Effect of an Increased Particulate COD Load on the Aerobic Granular Sludge Process: A Full Scale Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Plant and Additional Influent Dosing
2.2. Sampling and Sample Handling
2.2.1. Influent Wastewater
2.2.2. Reactor Mixed Liquor
2.3. Analytical Methods
2.4. Hydrolytic Enzyme Activity Tests
2.5. Routine Measurements
2.6. Microbial Population Analysis
2.6.1. Sludge Processing and DNA Extraction
2.6.2. 16S rRNA Gene Amplicon Sequencing and Data Analysis
3. Results
3.1. Additional Influent Dosing and Changes in Influent Composition
3.2. Sludge Production
3.3. Hydrolytic Enzyme Activity Tests
3.4. Reactor Performance and Nutrient Cycles
3.5. Microbial Community Composition: 16S rRNA Sequencing Results
4. Discussion
4.1. Changes in Hydrolytic Activity of the Sludge
4.2. Microbial Community Composition and Shifts
4.2.1. Microorganisms Involved in P and N Removal
4.2.2. Microbial Community Changes during the Test Period
4.3. Impact of Particulates on Wastewater Treatment and Granular Sludge Growth
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nereda® Plants. Available online: https://www.royalhaskoningdhv.com/en-gb/nereda/nereda-plants-a-to-z (accessed on 20 April 2021).
- De Bruin, L.M.M.; de Kreuk, M.K.; van der Roest, H.F.R.; Uijterlinde, C.; van Loosdrecht, M.C.M. Aerobic Granular Sludge Technology: An Alternative to Activated Sludge? Water Sci. Technol. 2004, 49, 1–7. [Google Scholar] [CrossRef]
- De Amorim de Carvalho, C.; Ferreira dos Santos, A.; Tavares Ferreira, T.J.; Sousa Aguiar Lira, V.N.; Mendes Barros, A.R.; Bezerra dos Santos, A.B. Resource recovery in aerobic granular sludge systems: Is it feasible or still a long way to go? Chemosphere 2021, 274, 129881. [Google Scholar] [CrossRef] [PubMed]
- Pronk, M.; de Kreuk, M.; de Bruin, B.; Kamminga, P.; Kleerebezem, R.; van Loosdrecht, M. Full scale performance of the aerobic granular sludge process for sewage treatment. Water Res. 2015, 84, 207–217. [Google Scholar] [CrossRef]
- de Kreuk, M.; Heijnen, J.; van Loosdrecht, M. Simultaneous COD, nitrogen, and phosphate removal by aerobic granular sludge. Biotechnol. Bioeng. 2005, 90, 761–769. [Google Scholar] [CrossRef]
- De Kreuk, M.; Van Loosdrecht, M. Selection of slow growing organisms as a means for improving aerobic granular sludge stability. Water Sci. Technol. 2004, 49, 9–17. [Google Scholar] [CrossRef]
- Sophonsiri, C.; Morgenroth, E. Chemical composition associated with different particle size fractions in municipal, industrial, and agricultural wastewaters. Chemosphere 2004, 55, 691–703. [Google Scholar] [CrossRef]
- Karahan, Ö.; Dogruel, S.; Dulekgurgen, E.; Orhon, D. COD fractionation of tannery wastewaters—Particle size distribution, biodegradability and modeling. Water Res. 2008, 42, 1083–1092. [Google Scholar] [CrossRef]
- Ravndal, K.T.; Opsahl, E.; Bagi, A.; Kommedal, R. Wastewater characterisation by combining size fractionation, chemical composition and biodegradability. Water Res. 2017, 131, 151–160. [Google Scholar] [CrossRef] [Green Version]
- Morgenroth, E.; Kommedal, R.; Harremoës, P. Processes and Modelling of Hydrolysis of Particulate Organic Matter in Aerobic Wastewater Treatment—A Review. Water Sci. Technol. 2002, 45, 25–40. [Google Scholar] [CrossRef]
- Henze, M.; Grady, C.P.L.; Gujer, W.; van Marais, G.R.; Matsuo, T. Activated Sludge Model No.1; IWA Publishing: London, UK, 1986. [Google Scholar]
