Uncovers the Response of Anammox Bacteria to Dissolved Oxygen Inhibition and the Subsequent Recovery Mechanism. Environ. Sci. Technol. 2020, 54, 14674–14685. [Google Scholar] [CrossRef]
- Lotti, T.; van der Star, W.R.L.; Kleerebezem, R.; Lubello, C.; van Loosdrecht, M.C.M. The effect of nitrite inhibition on the anammox process. Water Res. 2012, 46, 2559–2569. [Google Scholar] [CrossRef]
- Chamchoi, N.; Nitisoravut, S.; Schmidt, J.E. Inactivation of ANAMMOX communities under concurrent operation of anaerobic ammonium oxidation (ANAMMOX) and denitrification. Bioresour. Technol. 2008, 99, 3331–3336. [Google Scholar] [CrossRef]
- Ni, S.Q.; Ni, J.Y.; Hu, D.L.; Sung, S. Effect of organic matter on the performance of granular anammox process. Bioresour. Technol. 2012, 110, 701–705. [Google Scholar] [CrossRef]
- Philips, S.; Laanbroek, H.J.; Verstraete, W. Origin, causes and effects of increased nitrite concentrations in aquatic environments. Rev. Environ. Sci. Biotechnol. 2002, 1, 115–141. [Google Scholar] [CrossRef]
- Kim, J.H.; Guo, X.; Park, H.S. Comparison study of the effects of temperature and free ammonia concentration on nitrification and nitrite accumulation. Process Biochem. 2008, 43, 154–160. [Google Scholar] [CrossRef]
- Azari, M.; Walter, U.; Rekers, V.; Gu, J.D.; Denecke, M. More than a decade of experience of landfill leachate treatment with a full-scale anammox plant combining activated sludge and activated carbon biofilm. Chemosphere 2017, 174, 117–126. [Google Scholar] [CrossRef]
- Mozumder, M.S.I.; Picioreanu, C.; Van Loosdrecht, M.C.M.; Volcke, E.I.P. Effect of heterotrophic growth on autotrophic nitrogen removal in a granular sludge reactor. Environ. Technol. 2014, 35, 1027–1037. [Google Scholar] [CrossRef] [PubMed]
- Kartal, B.; Kuypers, M.M.M.; Lavik, G.; Schalk, J.; Op den Camp, J.M.; Jetten, M.S.M.; Strous, M. Anammox bacteria disguised as denitrifiers: Nitrate reduction to dinitrogen gas via nitrite and ammonium. Environ. Microbiol. 2007, 9, 635–642. [Google Scholar] [CrossRef]
- Sabba, F.; Picioreanu, C.; Boltz, J.P.; Nerenberg, R. Predicting N2O emissions from nitrifying and denitrifying biofilms: A modeling study. Water Sci. Technol. 2017, 75, 530–538. [Google Scholar] [CrossRef]
- Schulthess, R.V.; Gujer, W. Release of nitrous oxide (N2O) from denitrifying activated sludge: Verification and application of a mathematical model. Water Res. 1996, 30, 521–530. [Google Scholar] [CrossRef]
- Gejlsbjerg, B.; Frette, L.; Westermann, P. Dynamics of N2O production from activated sludge. Water Res. 1998, 32, 2113–2121. [Google Scholar] [CrossRef]
- Kimochi, Y.; Inamori, Y.; Furuya, N.; Ebisuno, T.; Matsumura, M. Characteristics of N2O Emission and Nitrogen Removal at A DO Controlled Intermittent Aeration Activated Sludge Process. Jpn. J. Water Treat. Biol. 1998, 34, 1–14. [Google Scholar] [CrossRef]
