A Techno-Economic Model for Wind Energy Costs Analysis for Low Wind Speed Areas
Abstract
:1. Introduction
2. Materials and Methods
- Mathematical modelling: The mathematical equations for analysing the wind data using the Weibull distribution, evaluating the technical performance through the annual energy production and the capacity factor and the economics through the annualized financial return on investment, simple payback period, and levelized cost of electricity are presented. These include wind power and energy, Weibull distribution, and economic equations.
- Wind turbine specifications: The wind turbine is identified. The geometry and other technical specifications of the FWT are discussed. The BWT wind turbine power curve, the power curve of the existing commercial wind turbines used for comparison and their technical specifications are also presented.
- Selected sites: The demonstration cities are identified based on their wind resource potential and proximity to the electric grid.
- Wind data: The two-parameter Weibull distribution of the wind direction of the selected sites over a period of ten years are obtained and analysed using the previously mentioned mathematical models.
- Economic data: The economic data that are input in the model are obtained. They are divided into location dependent—cost of electricity per kWh, yearly interest rate, inflation rate, and wind turbine dependent data—cost of acquisition of wind turbine, transportation and installation cost, operation and maintenance (O & M) cost, and wind turbine lifetime.
3. The Selected African Countries and Cities
4. Mathematical Modelling
5. Data Collection
5.1. Wind Data
5.2. Geometry and Technical Specifications of the FWT Design
5.3. Economic Data
6. Results and Discussions
6.1. FWT Performance Assessment
6.2. FWT Economic Analysis
6.2.1. Annualized Return on Investment
6.2.2. Simple Payback Period
6.2.3. Levelized Cost of Electricity
6.3. Comparison between FWT and Existing Commercial Wind Turbines
7. Conclusions/Recommendations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Wind Speed (m/s) | Power Output (kW) | ||||
---|---|---|---|---|---|
BWT 800 kW | Enercon E53 | Enercon E44 | EWT DW61 | GE SLE 1.5 | |
0.0 | 0 | 0 | 0 | 0 | 0 |
0.5 | 0 | 0 | 0 | 0 | 0 |
1.0 | 0 | 0 | 0 | 0 | 0 |
1.5 | 0 | 0 | 0 | 0 | 0 |
2.0 | 0 | 0 | 0 | 0 | 0 |
2.5 | 0 | 0 | 0 | 11 | 0 |
3.0 | 19 | 14 | 4 | 13 | 0 |
3.5 | 31 | 26 | 12 | 39 | 20 |
4.0 | 47 | 38 | 20 | 66 | 48 |
4.5 | 67 | 50 | 35 | 95 | 89 |
5.0 | 92 | 77 | 50 | 134 | 130 |
5.5 | 122 | 104 | 73 | 184 | 194 |
6.0 | 158 | 141 | 96 | 233 | 257 |
6.5 | 202 | 178 | 126 | 290 | 338 |
7.0 | 253 | 228 | 156 | 349 | 418 |
7.5 | 313 | 278 | 197 | 405 | 535 |
8.0 | 381 | 336 | 238 | 466 | 652 |
8.5 | 459 | 394 | 289 | 544 | 795 |
9.0 | 548 | 480 | 340 | 611 | 938 |
9.5 | 648 | 566 | 403 | 696 | 1071 |
10.0 | 760 | 645 | 466 | 789 | 1203 |
10.5 | 800 | 724 | 533 | 850 | 1277 |
11.0 | 800 | 744 | 600 | 886 | 1351 |
11.5 | 800 | 764 | 655 | 900 | 1394 |
12.0 | 800 | 780 | 710 | 900 | 1437 |
12.5 | 800 | 796 | 750 | 900 | 1459 |
13.0 | 800 | 800 | 790 | 900 | 1480 |
13.5 | 800 | 800 | 820 | 900 | 1488 |
14.0 | 800 | 800 | 850 | 900 | 1496 |
14.5 | 800 | 800 | 865 | 900 | 1498 |
15.0 | 800 | 800 | 880 | 900 | 1500 |
15.5 | 800 | 800 | 890 | 900 | 1500 |
16.0 | 800 | 800 | 900 | 900 | 1500 |
16.5 | 800 | 800 | 900 | 900 | 1500 |
17.0 | 800 | 800 | 900 | 900 | 1500 |
17.5 | 800 | 800 | 900 | 900 | 1500 |
18.0 | 800 | 800 | 900 | 900 | 1500 |
18.5 | 800 | 800 | 900 | 900 | 1500 |
19.0 | 800 | 800 | 900 | 900 | 1500 |
19.5 | 800 | 800 | 900 | 900 | 1500 |
