Lithium Extraction from Salt Lake Brine with High Mass Ratio of Mg/Li Using TBP-DIBK Extraction System
Abstract
:1. Introduction
2. Experimental
2.1. Chemicals and Instruments
2.2. Experiments Data
2.3. Experiments Analysis
3. Results and Discussion
3.1. Determination of Experiment Parameters
3.1.1. Effect of HCl Concentration in Aqueous Solution
3.1.2. Effect of Concentration of TBP and DIBK in Organic Phase
3.1.3. Effect of the Molar Ratio of Fe/Li
3.1.4. The Effect of the Phase Ratio of O/A
3.1.5. Determination of Scrubbing Condition
3.1.6. Optimization of Stripping Condition
3.1.7. Investigation of Regeneration Condition
3.2. Counter-Current Extraction Experiments
3.3. The Analysis of FTIR Spectrum
3.4. The Study of Thermodynamics Parameters
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, Y.; Sun, W.; Xu, R.; Wang, L.; Tang, H. Lithium extraction from water lithium resources through green electrochemical-battery approaches: A comprehensive review. J. Clean. Prod. 2021, 285, 124905. [Google Scholar] [CrossRef]
- Bosch, P.; Contreras, J.P.; Munizaga-Rosas, J.; Saavedra-Rosas, J. Feasibility and cost minimisation for a lithium extraction problem. Comput. Oper. Res. 2020, 115, 104724. [Google Scholar] [CrossRef]
- Lei, S.; Sun, W.; Yang, Y. Solvent extraction for recycling of spent lithium-ion batteries. J. Hazard. Mater. 2022, 424, 127654. [Google Scholar] [CrossRef] [PubMed]
- Wesselborg, T.; Virolainen, S.; Sainio, T. Recovery of lithium from leach solutions of battery waste using direct solvent extraction with TBP and FeCl3. Hydrometallurgy 2021, 202, 105593. [Google Scholar] [CrossRef]
- Xiao, J.; Jia, Y.; Shi, C.; Wang, X.; Yao, Y.; Jing, Y. Liquid-liquid extraction separation of lithium isotopes by using room-temperature ionic liquids-chloroform mixed solvent system contained benzo-15-crown-5. J. Mol. Liq. 2016, 223, 1032–1038. [Google Scholar] [CrossRef]
- Masmoudi, A.; Zante, G.; Trébouet, D.; Barillon, R.; Boltoeva, M. Solvent extraction of lithium ions using benzoyltrifluoroacetone in new solvents. Sep. Purif. Technol. 2021, 255, 117653. [Google Scholar] [CrossRef]
- Liu, C.; Lin, J.; Cao, H.; Zhang, Y.; Sun, Z. Recycling of spent lithium-ion batteries in view of lithium recovery: A critical review. J. Clean. Prod. 2019, 228, 801–813. [Google Scholar] [CrossRef]
- Sterba, J.; Krzemień, A.; Fernández, P.R.; García-Miranda, C.E.; Valverde, G.F. Lithium mining: Accelerating the transition to sustainable energy. Resour. Policy 2019, 62, 416–426. [Google Scholar] [CrossRef]
- Kuang, G.; Liu, Y.; Li, H.; Xing, S.; Li, F.; Guo, H. Extraction of lithium from β-spodumene using sodium sulfate solution. Hydrometallurgy 2018, 177, 49–56. [Google Scholar] [CrossRef]
- Ooi, K.; Sonoda, A.; Makita, Y.; Chitrakar, R.; Tasaki-Handa, Y.; Nakazato, T. Recovery of lithium from salt-brine eluates by direct crystallization as lithium sulfate. Hydrometallurgy 2017, 174, 123–130. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, Y.; Wang, L.; Sun, W. Systematic review of lithium extraction from salt-lake brines via precipitation approaches. Miner. Eng. 2019, 139, 105868. [Google Scholar] [CrossRef]
- Melnikov, S.; Sheldeshov, N.; Zabolotsky, V.; Loza, S.; Achoh, A. Pilot scale complex electrodialysis technology for processing a solution of lithium chloride containing organic solvents. Sep. Purif. Technol. 2017, 189, 74–81. [Google Scholar] [CrossRef]
- Zante, G.; Boltoeva, M.; Masmoudi, A.; Barillon, R.; Trébouet, D. Lithium extraction from complex aqueous solutions using supported ionic liquid membranes. J. Membr. Sci. 2019, 580, 62–76. [Google Scholar] [CrossRef]
- Zhu, X.; Yue, H.; Sun, W.; Zhang, L.; Cui, Q.; Wang, H. Study on adsorption extraction process of lithium ion from West Taijinar brine by shaped titanium-based lithium ion sieves. Sep. Purif. Technol. 2021, 274, 119099. [Google Scholar] [CrossRef]
- Xue, F.; Wang, B.; Chen, M.; Yi, C.; Ju, S.; Xing, W. Fe3O4-doped lithium ion-sieves for lithium adsorption and magnetic separation. Sep. Purif. Technol. 2019, 228, 115750. [Google Scholar] [CrossRef]
- Li, H.-F.; Li, L.-J.; Peng, X.-W.; Ji, L.-M.; Li, W. Extraction kinetics of lithium from salt lake brine by N,N-bis(2-ethylhexyl) acetamide using Lewis Cell. Hydrometallurgy 2018, 178, 84–87. [Google Scholar] [CrossRef]
- Li, H.-f.; Li, L.-j.; Li, W. The extraction rules investigation of mental (Li, Na, K, Mg, Ca) ion in salt lake brine by TBP-FeCl3 extraction system. Chem. Phys. Lett. 2021, 763, 138249. [Google Scholar] [CrossRef]
- Li, H.-f.; Li, L.-j.; