The Role of Sleep Quality and Physical Activity Level on Gait Speed and Brain Hemodynamics Changes in Young Adults—A Dual-Task Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedure
2.3. Instruments and Data Analysis
2.4. Statistical Analysis
3. Results
3.1. Gait Speed and Hemodynamic Changes in the Prefrontal Cortex
3.2. Cognitive Task Performance
3.3. Relationship between Physical Activity and Sleep Quality with Gait Performance and Hemodynamics Response under Single- and Dual-Task Conditions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Macpherson, S.E. Definition: Dual-tasking and multitasking. Cortex A J. Devoted Study Nerv. Syst. Behav. 2018, 106, 313–314. [Google Scholar] [CrossRef] [PubMed]
- Bayot, M.; Dujardin, K.; Tard, C.; Defebvre, L.; Bonnet, C.T.; Allart, E.; Delval, A. The interaction between cognition and motor control: A theoretical framework for dual-task interference effects on posture, gait initiation, gait and turning. Neurophysiol. Clin. 2018, 48, 361–375. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.J.; Mercer, V.S. Dual-Task Methodology: Applications in Studies of Cognitive and Motor Performance in Adults and Children. Pediatr. Phys. Ther. 2001, 13, 133–140. [Google Scholar] [CrossRef]
- Plummer, P.; Eskes, G. Measuring treatment effects on dual-task performance: A framework for research and clinical practice. Front. Hum. Neurosci. 2015, 9, 225. [Google Scholar] [CrossRef] [PubMed]
- Yogev-Seligmann, G.; Hausdorff, J.M.; Giladi, N. The Role of Executive Function and Attention in Gait. Mov. Disord. 2008, 23, 329–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woollacott, M.; Shumway-Cook, A. Attention and the control of posture and gait: A review of an emerging area of research. Gait Posture 2002, 16, 1–14. [Google Scholar] [CrossRef]
- Mirelman, A.; Maidan, I.; Bernad-Elazari, H.; Nieuwhof, F.; Reelick, M.; Giladi, N.; Hausdorff, J.M. Increased frontal brain activation during walking while dual tasking: An fNIRS study in healthy young adults. J. Neuroeng. Rehabil. 2014, 11, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Schabrun, S.M.; Hoorn, W.V.D.; Moorcroft, A.; Greenland, C.; Hodges, P. Texting and Walking: Strategies for Postural Control and Implications for Safety. PLoS ONE 2014, 9, e84312. [Google Scholar] [CrossRef] [Green Version]
- Beurskens, R.; Steinberg, F.; Antoniewicz, F.; Wolff, W.; Granacher, U. Neural Correlates of Dual-Task Walking: Effects of Cognitive versus Motor Interference in Young Adults. Neural Plast. 2016, 2016, 8032180. [Google Scholar] [CrossRef] [Green Version]
- Beurskens, R.; Bock, O. Does the walking task matter? Influence of different walking conditions on dual-task performances in young and older persons. Hum. Mov. Sci. 2013, 32, 1456–1466. [Google Scholar] [CrossRef]
- Júnior, R.C.F.; Porto, J.M.; Marques, N.R.; Magnani, P.E.; de Abreu, D.C.C. The effects of a simultaneous cognitive or motor task on the kinematics of walking in older fallers and non-fallers. Hum. Mov. Sci. 2017, 51, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-C.; Yang, Y.-R.; Tsai, Y.-A.; Wang, R.-Y.; Lu, C.-F. Brain Activation and Gait Alteration During Cognitive and Motor Dual Task Walking in Spectroscopy Study. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 2416–2423. [Google Scholar] [CrossRef] [PubMed]