20.0 | 800 | 800 | 900 | 900 | 1500 |
Wind Speed (m/s) | Percent | Power Output (kW) | Energy Output (GWh) |
---|---|---|---|
0.0 | 2.0 | 0 | 0 |
0.5 | 3.1 | 0 | 0 |
1.0 | 3.6 | 0 | 0 |
1.5 | 4.0 | 0 | 0 |
2.0 | 4.3 | 0 | 0 |
2.5 | 4.5 | 0 | 0 |
3.0 | 4.6 | 19 | 7570 |
3.5 | 4.6 | 31 | 12,648 |
4.0 | 4.6 | 47 | 18,983 |
4.5 | 4.5 | 67 | 26,669 |
5.0 | 4.5 | 92 | 35,746 |
5.5 | 4.3 | 122 | 46,184 |
6.0 | 4.2 | 158 | 57,895 |
6.5 | 4.0 | 202 | 70,727 |
7.0 | 3.8 | 253 | 84,479 |
7.5 | 3.6 | 313 | 98,907 |
8.0 | 3.4 | 381 | 113,731 |
8.5 | 3.2 | 459 | 128,652 |
9.0 | 3.0 | 548 | 143,359 |
9.5 | 2.8 | 648 | 157,542 |
10.0 | 2.6 | 760 | 170,898 |
10.5 | 2.4 | 800 | 165,621 |
11.0 | 2.2 | 800 | 151,809 |
11.5 | 2.0 | 800 | 138,504 |
12.0 | 1.8 | 800 | 125,770 |
12.5 | 1.6 | 800 | 113,658 |
13.0 | 1.5 | 800 | 102,204 |
13.5 | 1.3 | 800 | 91,432 |
14.0 | 1.2 | 800 | 81,360 |
14.5 | 1.0 | 800 | 71,994 |
15.0 | 0.9 | 800 | 63,338 |
15.5 | 0.8 | 800 | 55,385 |
16.0 | 0.7 | 800 | 48,126 |
16.5 | 0.6 | 800 | 41,547 |
17.0 | 0.5 | 800 | 35,625 |
17.5 | 0.4 | 800 | 30,337 |
18.0 | 0.4 | 800 | 25,653 |
18.5 | 0.3 | 800 | 21,538 |
19.0 | 0.3 | 800 | 17,955 |
19.5 | 0.2 | 800 | 14,864 |
20.0 | 0.2 | 800 | 12,018 |
BWT 800 kW Results | AEP and LCOE Comparison between BWT and Other Commercial Wind Turbines | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S/N | Selected African Cities | AEP (GWh) | Capacity Factor (%) | Annual ROI (%) | SPP (Years) | LCOE ($/kW) | Annual Energy Production (AEP) (GWh) | Levelized Cost of Electricity (LCOE) ($/kW) | ||||||||
BWT 800 Kw | Enercon E53 | Enercon E44 | EWT DW61 | GE SLE 1.5 | BWT 800 kW | Enercon E53 | Enercon E44 | EWT DW61 | GE SLE 1.5 | |||||||
1 | Moundou | 0.82 | 12% | 2.38 | 5.92 | 0.12 | 0.82 | 1.04 | 0.79 | 1.44 | 1.90 | 0.12 | 0.12 | 0.40 | 0.19 | 0.25 |
2 | Bongor | 1.38 | 20% | 4.72 | 3.50 | 0.07 | 1.38 | 1.79 | 1.45 | 2.32 | 3.30 | 0.07 | 0.07 | 0.11 | 0.06 | 0.07 |
3 | Ati | 2.57 | 37% | 9.65 | 9.65 | 0.04 | 2.57 | 2.39 | 2.04 | 3.01 | 4.43 | 0.04 | 0.05 | 0.08 | 0.04 | 0.05 |
4 | Nakuru | 0.76 | 11% | 1.49 | 8.02 | 0.18 | 0.76 | 1.00 | 0.77 | 1.34 | 1.84 | 0.18 | 0.17 | 0.30 | 0.14 | 0.18 |
5 | Malindi | 0.94 | 14% | 2.08 | 6.49 | 0.15 | 0.94 | 1.28 | 0.93 | 1.76 | 2.35 | 0.15 | 0.14 | 0.25 | 0.11 | 0.14 |
6 | Garissa | 0.99 | 14% | 2.23 | 6.19 | 0.14 | 0.99 | 1.25 | 1.01 | 1.65 | 2.29 | 0.14 | 0.14 | 0.23 | 0.12 | 0.15 |
7 | Rabat | 1.00 | 14% | 0.36 | 14.73 | 0.12 | 1.00 | 1.26 | 1.00 | 1.68 | 2.30 | 0.12 | 0.12 | 0.19 | 0.09 | 0.12 |
8 | Fez | 0.83 | 12% | 0.12 | 17.85 | 0.14 | 0.83 | 1.03 | 0.86 | 1.33 | 1.89 | 0.14 | 0.14 | 0.22 | 0.12 | 0.15 |
9 | Tetouan | 1.90 | 27% | 1.58 | 7.76 | 0.06 | 1.90 | 2.34 | 2.07 | 2.89 | 4.34 | 0.06 | 0.06 | 0.09 | 0.05 | 0.06 |
10 | Walvis Bay | 1.14 | 16% | 1.12 | 9.45 | 0.12 | 1.14 | 1.41 | 1.16 | 1.85 | 2.60 | 0.12 | 0.12 | 0.19 | 0.10 | 0.12 |
11 | Katima Mulilo | 1.64 | 24% | 2.04 | 6.58 | 0.08 | 1.64 | 2.20 | 1.73 | 2.88 | 4.08 | 0.08 | 0.08 | 0.13 | 0.06 | 0.08 |
12 | Keetmanshoop | 1.80 | 26% | 2.35 | 5.98 | 0.07 | 1.80 | 2.30 | 1.93 | 2.93 | 4.27 | 0.07 | 0.07 | 0.11 | 0.06 | 0.07 |
13 | Kaduna | 1.41 | 20% | 0.41 | 14.14 | 0.15 | 1.41 | 1.85 | 1.50 | 2.39 | 3.42 | 0.15 | 0.14 | 0.24 | 0.12 | 0.14 |
14 | Jos Plateau | 1.39 | 20% | 3.18 | 4.78 | 0.10 | 1.39 | 1.84 | 1.44 | 2.43 | 3.39 | 0.10 | 0.09 | 0.15 | 0.08 | 0.09 |
15 | Ilorin | 0.73 | 11% | −0.27 | 27.25 | 0.28 | 0.73 | 0.99 | 0.76 | 1.31 | 1.82 | 0.28 | 0.26 | 0.45 | 0.21 | 0.27 |
16 | Kigali | 0.35 | 5% | 0.05 | 19.01 | 0.38 | 0.35 | 0.39 | 0.26 | 0.60 | 0.67 | 0.38 | 0.43 | 0.85 | 0.30 | 0.48 |