- Schalk-Otte, S.; Seviour, R.J.; Kuenen, J.G.; Jetten, M.S.M. Nitrous oxide (N2O) production by Alcaligenes faecalis during feast and famine regimes. Water Res. 2000, 34, 2080–2088. [Google Scholar] [CrossRef]
- Itokawa, H.; Hanaki, K.; Matsuo, T. Nitrous oxide production in high-loading biological nitrogen removal process under low cod/n ratio condition. Water Res. 2001, 35, 657–664. [Google Scholar] [CrossRef]
- Zhou, Y.; Pijuan, M.; Zeng, R.J.; Yuan, Z. Free nitrous acid inhibition on nitrous oxide reduction by a denitrifying-enhanced biological phosphorus removal sludge. Environ. Sci. Technol. 2008, 42, 8260–8265. [Google Scholar] [CrossRef] [PubMed]
- Wunderlin, P.; Mohn, J.; Joss, A.; Emmenegger, L.; Siegrist, H. Mechanisms of N2O production in biological wastewater treatment under nitrifying and denitrifying conditions. Water Res. 2012, 46, 1027–1037. [Google Scholar] [CrossRef] [PubMed]
- Hynes, R.K.; Knowles, R. Production of nitrous oxide by Nitrosomonas europea: Effects of acetyline, pH, and oxygen. Can. J. Microbiol. 1984, 30, 1397–1404. [Google Scholar] [CrossRef]
- Bock, E.; Schmidt, I.; Stüven, R.; Zart, D. Nitrogen loss caused by denitrifying Nitrosomonas cells using ammonium or hydrogen as electron donors and nitrite as electron acceptor. Arch. Microbiol. 1995, 163, 16–20. [Google Scholar] [CrossRef]
- Blum, J.M.; Jensen, M.M.; Smets, B.F. Nitrous oxide production in intermittently aerated Partial Nitritation-Anammox reactor: Oxic N2O production dominates and relates with ammonia removal rate. Chem. Eng. J. 2018, 335, 458–466. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.; Rathnayake, R.M.L.D.; Zhang, L.; Ishii, S.; Kindaichi, T.; Satoh, H.; Okabe, S. Source identification of nitrous oxide emission pathways from a single-stage nitritation-anammox granular reactor. Water Res. 2016, 102, 147–157. [Google Scholar] [CrossRef] [Green Version]
- Vasilaki, V.; Conca, V.; Frison, N.; Eusebi, A.L.; Fatone, F.; Katsou, E. A knowledge discovery framework to predict the N2O emissions in the wastewater sector. Water Res. 2020, 178, 115799. [Google Scholar] [CrossRef]
Parameter | Period I | Period II | Period III | |
---|---|---|---|---|
SBRA | Average Vfill (m3 d−1) | 53.5 ± 13.3 (0–109.4) | 57.9 ± 26.8 (0–117.8) | 54.1 ± 26.7 (0–113.1) |
NLR (kg N m−3 d−1) | 0.029 ± 0.008 (0–0.052) | 0.037 ± 0.019 (0–0.064) | 0.036 ± 0.017 (0–0.068) | |
HRT (d) | 16.3 ± 1.2 | 16.3 ± 7.4 | 17.2 ± 6.6 | |
n cycle per day | 2 | 1–2 | 2 | |
TSS (g L−1) | 1.6 ± 0.4 | 1.5 ± 0.1 | 2.0 ± 0.2 | |
VSS (g L−1) | 1.3 ± 0.4 | 1.4 ± 0.1 | 1.7 ± 0.1 | |
Typical SBR cycle | ||||
SBR cycle (h) | (10) | (10) | (12) | |
Leachate Fill (min) | (70) | (70–75) | (40–70) | |
Buttermilk Fill (m3/cycle) | 0.036 ± 0.100 (0–0.30) | 0 | 0.310 ± 0.150 (0–0.60) | |
Initial Mixing (min) | (140) | (90–140) | (90–150) | |