- Hunter, S.W.; Divine, A.; Frengopoulos, C.; Montero-Odasso, M. A framework for secondary cognitive and motor tasks in dual-task gait testing in people with mild cognitive impairment. BMC Geriatr. 2018, 18, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Fuster, J.M. The Prefrontal Cortex—An Update: Time is of the Essence. Neuron 2001, 30, 319–333. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, M.; Miyai, I.; Ono, T.; Oda, I.; Konishi, I.; Kochiyama, T.; Kubota, K. Prefrontal and premotor cortices are involved in adapting walking and running speed on the treadmill: An optical imaging study. Neuroimage 2004, 23, 1020–1026. [Google Scholar] [CrossRef]
- Bürki, C.N.; Bridenbaugh, S.A.; Reinhardt, J.; Stippich, C.; Kressig, R.W.; Blatow, M. Imaging gait analysis: An fMRI dual task study. Wiley Brain Behav. 2017, 7, e00724. [Google Scholar] [CrossRef] [PubMed]
- Szturm, T.; Kolesar, T.A.; Mahana, B.; Goertzen, A.L.; Hobson, D.E.; Marotta, J.J.; Strafella, A.P.; Ko, J.H. Changes in Metabolic Activity and Gait Function by Dual-Task Cognitive Game-Based Treadmill System in Parkinson’s Disease: Protocol of a Randomized Controlled Trial. Front. Aging Neurosci. 2021, 13, 680270. [Google Scholar] [CrossRef]
- Possti, D.; Fahoum, F.; Sosnik, R.; Giladi, N.; Hausdorff, J.M.; Mirelman, A.; Maidan, I. Changes in the EEG spectral power during dual-task walking with aging and Parkinson’s disease: Initial findings using Event-Related Spectral Perturbation analysis. J. Neurol. 2021, 268, 161–168. [Google Scholar] [CrossRef]
- Herold, F.; Wiegel, P.; Scholkmann, F.; Thiers, A.; Hamacher, D.; Schega, L. Functional near-infrared spectroscopy in movement science: A systematic review on cortical activity in postural and walking tasks. Neurophotonics 2017, 4, 041403. [Google Scholar] [CrossRef] [Green Version]
- Scholkmann, F.; Kleiser, S.; Metz, A.J.; Zimmermann, R.; Pavia, J.M.; Wolf, U.; Wolf, M. A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology. Neuroimage 2014, 85, 6–27. [Google Scholar] [CrossRef]
- Villringer, A.; Chance, B. Non-invasive optical spectroscopy and imaging of human brain function. Trends Neurosci. 1997, 20, 435–442. [Google Scholar] [CrossRef]
- Quaresima, V.; Ferrari, M. Functional Near-Infrared Spectroscopy (fNIRS) for Assessing Cerebral Cortex Function During Human Behavior in Natural/Social Situations: A Concise Review. Organ. Res. Methods 2019, 22, 46–68. [Google Scholar] [CrossRef]
- Bishnoi, A.; Holtzer, R.; Hernandez, M. Brain Activation Changes While Walking in Adults with and without Neurological Disease: Systematic Review Spectroscopy Studies. Brain Sci. 2021, 11, 291. [Google Scholar] [CrossRef] [PubMed]
- Al-Yahya, E.; Dawes, H.; Smith, L.; Dennis, A.; Howells, K.; Cockburn, J. Cognitive motor interference while walking: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2011, 35, 715–728. [Google Scholar] [CrossRef] [PubMed]
- Oniz, A.; Inanc, G.; Taslica, S.; Guducu, C.; Ozgoren, M. Sleep is a Refreshing Process: An fNIRS Study. Front. Hum. Neurosci. 2019, 13, 160. [Google Scholar] [CrossRef]
- Gudberg, C.; Johansen-Berg, H. Sleep and Motor Learning: Implications for Physical Rehabilitation After Stroke. Front. Neurol. 2015, 6, 241. [Google Scholar] [CrossRef] [Green Version]
- Berchicci, M.; Lucci, G.; Di Russo, F. Benefits of physical exercise on the aging brain: The role of the prefrontal cortex. J. Gerontol. A Biol. Sci. Med. Sci. 2013, 68, 1337–1341. [Google Scholar] [CrossRef] [Green Version]