17 | Ruhengeri | 0.31 | 5% | −0.06 | 21.25 | 0.43 | 0.31 | 0.36 | 0.25 | 0.54 | 0.62 | 0.43 | 0.47 | 0.90 | 0.34 | 0.52 |
18 | Gisenyi | 0.32 | 5% | −0.05 | 21.04 | 0.42 | 0.32 | 0.38 | 0.29 | 0.54 | 0.68 | 0.42 | 0.44 | 0.78 | 0.34 | 0.48 |
19 | Arusha | 1.11 | 16% | 0.77 | 11.33 | 0.17 | 1.11 | 1.00 | 0.78 | 1.32 | 1.84 | 0.17 | 0.23 | 0.40 | 0.19 | 0.25 |
20 | Mbeya | 1.21 | 18% | 0.93 | 10.35 | 0.15 | 1.21 | 1.51 | 1.28 | 1.93 | 2.79 | 0.15 | 0.15 | 0.24 | 0.13 | 0.16 |
21 | Tabora | 1.11 | 16% | 0.77 | 11.33 | 0.17 | 1.11 | 1.43 | 1.11 | 1.93 | 2.62 | 0.17 | 0.16 | 0.28 | 0.13 | 0.17 |
References
- Fagbenle, R.O.; Katende, J.; Ajayi, O.O.; Okeniyi, J.O. Assessment of wind energy potential of two sites in North-East, Nigeria. Renew. Energy 2011, 36, 1277–1283. [Google Scholar] [CrossRef]
- Ochaeta, K. Energy Security and Sustainable Development Implications for Guatemala of the Electricity Generation Expansion Plan 2014–2028. Master’s Thesis, Uppsala University, Uppsala, Sweden, 2014. [Google Scholar]
- Pachauri, S.; Bew-Hammond, A.; Barnes, D.F.; Bouille, D.H.; Gitonga, S.; Modi, V.; Prasad, G.; Rath, A.; Zerriffi, H.; Dafrallah, T.; et al. Energy access for development. In Global Energy Assessment—Toward a Sustainable Future; Cambridge University Press: Cambridge, UK, 2012; Chapter 19; pp. 1401–1458. [Google Scholar]
- Powanga, L.; Giner-Reichl, I. China’s contribution to the African power sector: Policy implications for African countries. J. Energy 2019, 2019, 1–10. [Google Scholar] [CrossRef]
- International Energy Agency. Africa Energy Outlook 2019—Analysis Scenarios; Africa Energy Outlook Special Report; International Energy Agency: Paris, France, 2019; pp. 1–12. [Google Scholar]
- Lucas, P.L.; Dagnachew, A.G.; Hof, A.F. Towards Universal Electricity Access in Sub-Saharan Africa: A Quantitative Analysis of Technology and Investment Requirements; PBL Netherlands Environmental Assessment Agency: Hague, The Netherlands, 2017; pp. 1–58. [Google Scholar]
- Longa, F.D.; Strikkers, T.; Kober, T.; Van Der Zwaan, B. Advancing energy access modelling with geographic information system data. Environ. Model. Assess 2018, 23, 627–637. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.; Brewer, E.; Christiano, C.; Meyo, F.; Miguel, E.; Podolsky, M.; Rosa, J.; Wolfram, C. Electrification for “under grid” households in rural Kenya. Dev. Eng. 2016, 1, 26–35. [Google Scholar] [CrossRef] [Green Version]
- Legros, G.; Havet, I.; Bruce, N.; Bonjour, S.; Rijal, K.; Takada, M.; Dora, C. The Energy Access Situation in Developing Countries: A Review Focusing on the Least Developed Countries and Sub-Saharan Africa; United Nations Development Programme: New York, NY, USA, 2009; pp. 1–142. [Google Scholar]
- International Renewable Energy Agency. Scaling Up Africa’s Renewable Energy Deployment: Detailed Overview of IRENA’s Engagement and Impact; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2020; pp. 1–82. [Google Scholar]
- Owusu, P.A.; Asumadu-Sarkodie, S. A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng. 2016, 3, 1–14. [Google Scholar] [CrossRef]
- Perera, F. Pollution from fossil-fuel combustion is the leading environmental threat to global pediatric health and equity: Solutions exist. Int. J. Environ. Res. Public Health 2018, 15, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adeyeye, K.; Ijumba, N.; Colton, J. Exploring the environmental and economic impacts of wind energy: A cost-benefit perspective. Int. J. Sustain. Dev. World Ecol. 2020, 27, 718–731. [Google Scholar]