- Gujer, W.; Henze, M.; Mino, T.; van Loosdrecht, M. Activated Sludge Model No. 3. Water Sci. Technol. 1999, 39, 183–193. [Google Scholar] [CrossRef]
- Fr/olund, B.; Griebe, T.; Nielsen, P.H. Enzymatic activity in the activated-sludge floc matrix. Appl. Microbiol. Biotechnol. 1995, 43, 755–761. [Google Scholar] [CrossRef]
- Goel, R.; Mino, T.; Satoh, H.; Matsuo, T. Comparison of hydrolytic enzyme systems in pure culture and activated sludge under different electron acceptor conditions. Water Sci. Technol. 1998, 37, 335–343. [Google Scholar] [CrossRef]
- Karahan, Ö.; Martins, A.; Orhon, D.; Van Loosdrecht, M.C.; Özgün, O.K. Experimental evaluation of starch utilization mechanism by activated sludge. Biotechnol. Bioeng. 2006, 93, 964–970. [Google Scholar] [CrossRef]
- Martins, A.M.; Karahan, Ö.; van Loosdrecht, M.C. Effect of polymeric substrate on sludge settleability. Water Res. 2011, 45, 263–273. [Google Scholar] [CrossRef]
- Mosquera-Corral, A.; Montràs, A.; Heijnen, J.; van Loosdrecht, M. Degradation of polymers in a biofilm airlift suspension reactor. Water Res. 2003, 37, 485–492. [Google Scholar] [CrossRef]
- Schwarzenbeck, N.; Borges, J.M.; Wilderer, P.A. Treatment of dairy effluents in an aerobic granular sludge sequencing batch reactor. Appl. Microbiol. Biotechnol. 2005, 66, 711–718. [Google Scholar] [CrossRef]
- de Kreuk, M.; Kishida, N.; Tsuneda, S.; van Loosdrecht, M. Behavior of polymeric substrates in an aerobic granular sludge system. Water Res. 2010, 44, 5929–5938. [Google Scholar] [CrossRef]
- Picioreanu, C.; van Loosdrecht, M.C.; Heijnen, J.J. Effect of diffusive and convective substrate transport on biofilm structure formation: A two-dimensional modeling study. Biotechnol. Bioeng. 2000, 69, 504–515. [Google Scholar] [CrossRef]
- Derlon, N.; Wagner, J.; da Costa, R.H.R.; Morgenroth, E. Formation of aerobic granules for the treatment of real and low-strength municipal wastewater using a sequencing batch reactor operated at constant volume. Water Res. 2016, 105, 341–350. [Google Scholar] [CrossRef]
- Cetin, E.; Karakas, E.; Dulekgurgen, E.; Ovez, S.; Kolukirik, M.; Yilmaz, G. Effects of high-concentration influent suspended solids on aerobic granulation in pilot-scale sequencing batch reactors treating real domestic wastewater. Water Res. 2018, 131, 74–89. [Google Scholar] [CrossRef]
- Yilmaz, G.; Lemaire, R.; Keller, J.; Yuan, Z. Simultaneous nitrification, denitrification, and phosphorus removal from nutrient-rich industrial wastewater using granular sludge. Biotechnol. Bioeng. 2008, 100, 529–541. [Google Scholar] [CrossRef]
- Morales, N.; Figueroa, M.; Fra-Vázquez, A.; del Río, A.V.; Campos, J.; Mosquera-Corral, A.; Méndez, R. Operation of an aerobic granular pilot scale SBR plant to treat swine slurry. Process. Biochem. 2013, 48, 1216–1221. [Google Scholar] [CrossRef]
- Stes, H.; Caluwé, M.; Dockx, L.; Cornelissen, R.; De Langhe, P.; Smets, I.; Dries, J. Cultivation of aerobic granular sludge for the treatment of food-processing wastewater and the impact on membrane filtration properties. Water Sci. Technol. 2021, 83, 39–51. [Google Scholar] [CrossRef]
- Barrios-Hernández, M.L.; Buenaño-Vargas, C.; García, H.; Brdjanovic, D.; van Loosdrecht, M.C.; Hooijmans, C.M. Effect of the co-treatment of synthetic faecal sludge and wastewater in an aerobic granular sludge system. Sci. Total. Environ. 2020, 741, 140480. [Google Scholar] [CrossRef]