- McMullan, I.I.; Bunting, B.P.; Mcdonough, S.M.; Tully, M.A.; Casson, K. The association between light intensity physical activity with gait speed in older adults (≥50 years). A longitudinal analysis using the English Longitudinal Study of Ageing (ELSA). Aging Clin. Exp. Res. 2020, 32, 2279–2285. [Google Scholar] [CrossRef]
- Willey, J.Z.; Moon, Y.P.; Kulick, E.R.; Cheung, Y.K.; Wright, C.B.; Sacco, R.L.; Elkind, M.S.V. Physical inactivity predicts slow gait speed in an elderly multi-ethnic cohort study: The Northern Manhattan Study (NOMAS). Neuroepidemiology 2017, 49, 24–30. [Google Scholar] [CrossRef]
- Kasović, M.; Štefan, A.; Štefan, L. The Associations Between Objectively Measured Gait Speed and Subjective Sleep Quality in First-Year University Students, According to Gender. Nat. Sci. Sleep 2021, 13, 1663–1668. [Google Scholar] [CrossRef]
- Wang, L.; Zou, B. The Association Between Gait Speed and Sleep Problems Among Chinese Adults Aged 50 and Greater. Front. Neurosci. 2022, 16, 855955. [Google Scholar] [CrossRef] [PubMed]
- Fritz, S.; Lusardi, M. White Paper: ‘Walking Speed: The Sixth Vital Sign. J. Geriatr. Phys. Ther. 2009, 32, 2–5. [Google Scholar] [CrossRef] [Green Version]
- Montero-Odasso, M.; Schapira, M.; Soriano, E.R.; Varela, M.; Kaplan, R.; Camera, L.A.; Mayorga, L.M. Gait Velocity as a Single Predictor of Adverse Events in Healthy Seniors Aged 75 Years and Older. J. Gerontol. 2005, 60, 1304–1309. [Google Scholar] [CrossRef] [Green Version]
- Dyer, A.H.; for the NILVAD Study Group; Lawlor, B.; Kennelly, S.P. Gait speed, cognition and falls in people living with mild-to-moderate Alzheimer disease: Data from NILVAD. BMC Geriatr. 2020, 20, 117. [Google Scholar] [CrossRef] [Green Version]
- Peel, N.M.; Alapatt, L.J.; Jones, L.V.; Hubbard, R.E. The Association Between Gait Speed and Cognitive Status in Community-Dwelling Older People: A Systematic Review and Meta-analysis. J. Gerontol. A Biol. Sci. Med. Sci. 2019, 74, 943–948. [Google Scholar] [CrossRef]
- Bovonsunthonchai, S.; Ariyaudomkit, R.; Susilo, T.E.; Sangiamwong, P.; Puchaphan, P.; Chandee, S.; Richards, J. The impact of different mobile phone tasks on gait behaviour in healthy young adults. J. Transp. Health 2020, 19, 100920. [Google Scholar] [CrossRef]
- Krasovsky, T.; Lanir, J.; Felberbaum, Y.; Kizony, R. Mobile Phone Use during Gait: The Role of Perceived Prioritization and Executive Control. Int. J. Environ. Res. Public Health 2021, 18, 8637. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Sun, Y.; Lang, C.; Wen, Y. The Impact of Using Mobile Phones on Gait Characteristics: A Narrative Review. Appl. Sci. 2022, 12, 5783. [Google Scholar] [CrossRef]
- Crowley, P.; Madeleine, P.; Vuillerme, N. Effects of Mobile Phone Use during Walking: A Review. Crit. Rev. Phys. Rehabil. Med. 2016, 28, 101–119. [Google Scholar] [CrossRef]
- Takeuchi, N.; Mori, T.; Suzukamo, Y.; Tanaka, N.; Izumi, S.-I. Parallel processing of cognitive and physical demands in left and right prefrontal cortices during smartphone use while walking. BMC Neurosci. 2016, 17, 9. [Google Scholar] [CrossRef]