- Mitchell, C. Momentum is increasing towards a flexible electricity system based on renewables. Nat. Energy 2016, 1, 1–6. [Google Scholar] [CrossRef]
- Ajayi, O.O. Assessment of utilization of wind energy resources in Nigeria. Energy Policy 2009, 37, 750–753. [Google Scholar] [CrossRef]
- Bouzarour-Amokrane, Y.; Tchangani, A.P.; Peres, F. Decision support system for wind farm installation using bipolar analysis. In Promoting Sustainable Practices through Energy Engineering and Asset Management; Engineering Science Reference, IGI Global: Hershey, PA, USA, 2015; pp. 1–21. [Google Scholar]
- Hafner, M.; Lucia de Strasser, T.S. Prospects for renewable energy in Africa. In Energy in Africa: Challenges and Opportunities; Hall, C., Ed.; Springer Nature Switzerland: Cham, Switzerland, 2018; Volume 8903, pp. 47–75. [Google Scholar]
- ESI Africa. The state of wind energy in Africa. Focus Renew. Energy 2018, 1, 1–10. [Google Scholar]
- Global Wind Energy Council. Global Wind Report, Annual Market Update 2010; Global Wind Energy Council: Brussels, Belgium, 2011; pp. 1–72. [Google Scholar]
- Global Wind Energy Council. Global Wind Report, Global Wind Report 2019; Global Wind Energy Council: Brussels, Belgium, 2020; pp. 1–78. [Google Scholar]
- Global Wind Atlas. Available online: https://www.globalwindatlas.info (accessed on 3 March 2020). Attribution 4.0 International (CC BY 4.0).
- Mentis, D. Wind Energy Assessment in Africa: A GIS-Based Approach. Master’s Thesis, KTH School of Industrial Engineering and Management Energy Technology, Stockholm, Sweden, 2013. [Google Scholar]
- Mukasa, A.D.; Mutambatsere, E.; Arvanitis, Y.; Triki, T. Development of Wind Energy in Africa; Working Paper Series No. 170; African Development Bank: Abidjan, Ivory Coast, 2013; pp. 1–43. [Google Scholar]
- Krohn, S.; Morthorst, P.; Awerbuch, S. The Economics of Wind Energy; The European wind energy association report; European Wind Energy Association Secretariat: Brussels, Belgium, 2009; pp. 1–156. [Google Scholar]
- Frankfurt School-UNEP Centre/BNEF. Global Trends in Renewable Energy Investment 2019; Frankfurt School-UNEP Centre/Bloomberg New Energy Finance: Frankfurt, Germany, 2019; pp. 1–76. [Google Scholar]
- Smoucha, E.A.; Fitzpatrick, K.; Buckingham, S.; Knox, O.G.G. Life cycle analysis of the embodied carbon emissions from 14 wind turbines with rated powers between 50 Kw and 3.4 Mw. J. Fundam. Renew. Energy Appl. 2016, 6, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Chipindula, J.; Sai, V.; Botlaguduru, V. Life cycle environmental impact of onshore and offshore wind farms in Texas. Sustainability 2018, 10, 2022. [Google Scholar] [CrossRef] [Green Version]
- Ugur, E.; Elma, O.; Selamogullari, U.S.; Tanrioven, M.; Uzunoglu, M. Financial payback analysis of small wind turbines for a smart home application in Istanbul/Turkey. In Proceedings of the International Conference on Renewable Energy Research and Applications, Madrid, Spain, 20–23 October 2013; pp. 1–5. [Google Scholar]
- Eyerly, D. Does Wind Energy Pay for Itself? A Look at Wind Energy ROI. Discover Wind Energy. Available online: https://discoverwindenergy.com/does-wind-energy-pay-for-itself-a-look-at-wind-energy-roi/ (accessed on 20 June 2020).
- Rehman, S.; Alam, M.M.; Alhems, L.M.; Rafique, M.M. Horizontal axis wind turbine blade design methodologies for efficiency enhancement—A review. Energies 2018, 11, 506. [Google Scholar] [CrossRef] [Green Version]
- American Wind Energy Association. Size Specifications of Common Industrial Wind Turbines. Technical Specifications of Common Large Wind Turbines. Available online: http://aweo.org/windmodels.html (accessed on 26 June 2018).