- Layer, M.; Adler, A.; Reynaert, E.; Hernandez, A.; Pagni, M.; Morgenroth, E.; Holliger, C.; Derlon, N. Organic substrate diffusibility governs microbial community composition, nutrient removal performance and kinetics of granulation of aerobic granular sludge. Water Res. X 2019, 4, 100033. [Google Scholar] [CrossRef]
- Haaksman, V.; Mirghorayshi, M.; van Loosdrecht, M.; Pronk, M. Impact of aerobic availability of readily biodegradable COD on morphological stability of aerobic granular sludge. Water Res. 2020, 187, 116402. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater, 21st ed.; American Public Health Association: Washington, DC, USA, 2005. [Google Scholar]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Ortega, S.T.; Pronk, M.; de Kreuk, M.K. Anaerobic hydrolysis of complex substrates in full-scale aerobic granular sludge: Enzymatic activity determined in different sludge fractions. Appl. Microbiol. Biotechnol. 2021, 1–14. [Google Scholar] [CrossRef]
- Albertsen, M.; Karst, S.M.; Ziegler, A.S.; Kirkegaard, R.H.; Nielsen, P.H. Back to Basics—The Influence of DNA Extraction and Primer Choice on Phylogenetic Analysis of Activated Sludge Communities. PLoS ONE 2015, 10, e0132783. [Google Scholar] [CrossRef]
- Feinstein, L.M.; Sul, W.J.; Blackwood, C.B. Assessment of Bias Associated with Incomplete Extraction of Microbial DNA from Soil. Appl. Environ. Microbiol. 2009, 75, 5428–5433. [Google Scholar] [CrossRef] [Green Version]
- Jones, M.D.; Singleton, D.R.; Sun, W.; Aitken, M.D. Multiple DNA Extractions Coupled with Stable-Isotope Probing of Anthracene-Degrading Bacteria in Contaminated Soil. Appl. Environ. Microbiol. 2011, 77, 2984–2991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Amir, A.; McDonald, D.; Navas-Molina, J.A.; Kopylova, E.; Morton, J.T.; Xu, Z.Z.; Kightley, E.P.; Thompson, L.R.; Hyde, E.R.; Gonzalez, A.; et al. Deblur Rapidly Resolves Single-Nucleotide Community Sequence Patterns. mSystems 2017, 2, e00191-16. [Google Scholar] [CrossRef] [Green Version]
- Anderson, M.J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001, 26, 32–46. [Google Scholar] [CrossRef]
- Nierychlo, M.; Andersen, K.S.; Xu, Y.; Green, N.; Jiang, C.; Albertsen, M.; Dueholm, M.S.; Nielsen, P.H. MiDAS 3: An ecosystem-specific reference database, taxonomy and knowledge platform for activated sludge and anaerobic digesters reveals species-level microbiome composition of activated sludge. Water Res. 2020, 182, 115955. [Google Scholar] [CrossRef] [PubMed]
- McMurdie, P.J.; Holmes, S. phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersen, K.S.; Kirkegaard, R.H.; Karst, S.M.; Albertsen, M. Ampvis2: An R Package to Analyse and Visualise 16S RRNA Amplicon Data. bioRxiv 2018, 299537. [Google Scholar] [CrossRef] [Green Version]
- Xia, Y.; Kong, Y.; Nielsen, P.H. In situ detection of protein-hydrolysing microorganisms in activated sludge. FEMS Microbiol. Ecol. 2007, 60, 156–165. [Google Scholar] [CrossRef] [Green Version]
- Coates, J.D.; Ellis, D.J.; Gaw, C.V.; Lovley, D.R. Geothrix fermentans gen. nov., sp. nov., a novel Fe(III)-reducing bacterium from a hydrocarbon-contaminated aquifer. Int. J. Syst. Evol. Microbiol. 1999, 49, 1615–1622. [Google Scholar] [CrossRef] [Green Version]