Aeration (min) • number of aeration | (20–22) • 3 | (20–26) • 3 | (20–26) • 6 | |
Buttermilk Fill | - | 0.01 ± 0.03 (0–0.10) | 0.01 ± 0.03 (0–0.10) | |
Mixing (min) • number of mixing | (55–60) • 3 | (50–60) • 3 | (40–66) • 6 | |
Final mixing (min) | (100) | (100–140) | (20–140) | |
Sedimentation (min) | (40) | (40) | (40) | |
Draw (min) | (15) | (15) | (10) | |
SBRB | Average Vfill (m3 d−1) | 46.8 ± 14.9 (0–87.4) | 42.4 ± 21.8 (0–104.6) | 38.2 ± 15.5 (0–73) |
NLR (kg N m−3 d−1) | 0.025 ± 0.008 (0–0.042) | 0.021 ± 0.011 (0–0.050) | 0.027 ± 0.010 (0–0.047) | |
HRT (d) | 16.8 ± 8.0 | 19.8 ± 7.2 | 24.7 ± 9.3 | |
n cycle per day | 2 | 2 | 2 | |
TSS (g L−1) | 1.87 ± 0.1 | 1.01 ± 0.06 | 1.53 ± 0.1 | |
VSS (g L−1) | 1.46 ± 0.1 | 0.98 ± 0.04 | 1.46 ± 0.04 | |
Typical SBR cycle | ||||
SBR cycle (h) | (10) | (10–12) | (10–12) | |
Leachate Fill (min) | (60–70) | (30–65) | (30–60) | |
Buttermilk Fill (m3/cycle) | 0 | 0 | 0 | |
Initial Mixing (min) | (140–150) | (140–150) | (100–230) | |
Aeration (min) • number of aeration | (45–75) • 1 | (30–130) • 1 | (60–200) • 1 | |
Buttermilk Fill (m3/cycle) | 0.042 ± 0.050 (0–0.10) | 0.084 ± 0.093 (0–0.3) | 0.330 ± 0.136 (0.10–0.60) | |
Mixing (min) • number of mixing | (150–230) • 1 | (180–230) • 1 | (200–250) • 1 | |
Final mixing (min) | (60–100) | (90–120) | (80–120) | |
Sedimentation (min) | (40) | (40) | (40–100) | |
Draw (min) | (15) | (15) | (10–15) |
Parameter | Period I | Period II | Period III |
---|---|---|---|
BOD5 (mg L−1) | 57 ± 4 (54–60) | 47 | 330 |
sCOD (mg L−1) | 693 ± 227 (431–838) | 557 ± 113 (431–649) | 814 ± 234 (649–980) |
TAN (mg L−1) | 507 ± 132 (406–656) | 466 ± 61.3 (408–530) | 608 ± 111 (530–686) |
NOx--N (mg L−1) | 6.1 ± 0.4 (5.5–7.1) | 6.0 ± 0.6 (5.2–7.1) | 5.4 ± 0.1 (5.1–5.6) |
BOD5/COD | 0.07 | 0.08 | 0.40 |
COD/TAN | 0.94- 2.1 | 0.94–1.45 | 1.22–1.43 |
TP (mg L−1) | 5.1 ± 0.9 (4.3–7.2) | 5.2 ± 1.1 (3.5–7.2) | 8.8 ± 1.4 (6.4–11.2) |
pH | (7.8–8.2) | (8.1–8.2) | (8.1–8.2) |
Alkalinity as CaCO3 (mg L−1) | 2000 | 2000 | 2000 |
Components | Unit | Period I | Period II | Period III |
---|---|---|---|---|
Fbs—readily biodegradable organic matter (including acetate) * | g COD g tCOD −1 | 0.0150 | 0.0150 | 0.1500 |
Fac- acetate * | g COD g rbCOD−1 | 0.0001 | 0.0001 | 0.0001 |
Fxsp—Non colloidal slowly degradable | g COD g sdCOD−1 | 0.7500 | 0.7500 | 0.7500 |
Fus—Unbiodegradable soluble COD * | g COD g tCOD−1 | 0.8240 | 0.8240 | 0.6890 |
Fup—unbiodegradable particulate COD * | g COD g tCOD−1 | 0.003 | 0.003 | 0.003 |
Fcel—Cellulose fraction of unbiodegradable particulate | g COD g tCOD−1 | 0.5000 | 0.5000 | 0.5000 |
Fna—Ammonia * | g NH4-N gTKN−1 | 0.9400 | 0.9400 | 0.9400 |
Fnox—Particulate organic nitrogen | g N g Organic N−1 | 0.5000 | 0.5000 | 0.5000 |
Fnus—Soluble unbiodegradable TKN | g N gTKN−1 | 0.0200 | 0.0200 | 0.0200 |
FupN N:COD ratio for unbiodegradable part. COD | g N g tCOD−1 | 0.0700 | 0.0700 | 0.0700 |