- Barber Wind Turbines. Available online: https://www.barberwindturbines.com (accessed on 16 June 2020).
- Adeyeye, K.A. Design of a Wind Turbine for Prevalent Conditions in Africa for an Effective and Economic Power Generation. Ph.D. Thesis, University of Rwanda, Kigali, Rwanda, 2021. [Google Scholar]
- Topographic Maps. Available online: https://en-us.topographic-map.com (accessed on 19 July 2020). Attribution 4.0 International (CC BY 4.0).
- Abo-Khalil, A.G. Impacts of wind farms on power system stability. In Modeling and Control Aspects of Wind Power Systems; Muyeen, S.M., Al-Durra, A., Eds.; IntechOpen: London, UK, 2013; pp. 133–151. [Google Scholar]
- Cetinay, H.; Kuipers, F.A.; Guven, A.N. Optimal siting and sizing of wind farms. Renew. Energy 2017, 101, 51–58. [Google Scholar] [CrossRef] [Green Version]
- Akyuz, H.E.; Gamgam, H. Statistical Analysis of Wind Speed Data with Weibull, Lognormal and Gamma Distributions. Cumhur. Sci. J. 2017, 38, 68–76. [Google Scholar] [CrossRef]
- Ali, S.; Lee, S.; Jang, C. Techno-economic assessment of wind energy potential at three locations in South Korea using long-term measured wind data. Energies 2017, 10, 1442. [Google Scholar] [CrossRef] [Green Version]
- Ayodele, T.R.; Jimoh, A.A.; Munda, J.L.; Agee, J.T. Viability and economic analysis of wind energy resource for power generation in Johannesburg, South Africa. Int. J. Sustain. Energy 2014, 33, 284–303. [Google Scholar] [CrossRef]
- Ruslau, M.F.V.; Silubun, H.C.A. Analysis of Wind Speed Distribution at the Mopah Airport in Merauke. Atl. Highlights Eng. 2018, 1, 958–963. [Google Scholar]
- Adaramola, M.S.; Paul, S.S.; Oyedepo, S.O. Assessment of electricity generation and energy cost of wind energy conversion systems in North-Central Nigeria. Energy Convers. Manag. 2011, 52, 3363–3368. [Google Scholar] [CrossRef]
- Bhakta, S.; Mukherjee, V.; Shaw, B. Techno-economic analysis and performance assessment of standalone photovoltaic/wind/hybrid power system in Lakshadweep islands of India. J. Renew. Sustain. Energy 2015, 7, 063117. [Google Scholar] [CrossRef]
- Gul, M.; Tai, N.; Huang, W.; Nadeem, M.H.; Yu, M. Assessment of wind power potential and economic analysis at Hyderabad in Pakistan: Powering to local communities using wind power. Sustainability 2019, 11, 1391. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Hernandez, O.; Martinez, M.; Lopez-villalobos, C.; Garcia, H.; Campos-Amezcua, R. Techno-Economic Feasibility Study of Small Wind Turbines in the Valley of Mexico Metropolitan Area. Energies 2019, 12, 890. [Google Scholar] [CrossRef] [Green Version]
- Dalabeeh, A.S.K. Techno-economic analysis of wind power generation for selected locations in Jordan. Renew. Energy 2017, 101, 1369–1378. [Google Scholar]
- Celik, A.N. A Techno-Economic Analysis of Wind Energy in Southern Turkey. Int. J. Green Energy 2007, 4, 37–41. [Google Scholar] [CrossRef]
- Ling, J.; Lublertlop, K. Economic Analysis of Wind Turbine Installation in Taiwan. Math. Probl. Eng. 2015, 2015, 1–9. [Google Scholar] [CrossRef]
- Ohunakin, O.S.; Oyewola, O.M.; Adaramola, M.S. Economic analysis of wind energy conversion systems using levelized cost of electricity and present value cost methods in Nigeria. Int. J. Energy Environ. Eng. 2013, 4, 2–9. [Google Scholar] [CrossRef] [Green Version]
- Manwell, J.F.; McGowan, J.G.; Rogers, A.L. Wind Energy Explained Theory, Design and Application, 2nd ed.; John Wiley & Sons Ltd.: West Sussex, UK, 2009; pp. 1–705. [Google Scholar]
- Rahimi, S.; Meratizaman, M.; Monadizadeh, S.; Amidpour, M. Techno-economic analysis of wind turbine e PEM (polymer electrolyte membrane) fuel cell hybrid system in standalone area. Energy 2014, 67, 381–396. [Google Scholar] [CrossRef]
- Charrouf, O.; Betka, A.; Becherif, M.; Tabanjat, A. Techno-economic analysis of wind turbines in Algeria. Int. J. Emerg. Electr. Power Syst. 2018, 2018, 1–13. [Google Scholar] [CrossRef]
- Neill, S.P.; Hashemi, M.R. Introduction. In Fundamentals of Ocean Renewable Energy; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1–30. [Google Scholar]
- Rhodes, J.D.; King, C.; Gulen, G.; Olmstead, S.M.; Dyer, J.S.; Hebner, R.E.; Beach, F.C.; Edgar, T.F.; Webber, M.E. A geographically resolved method to estimate levelized power plant costs with environmental externalities. Energy Policy 2017, 102, 491–499. [Google Scholar] [CrossRef]