- Confer, D.R.; Logan, B.E. Location of protein and polysaccharide hydrolytic activity in suspended and biofilm wastewater cultures. Water Res. 1998, 32, 31–38. [Google Scholar] [CrossRef]
- Kommedal, R.; Milferstedt, K.; Bakke, R.; Morgenroth, E. Effects of initial molecular weight on removal rate of dextran in biofilms. Water Res. 2006, 40, 1795–1804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stokholm-Bjerregaard, M.; McIlroy, S.J.; Nierychlo, M.; Karst, S.M.; Albertsen, M.; Nielsen, P.H. A Critical Assessment of the Microorganisms Proposed to be Important to Enhanced Biological Phosphorus Removal in Full-Scale Wastewater Treatment Systems. Front. Microbiol. 2017, 8, 718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saunders, A.; Albertsen, M.; Vollertsen, J.; Nielsen, P.H. The activated sludge ecosystem contains a core community of abundant organisms. ISME J. 2016, 10, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, P.H.; Mielczarek, A.T.; Kragelund, C.; Nielsen, J.L.; Saunders, A.; Kong, Y.; Hansen, A.A.; Vollertsen, J. A conceptual ecosystem model of microbial communities in enhanced biological phosphorus removal plants. Water Res. 2010, 44, 5070–5088. [Google Scholar] [CrossRef] [PubMed]
- Daims, H.; Nielsen, J.L.; Nielsen, P.H.; Schleifer, K.-H.; Wagner, M. In Situ Characterization of Nitrospira -Like Nitrite-Oxidizing Bacteria Active in Wastewater Treatment Plants. Appl. Environ. Microbiol. 2001, 67, 5273–5284. [Google Scholar] [CrossRef] [Green Version]
- Weissbrodt, D.G.; Neu, T.R.; Kuhlicke, U.; Rappaz, Y.; Holliger, C. Assessment of bacterial and structural dynamics in aerobic granular biofilms. Front. Microbiol. 2013, 4, 175. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, P.H.; McIlroy, S.J.; Albertsen, M.; Nierychlo, M. Re-evaluating the microbiology of the enhanced biological phosphorus removal process. Curr. Opin. Biotechnol. 2019, 57, 111–118. [Google Scholar] [CrossRef]
- Ali, M.; Wang, Z.; Salam, K.W.; Hari, A.R.; Pronk, M.; Van Loosdrecht, M.C.M.; Saikaly, P.E. Importance of Species Sorting and Immigration on the Bacterial Assembly of Different-Sized Aggregates in a Full-Scale Aerobic Granular Sludge Plant. Environ. Sci. Technol. 2019, 53, 8291–8301. [Google Scholar] [CrossRef]
- Campo, R.; Sguanci, S.; Caffaz, S.; Mazzoli, L.; Ramazzotti, M.; Lubello, C.; Lotti, T. Efficient carbon, nitrogen and phosphorus removal from low C/N real domestic wastewater with aerobic granular sludge. Bioresour. Technol. 2020, 305, 122961. [Google Scholar] [CrossRef]
- Winkler, M.K.; Kleerebezem, R.; Khunjar, W.O.; de Bruin, B.; van Loosdrecht, M.C. Evaluating the solid retention time of bacteria in flocculent and granular sludge. Water Res. 2012, 46, 4973–4980. [Google Scholar] [CrossRef]
- van Dijk, E.J.; Pronk, M.; van Loosdrecht, M.C. A settling model for full-scale aerobic granular sludge. Water Res. 2020, 186, 116135. [Google Scholar] [CrossRef] [PubMed]
- Schwarzenbeck, N.; Erley, R.; Mc Swain, B.S.; Wilderer, P.A.; Irvine, R.L. Treatment of Malting Wastewater in a Granular Sludge Sequencing Batch Reactor (SBR). Acta Hydrochim. Hydrobiol. 2004, 32, 16–24. [Google Scholar] [CrossRef]
- Drewnowski, J.; Makinia, J. The role of biodegradable particulate and colloidal organic compounds in biological nutrient removal activated sludge systems. Int. J. Environ. Sci. Technol. 2013, 11, 1973–1988. [Google Scholar] [CrossRef] [Green Version]