Fpo4—Phosphate | g PO4-P gTP−1 | 0.5000 | 0.5000 | 0.5000 |
FupP—P:COD ratio for unbiodegradable part. COD | g P g tCOD−1 | 0.0220 | 0.0220 | 0.0220 |
Fsr—Reduced sulfur [H2S] | g S g S−1 | 0.1500 | 0.1500 | 0.1500 |
FZbh—Ordinary heterotrophic COD fraction | g COD g tCOD−1 | 0.0200 | 0.0200 | 0.0200 |
FZbm—Methylotrophic COD fraction | g COD g t COD−1 | 0.0001 | 0.0001 | 0.0001 |
FZao—Ammonia oxidizing COD fraction * | g COD g tCOD−1 | 0.001 | 0.001 | 0.001 |
FZno—Nitrite oxidizing COD fraction * | g COD g tCOD−1 | 0.001 | 0.001 | 0.001 |
FZaao—Anaerobic ammonia oxidizing COD fraction | g COD g tCOD−1 | 0.0001 | 0.0001 | 0.0001 |
FZppa—Phosphorus accumulating COD fraction | g COD g tCOD−1 | 0.0001 | 0.0001 | 0.0001 |
FZpa—Propionic acetogenic COD fraction | g COD g tCOD−1 | 0.0001 | 0.0001 | 0.0001 |
FZam—Acetoclastic methanogenic COD fraction | g COD g tCOD−1 | 0.0001 | 0.0001 | 0.0001 |
FZhm—Hydrogenotrophic methanogenic COD fraction | g COD g tCOD−1 | 0.0001 | 0.0001 | 0.0001 |
FZso—Sulfur oxiding COD fraction | g COD g tCOD−1 | 0.0001 | 0.0001 | 0.0001 |
FZsrpa—Sulfur reducing propionic acetogenic COD fraction | g COD g tCOD−1 | 0.0001 | 0.0001 | 0.0001 |
FZsra—Sulfur reducing acetotrophic COD fraction | g COD g tCOD−1 | 0.0001 | 0.0001 | 0.0001 |
FZsrh—Sulfur reducing hydrogenotrophic COD fraction | g COD g tCOD−1 | 0.0001 | 0.0001 | 0.0001 |
FZe—Endogenous products COD fraction | g COD g tCOD−1 | 0 | 0 | 0 |
Process | Reactor | Periods | Date |
---|---|---|---|
Calibration | SBRA | Period I | 29 August 2016–19 October 2016 |
Track study I | 20 October 2016 | ||
Period II | 21 October 2016–6 December 2016 | ||
Track study II | 7 December 2016 | ||
SBRB | Period I | 29 August 2016–19 October 2016 | |
Track study II | 20 October 2016 | ||
Period II | 21 October 2016–8 December 2016 | ||
Track study II | 9 December 2016 | ||
Validation | SBRA | Period III | 8 December 2016–25 January 2017 |
Track study III | 26 January 2017 | ||
SBRB | Period III | 10 December 2016–29 January 2017 | |
Track study III | 30 January 2017 |
Parameters | Unit | SBRA | SBRB | BioWin Default | Literature Range | Reference |
---|---|---|---|---|---|---|
Max. spec. growth rate, AOB | d−1 | 1.0 | 1.0 | 0.9 | 0.33–1.02 | [29] |
Substrate (NH4) half sat, AOB | mg N L−1 | 26.6 | 26.6 | 0.7 | 12.2–46.2 | [30,31,32] |
Aerobic decay rate, AOB | d−1 | 0.035 | 0.035 | 0.17 | 0.02–0.17 | [29,33,34,35] |
Anoxic decay rate, AOB | d−1 | 0.035 | 0.035 | 0.08 | 0.02–0.11 | [29,33,34] |
Aerobic decay rate, NOB | d−1 | 0.07 | 0.07 | 0.17 | 0.07–0.17 | [35,36,37,38] |
Anoxic/anaerobic decay rate, NOB | d−1 | 0.07 | 0.07 | 0.08 | 0.07–0.15 | [36,37] |
Aerobic decay rate, AAO | d−1 | 0.0095 | 0.0095 | 0.019 | 0.0048–0.016 | [39,40,41,42] |
DO half sat, AOB | mg O2 L−1 | 0.125 | 0.25 | 0.25 | 0.04–0.48 | [43] |