- Bakhshi, R.; Sandborn, P.A. Return on investment model for the implementation of new technologies on wind turbines. IEEE Trans. Sustain. Energy 2017, 3029, 1–8. [Google Scholar] [CrossRef]
- Gorshkov, A.S.; Vatin, N.I.; Rymkevich, P.P.; Kydrevich, O.O. Payback period of investments in energy saving. Mag. Civ. Eng. 2018, 78, 65–75. [Google Scholar]
- Botchkarev, A. Estimating the accuracy of the return on investment (ROI) performance evaluations. Interdiscip. J. Inf. Knowl. Manag. 2015, 10, 217–233. [Google Scholar] [CrossRef] [Green Version]
- Siyal, S.H. Techno-Economic Assessment of Wind Energy for Renewable Hydrogen Production in Sweden. Master’s Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2019. [Google Scholar]
- Bandoc, G.; Prăvălie, R.; Patriche, C.; Degeratu, M. Spatial Assessment of Wind Power Potential at Global Scale: A Geographical Approach. J. Clean. Prod. 2018, 200, 1065–1086. [Google Scholar] [CrossRef]
- González-Aparicio, I.F.; Monforti, P.V.; Zucker, A.; Careri, F.; Huld, T.; Badger, J. Simulating European Wind Power Generation Applying Statistical Downscaling to Reanalysis Data. Appl. Energy 2017, 199, 155–168. [Google Scholar] [CrossRef]
- Technical University of Denmark (DTU). WAsP by DTU Wind Energy. 2020. Available online: https://www.wasp.dk (accessed on 11 July 2020).
- Barber, G.; Greenville, SC 29607, USA. Barber Wind Turbines. Personal Communication, 2018. [Google Scholar]
- Trading Economics. Interest Rates. Available online: https://tradingeconomics.com/countries (accessed on 5 February 2020).
- Statista. International Statistics and Market Data. Available online: https://www.statista.com/markets/422/international/ (accessed on 31 August 2020).
- Global Petrol Prices. Electricity prices for households, December 2019. Electricity Prices. Available online: https://www.globalpetrolprices.com/electricity_prices/ (accessed on 5 February 2020).
- Boccard, N. Capacity factor of wind power: Realized values vs. estimates. Energy Policy 2009, 37, 2679–2688. [Google Scholar] [CrossRef]
- Center for Sustainable Systems, University of Michigan. Wind Energy Factsheet 2019, CSS07–CSS09; University of Michigan: Ann Arbor, MI, USA, 2020; pp. 1–2. [Google Scholar]
- IRENA. Future of Wind: Deployment, Investment, Technology, Grid Integration and Socio-Economic Aspects (A Global Energy Transformation Paper); International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2019; pp. 1–88. [Google Scholar]
- Diyoke, C. A new approximate capacity factor method for matching wind turbines to a site: Case study of Humber region, UK. Int. J. Energy Environ. Eng. 2019, 10, 451–462. [Google Scholar] [CrossRef] [Green Version]
- Royal, J.; O’Shea, A. What Is the Average Stock Market Return? NerdWallet 1–4. Available online: https://www.nerdwallet.com/blog/investing/average-stock-market-return (accessed on 25 July 2021).
- Vandenboss, K. Finding a Good Return on Investment. Millionacres 1–10. Available online: https://www.fool.com/millionacres/real-estate-investing/finding-good-return-investment/# (accessed on 20 July 2020).
- Kenton, W.; James, M. Return on Invested Capital (ROIC). Investopedia 1–8. Available online: https://www.investopedia.com/terms/r/returnoninvestmentcapital.asp (accessed on 20 July 2020).
- Nelson, D.; O’Connell, B.; de Lorenzo, L.; Huxham, M. European Renewable Energy Policy and Investment; Climate Policy Initiative: San Francisco, CA, USA, 2016; pp. 1–108. [Google Scholar]
- Blanco, I. The economics of wind energy. Renew. Sustain. Energy Rev. 2009, 13, 1372–1382. [Google Scholar] [CrossRef]
- How Much Do Wind Turbines Cost and Where Can I Get Funding? Available online: https://www.local.gov.uk/how-much-do-wind-turbines-cost-and-where-can-i-get-funding (accessed on 28 May 2020).
- Keizer, D.; Crijns-Graus, W.; Harmsen, R. Renewable electricity in Kenya. Master’s Thesis, Utrecht University, Utrecht, The Netherlands, 2017. [Google Scholar]
- Henbest, S.; Mills, L.; Orlandi, A.; Serhal, A.; Pathania, R. Levelized Cost of Electricity: DFID Priority Countries Possible Policy Conclusions; Bloomberg New Energy Finance: London, UK, 2015; pp. 1–83. [Google Scholar]
- Mburu, A. Solar + Battery Energy Storage vs. Diesel in East Africa. Powergen International. Available online: https://www.renewableenergyworld.com/2020/04/10/solar-battery-energy-storage-vs-diesel-in-east-africa/#gref (accessed on 31 July 2020).