- How, S.W.; Sin, J.H.; Wong, S.Y.Y.; Lim, P.B.; Aris, A.M.; Ngoh, G.C.; Shoji, T.; Curtis, T.P.; Chua, A.S.M. Characterization of slowly-biodegradable organic compounds and hydrolysis kinetics in tropical wastewater for biological nitrogen removal. Water Sci. Technol. 2020, 81, 71–80. [Google Scholar] [CrossRef]
- Krasnits, E.; Beliavski, M.; Tarre, S.; Green, M. The contribution of suspended solids to municipal wastewater PHA-based denitrification. Environ. Technol. 2013, 35, 313–321. [Google Scholar] [CrossRef]
- Krasnits, E.; Beliavsky, M.; Tarre, S.; Green, M. PHA based denitrification: Municipal wastewater vs. acetate. Bioresour. Technol. 2013, 132, 28–37. [Google Scholar] [CrossRef]
- Layer, M.; Villodres, M.G.; Hernandez, A.; Reynaert, E.; Morgenroth, E.; Derlon, N. Limited simultaneous nitrification-denitrification (SND) in aerobic granular sludge systems treating municipal wastewater: Mechanisms and practical implications. Water Res. X 2020, 7, 100048. [Google Scholar] [CrossRef] [PubMed]
Normal Operation | Test Period | Significance | |
---|---|---|---|
Routine measurements | |||
tCOD [g m−3] | 840 ± 254 | 1456 ± 692 | *** |
TSS [g m−3] | 317 ± 123 | 633 ± 361 | *** |
BOD5 [g m−3] | 341 ± 109 | 537 ± 249 | *** |
TN [g m−3] | 77 ± 21 | 101 ± 39 | *** |
TP [g m−3] | 8 ± 2 | 13 ± 5 | *** |
Q [m3/d] | 4696 ± 2099 | 5229 ± 3418 | |
COD/N [g/g] | 11 ± 3 | 14 ± 4 | *** |
COD/P [g/g] | 101 ± 15 | 117 ± 24 | *** |
Occasional miscellaneous analysis | |||
tCOD [g m−3] | 864 ± 274 | 1713 ± 572 | * |
sCOD [g m−3] | 339 ± 129 | 386 ± 49 | |
Acetate [g COD m−3] | 82 ± 59 | 43 ± 37 | |
Propionate [g COD m−3] | 14 ± 12 | 16 ± 17 | |
Lipids [g COD m−3] | 45 ± 20 | 290 ± 77 | * |
Total carbohydrates [g COD m−3] | 274 ± 155 | 538 ± 125 | |
Total proteins [g COD m−3] | 90 ± 11 | 162 ± 53 | |
Soluble carbohydrates [g COD m−3] | 18 ± 1 | 21 ± 2 | |
Soluble proteins [g COD m−3] | 20 ± 7 | 33 ± 23 |
COD [g m−3] | BOD5 [g m−3] | TN [g m−3] | NH4+-N [g m−3] | NOX-N [g m−3] | PO4-P [g m−3] | TP [g m−3] | TSS [g m−3] | |
---|---|---|---|---|---|---|---|---|
Effluent consent | 7 | 5 | 0.3 | 30 | ||||
Before test period | 26 (±6) | 1.5 (±0.5) | 4.0 (±2.0) | 0.3 (±0.2) | 2.4 (±1.8) | 0.04 (±0.01) | 0.14 (±0.04) | 5.2 (±1.6) |
During test period | 32 (±9) | 2.4 (±1.3) | 3.5 (±1.4) | 0.3 (±0.3) | 1.5 (±0.9) | 0.07 (±0.09) | 0.23 (±0.12) | 5.5 (±1.2) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toja Ortega, S.; Pronk, M.; de Kreuk, M.K. Effect of an Increased Particulate COD Load on the Aerobic Granular Sludge Process: A Full Scale Study. Processes 2021, 9, 1472. https://doi.org/10.3390/pr9081472
Toja Ortega S, Pronk M, de Kreuk MK. Effect of an Increased Particulate COD Load on the Aerobic Granular Sludge Process: A Full Scale Study. Processes. 2021; 9(8):1472. https://doi.org/10.3390/pr9081472
Chicago/Turabian StyleToja Ortega, Sara, Mario Pronk, and Merle K. de Kreuk. 2021. "Effect of an Increased Particulate COD Load on the Aerobic Granular Sludge Process: A Full Scale Study" Processes 9, no. 8: 1472. https://doi.org/10.3390/pr9081472
APA StyleToja Ortega, S., Pronk, M., & de Kreuk, M. K. (2021). Effect of an Increased Particulate COD Load on the Aerobic Granular Sludge Process: A Full Scale Study. Processes, 9(8), 1472. https://doi.org/10.3390/pr9081472