DO half sat, NOB | mg O2 L−1 | 0.25 | 0.50 | 0.50 | 0.17–4.33 | [32] |
SBRA | SBRB | |||||||
---|---|---|---|---|---|---|---|---|
Peak of NH3 concentration in each SBR cycle [mg N L−1] | ||||||||
Min | Avg | Max | pH range | Min | Avg | Max | pH range | |
Period I | 0.044 | 0.572 | 1.74 | 7.3–7.9 | 0.038 | 0.525 | 1.70 | 7.4–7.9 |
Period II | 0.043 | 0.387 | 1.21 | 7.3–7.5 | 0.057 | 0.539 | 1.22 | 7.3–7.5 |
Period III | 0.001 | 0.069 | 0.480 | 4.7–7.2 | 0.001 | 0.139 | 0.479 | 5.0–7.4 |
Peak INH3 value in each SBR cycle * | ||||||||
Min | Avg | Max | Min | Avg | Max | |||
Period I | 0.96 | 0.65 | 0.38 | 0.97 | 0.67 | 0.38 | ||
Period II | 0.96 | 0.73 | 0.46 | 0.95 | 0.66 | 0.46 | ||
Period III | 1.00 | 0.94 | 0.69 | 1.00 | 0.88 | 0.69 |
SBRA | SBRB | ||||
---|---|---|---|---|---|
N2 Production by AAO Bacteria (kg) | N2 Production by OHO Bacteria (kg) | N2 Production by AAO Bacteria (kg) | N2 Production by OHO Bacteria (kg) | ||
Period I (52 days) | 1238 | 185 | Period I (52 days) | 991 | 282 |
Period II (47 days) | 1044 | 109 | Period II (49 days) | 815 | 165 |
Period III (49 days) | 1186 | 435 | Period III (51 days) | 489 | 663 |
SBRA | SBRB | |||||
---|---|---|---|---|---|---|
N2O production by (kg N2O kg Nremoved−1) | N2O production (kg N2O kg Nremoved−1) | |||||
AOB via autotrophic denitrification | AOB via hydroxylamine oxidation | OHO | AOB via autotrophic denitrification | AOB via hydroxylamine oxidation | OHO | |
Track study I | 0.0021 | 0.0010 | 0.0009 | 0.0014 | 0.0013 | 0.0053 |
Track study II | 0.0046 | 0.0017 | 0.0030 | 0.0036 | 0.0020 | 0.0117 |
Track study III | 0.0075 | 0.0007 | 0.0329 | 0.0049 | 0.0013 | 0.1099 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lanzetta, A.; Mattioli, D.; Di Capua, F.; Sabia, G.; Petta, L.; Esposito, G.; Andreottola, G.; Gatti, G.; Merz, W.; Langone, M. Anammox-Based Processes for Mature Leachate Treatment in SBR: A Modelling Study. Processes 2021, 9, 1443. https://doi.org/10.3390/pr9081443
Lanzetta A, Mattioli D, Di Capua F, Sabia G, Petta L, Esposito G, Andreottola G, Gatti G, Merz W, Langone M. Anammox-Based Processes for Mature Leachate Treatment in SBR: A Modelling Study. Processes. 2021; 9(8):1443. https://doi.org/10.3390/pr9081443
Chicago/Turabian StyleLanzetta, Anna, Davide Mattioli, Francesco Di Capua, Gianpaolo Sabia, Luigi Petta, Giovanni Esposito, Gianni Andreottola, Giovanni Gatti, Willy Merz, and Michela Langone. 2021. "Anammox-Based Processes for Mature Leachate Treatment in SBR: A Modelling Study" Processes 9, no. 8: 1443. https://doi.org/10.3390/pr9081443
APA StyleLanzetta, A., Mattioli, D., Di Capua, F., Sabia, G., Petta, L., Esposito, G., Andreottola, G., Gatti, G., Merz, W., & Langone, M. (2021). Anammox-Based Processes for Mature Leachate Treatment in SBR: A Modelling Study. Processes, 9(8), 1443. https://doi.org/10.3390/pr9081443