- Suphachalasai, S.; Touati, M.; Ackerman, F.; Knight, P.; Glick, D.; Horowitz, A.; Rogers, J.A.; Amegroud, T. Emission Reductions from Energy Subsidies Reform and Renewable Energy Policy; World Bank Group, Morocco Energy Policy MRV: Morroco, Tunisia, 2018; pp. 1–62. [Google Scholar]
- Tsagas, I. Morocco: 170 MW of solar PV at €0.042/kWh; PV Magazine, 13 January 2017. [Google Scholar]
- United Nations. Data from: Energy Profile: Morocco. UN Environment Document Repository. 2017. Available online: https://www.pv-magazine.com/2017/01/13/morocco-170-mw-of-solar-pv-at-e0-042-per-kwh/ (accessed on 20 July 2020).
- Le Fol, Y.; Ndhlukula, K. Potential and future of concentrating solar power in Namibia. J. Energy S. Afr. 2013, 24, 90–98. [Google Scholar] [CrossRef]
- Stiftung, K.A. Namibia’s Energy Future: A Case for Renewables; Konrad Adenauer Stiftung: Windhoek, Namibia, 2012; pp. 1–116. [Google Scholar]
- Henbest, S.; Mills, L.; Orlandi, I.; Serhal, A.; Pathania, R. Levelized Cost of Electricity: DFID 28 Priority Countries; Bloomberg New Energy Finance: London, UK, 2015; pp. 1–21. [Google Scholar]
- Ogunnubi, O.A.; Overbye, T.J. An economic valuation of solar energy potential in Nigeria. In Proceedings of the 2015 IEEE Power and Energy Conference, London, ON, Canada, 26–28 October 2015; pp. 1–7. [Google Scholar]
- IRENA. Renewables Readiness Assessment in the United Republic of Tanzania; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2017; pp. 1–68. [Google Scholar]
- Jahangiri, M.; Soulouknga, M.H.; Bardei, F.K.; Shamsabadi, A.A.; Akinlabi, E.T.; Sichilalu, S.M.; Mostafaeipour, A. Techno-econo-environmental optimal operation of grid-wind-solar electricity generation with hydrogen storage system for domestic scale, case study in Chad. Int. J. Hydrogen Energy 2019, 44, 28613–28628. [Google Scholar] [CrossRef]
- Issak, M.B. Analyzing the Cost of Electricity for Solarpv—Diesel Hybrid Generation for Sub-Regional Hospital Electrification in Dourbali District, Chad. Master’s Thesis, Pan African University Institute of Water and Energy Sciences, Tlemcen, Algeria, 2018. [Google Scholar]
- Charabi, Y.; Abdul-Wahab, S. Wind turbine performance analysis for energy cost minimization. Renew. Wind. Water Sol. 2020, 7, 1–11. [Google Scholar] [CrossRef]
- Tank, V.; Bhutka, J.; Harinarayana, T. Wind Energy Generation and Assessment of Resources in India. J. Power Energy Eng. 2016, 4, 25–38. [Google Scholar] [CrossRef] [Green Version]
- Zhan, L.; Letizia, S.; Iungo, G.V. Wind LiDAR Measurements of Wind Turbine Wakes Evolving Over Flat and Complex Terrains: Ensemble Statistics of the Velocity Field. J. Phys. Conf. Ser. 2020, 1452, 1–12. [Google Scholar] [CrossRef]
- Astanei, D.; Nemes, C.; Munteanu, F.; Ciobanu, A. Annual energy production estimation based on wind speed distribution. In Proceedings of the 2016 International Conference and Exposition on Electrical and Power Engineering, EPE 2016, European Union, Iași, Romania, 20–22 October 2016; pp. 862–867. [Google Scholar]
African Countries | Location | Selection Criteria | Cities | Latitude N(+)/S(−) | Longitude E(+)/W(−) | Altitude (m) |
---|---|---|---|---|---|---|
Chad | North-Central Africa | High wind energy resource and ranks second among Sahel countries | Moundou | 8.567 | 16.083 | 413 |
Bongor | 10.281 | 15.372 | 315 | |||
Ati | 13.215 | 18.335 | 294 | |||
Kenya | Eastern Africa | High wind energy resource and one of the leading wind energy markets in Africa | Nakuru | −0.307 | 36.072 | 1850 |
Malindi | −3.218 | 40.117 | 26 | |||
Garissa | −0.453 | 39.646 | 1138 | |||