- Wilken, J.M.; Rodriguez, K.M.; Brawner, M.; Darter, B.J. Reliability and minimal detectible change values for gait kinematics and kinetics in healthy adults. Gait Posture 2012, 35, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Ayaz, H.; Izzetoglu, M.; Shewokis, P.A.; Onaral, B. Sliding-window motion artifact rejection for Functional Near-Infrared Spectroscopy. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 31 August–4 September 2010; pp. 6567–6570. [Google Scholar]
- Izzetoglu, M.; Chitrapu, P.; Bunce, S.; Onaral, B. Motion artifact cancellation in NIR spectroscopy using discrete Kalman filtering. Biomed. Eng. Online 2010, 9, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herold, F.; Wiegel, P.; Scholkmann, F.; Müller, N.G. Applications of Functional Near-Infrared Spectroscopy (fNIRS) Neuroimaging in Exercise–Cognition Science: A Systematic, Methodology-Focused Review. J. Clin. Med. 2018, 7, 466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buysse, D.J.; Reynolds, C.F., III; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The Pittsburgh Sleep Quality Index: A new instrument for psychiatric practice and research. Psychiatry Res. 1998, 28, 193–213. [Google Scholar] [CrossRef]
- João, K.A.D.R.; Becker, N.B.; Jesus, S.D.N.; Martins, R.I.S. Validation of the Portuguese version of the Pittsburgh Sleep Quality Index (PSQI-PT). Psychiatry Res. 2017, 247, 225–229. [Google Scholar] [CrossRef] [PubMed]
- Backhaus, J.; Junghanns, K.; Broocks, A.; Riemann, D.; Hohagen, F. Test-retest reliability and validity of the Pittsburgh Sleep Quality Index in primary insomnia. J. Psychosom. Res. 2002, 53, 737–740. [Google Scholar] [CrossRef]
- Bertolazi, A.N.; Fagondes, S.C.; Hoff, L.S.; Dartora, E.G.; Miozzo, I.C.D.S.; de Barba, M.E.F.; Barreto, S.S.M. Validation of the Brazilian Portuguese version of the Pittsburgh Sleep Quality Index. Sleep Med. 2011, 12, 70–75. [Google Scholar] [CrossRef] [Green Version]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.L.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-Country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [Green Version]
- IPAQ Group. Guidelines for Data Processing Analysis of the International Physical Activity Questionnaire (IPAQ)-Short and Long Forms. 2005. Available online: http://www.ipaq.ki.se (accessed on 14 November 2022).
- Scholkmann, F.; Gerber, U.; Wolf, M.; Wolf, U. End-tidal CO2: An important parameter for a correct interpretation in functional brain studies using speech tasks. Neuroimage 2013, 66, 71–79. [Google Scholar] [CrossRef]
- Vitorio, R.; Stuart, S.; Rochester, L.; Alcock, L.; Pantall, A. Neuroscience and Biobehavioral Reviews fNIRS response during walking—Artefact or cortical activity ? A systematic review. Neurosci. Biobehav. Rev. 2017, 83, 160–172. [Google Scholar] [CrossRef]
- Paas, F.G.W.C.; Van Merrienboer, J.J.G. Variability of Worked Examples and Transfer of Geometrical Problem-Solving Skills: A Cognitive-Load Approach. J. Educ. Psychol. 1994, 86, 122–133. [Google Scholar] [CrossRef]
- Möhring, W.; Urfer-Maurer, N.; Brand, S.; Holsboer-Trachsler, E.; Weber, P.; Grob, A.; Lemola, S. The association between sleep and dual-task performance in preterm and full-term children: An exploratory study. Sleep Med. 2019, 55, 100–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agmon, M.; Shochat, T.; Kizony, R. Sleep quality is associated with walking under dual-task, but not single-task performance. Gait Posture 2016, 49, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Kirilina, E.; Jelzow, A.; Heine, A.; Niessing, M.; Wabnitz, H.; Brühl, R.; Ittermann, B.; Jacobs, A.M.; Tachtsidis, I. The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy. Neuroimage 2012, 61, 70–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, F.; Boros, S. The effect of physical activity on sleep quality: A systematic review. Eur. J. Physiother. 2021, 23, 11–18. [Google Scholar] [CrossRef]
- Nasar, J.L.; Troyer, D. Pedestrian injuries due to mobile phone use in public places. Accid. Anal. Prev. 2013, 57, 91–95. [Google Scholar] [CrossRef]
- Haolan, Z.; Campbell, I.M.; Giang, W.C. Phone-Related Distracted Walking Injuries as a Function of Age and Walking Environment. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2021, 65, 611–615. [Google Scholar] [CrossRef]
- Pang, M.Y.C.; Yang, L.; Ouyang, H.; Lam, F.M.H.; Huang, M.; Jehu, D.A. Dual-Task Exercise Reduces Cognitive-Motor Interference in Walking and Falls After Stroke. Stroke 2018, 49, 2990–2998. [Google Scholar] [CrossRef]
Variables | Sample n = 18 |
---|---|
Age (years) | 24.11 ± 4.11 |
Height (m) | 1.74 ± 0.07 |
Body mass (Kg) | 79.92 ± 14.24 |
Body Mass Index (Kg/m2) | 26.36 ± 4.13 |
Outcomes | Single Motor Task | Cog-DT | p-Value 1 |
---|---|---|---|
Gait speed (m/s) | 1.05 (0.94–1.18) | 0.95 (0.90–1.10) | 0.006 * |
[oxy-Hb] (μ mol/L) | 0.18 (−0.41–0.73) | 0.30 (−0.57–0.73) | 0.501 |
[deoxy-Hb] (μ mol/L) | −1.09 (−1.27–(−0.31)) | −1.41 (−2.02–(−0.79)) | 0.039 * |
Hb-diff (μ mol/L) | 0.92 (0.22–1.59) | 1.27 (0.54–2.80) | 0.039 * |
Outcomes | IPAQ-SF Total Score | PSQI Total Score | ||
---|---|---|---|---|
Spearman’s Rho | p-Value | Spearman’s Rho | p-Value | |
cog-DT [oxy-Hb] | 0.392 | 0.119 | 0.326 | 0.202 |
cog-DT [deoxy-Hb] | −0.100 | 0.701 | −0.258 | 0.318 |
cog-DT Hb-diff | 0.235 | 0.363 | 0.522 | 0.032 |
mot-ST [oxy-Hb] | 0.109 | 0.688 | 0.002 | 0.996 |
mot-ST [deoxy-Hb] | 0.156 | 0.564 | −0.294 | 0.269 |
mot-ST Hb-diff | 0.085 | 0.753 | 0.253 | 0.344 |
Gait speed: cog-DT | −0.243 | 0.348 | 0.301 | 0.241 |
Gait speed: mot-ST | −0.191 | 0.462 | 0.133 | 0.610 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saraiva, M.; Castro, M.A.; Vilas-Boas, J.P. The Role of Sleep Quality and Physical Activity Level on Gait Speed and Brain Hemodynamics Changes in Young Adults—A Dual-Task Study. Eur. J. Investig. Health Psychol. Educ. 2022, 12, 1673-1681. https://doi.org/10.3390/ejihpe12110117
Saraiva M, Castro MA, Vilas-Boas JP. The Role of Sleep Quality and Physical Activity Level on Gait Speed and Brain Hemodynamics Changes in Young Adults—A Dual-Task Study. European Journal of Investigation in Health, Psychology and Education. 2022; 12(11):1673-1681. https://doi.org/10.3390/ejihpe12110117
Chicago/Turabian StyleSaraiva, Marina, Maria António Castro, and João Paulo Vilas-Boas. 2022. "The Role of Sleep Quality and Physical Activity Level on Gait Speed and Brain Hemodynamics Changes in Young Adults—A Dual-Task Study" European Journal of Investigation in Health, Psychology and Education 12, no. 11: 1673-1681. https://doi.org/10.3390/ejihpe12110117
APA StyleSaraiva, M., Castro, M. A., & Vilas-Boas, J. P. (2022). The Role of Sleep Quality and Physical Activity Level on Gait Speed and Brain Hemodynamics Changes in Young Adults—A Dual-Task Study. European Journal of Investigation in Health, Psychology and Education, 12(11), 1673-1681. https://doi.org/10.3390/ejihpe12110117