Morocco | Northern Africa | Borders Mediterranean Sea | Rabat | 34.013 | −6.833 | 160 |
Fez | 34.033 | −5.000 | 410 | |||
Tetouan | 35.578 | −5.368 | 205 | |||
Namibia | Southern Africa | Dominated by Namib desert and situated close to Kalahari desert. | Walvis Bay | −22.957 | 14.505 | 6 |
Katima Mulilo | −17.500 | 24.267 | 950 | |||
Keetmanshoop | −26.583 | 18.133 | 1064 | |||
Nigeria | Western Africa | Located in the Sahel region | Kaduna | 10.526 | 7.439 | 250 |
Jos Plateau | 9.928 | 8.892 | 1217 | |||
Ilorin | 8.497 | 4.542 | 343 | |||
Rwanda | Eastern/Central Africa | Has very low annual mean wind speed | Kigali | −1.950 | 30.059 | 1567 |
Ruhengeri | −1.500 | 29.635 | 1842 | |||
Gisenyi | −1.703 | 29.256 | 1481 | |||
Tanzania | Eastern Africa | Located along the coastline of Indian ocean | Arusha | −3.367 | 36.683 | 1400 |
Mbeya | −8.900 | 33.45 | 1700 | |||
Tabora | −5.016 | 32.827 | 1200 |
Wind turbine diameter (meters, feet) | 61 (200) |
Wind turbine rated power (kW) | 800 |
Swept area (sq m) | 2922 |
Capital cost of wind turbine (USD) | 1,400,000 |
Operation and Maintenance cost per year (USD) | 42,000 |
Wind turbine lifetime (years) | 20 |
Rated wind speed (m/s) | 10.4 |
Cut-in speed (m/s) | 3 |
Cut-out out speed (m/s) | 20 |
City | Hub Height (m) | Cost of Electricity per kWh (USD) | Yearly Interest Rate (%) | Inflation Rate (%) |
---|---|---|---|---|
Moundou | 513 | 0.29 | 3.4 | 2.24 |
Bongor | 415 | 0.29 | 3.4 | 2.24 |
Ati | 394 | 0.29 | 3.4 | 2.24 |
Nakuru | 1950 | 0.23 | 7.75 | 5.10 |
Malindi | 126 | 0.23 | 7.75 | 5.10 |
Garissa | 1238 | 0.23 | 7.75 | 5.10 |
Rabat | 260 | 0.10 | 5.34 | 0.30 |
Fez | 510 | 0.10 | 5.34 | 0.30 |
Tetouan | 305 | 0.10 | 5.34 | 0.30 |
Walvis Bay | 106 | 0.13 | 7.03 | 2.43 |
Katima Mulilo | 1050 | 0.13 | 7.03 | 2.43 |
Keetmanshoop | 1164 | 0.13 | 7.03 | 2.43 |
Kaduna | 350 | 0.07 | 13.5 | 13.39 |
Jos Plateau | 1317 | 0.07 | 13.5 | 13.39 |
Ilorin | 443 | 0.07 | 13.5 | 13.39 |
Kigali | 1667 | 0.21 | 7.14 | 6.90 |
Ruhengeri | 1942 | 0.21 | 7.14 | 6.90 |
Gisenyi | 1581 | 0.21 | 7.14 | 6.90 |
Arusha | 1500 | 0.11 | 11.94 | 3.86 |
Mbeya | 1800 | 0.11 | 11.94 | 3.86 |
Tabora | 1300 | 0.11 | 11.94 | 3.86 |
Manufacturer | Power Output (kW) | Rotor Diameter (m) | Swept Area (m2) | Rated Wind Speed (m/s) | Cut-in Speed (m/s) | Cut-Out Speed (m/s) | Capital Cost of Acquisition | Operation and Maintenance Cost per Year |
---|---|---|---|---|---|---|---|---|
Enercon E53 | 800 | 52.9 | 2198 | 13 | 3 | 25 | $1,750,000 | $ 51,250 |
Enercon E44 | 900 | 44.0 | 1521 | 16.5 | 3 | 34 | $ 2,337,500 | $ 51,250 |
EWT DW61 | 900 | 61 | 2923 | 10 | 2.5 | 25 | $ 1,918,770 | $ 57,158 |
GE SLE 1.5 | 1500 | 77 | 4657 | 14 | 3.5 | 25 | $ 3,375,000 | $ 87,500 |
BWT 800 | 800 | 61 | 2923 | 9.6 | 3 | 20 | $ 1,400,000 | $ 42,000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adeyeye, K.A.; Ijumba, N.; Colton, J.S. A Techno-Economic Model for Wind Energy Costs Analysis for Low Wind Speed Areas. Processes 2021, 9, 1463. https://doi.org/10.3390/pr9081463
Adeyeye KA, Ijumba N, Colton JS. A Techno-Economic Model for Wind Energy Costs Analysis for Low Wind Speed Areas. Processes. 2021; 9(8):1463. https://doi.org/10.3390/pr9081463
Chicago/Turabian StyleAdeyeye, Kehinde A., Nelson Ijumba, and Jonathan S. Colton. 2021. "A Techno-Economic Model for Wind Energy Costs Analysis for Low Wind Speed Areas" Processes 9, no. 8: 1463. https://doi.org/10.3390/pr9081463
APA StyleAdeyeye, K. A., Ijumba, N., & Colton, J. S. (2021). A Techno-Economic Model for Wind Energy Costs Analysis for Low Wind Speed Areas. Processes, 9(8), 1463. https://doi.org/10.3390/pr9081463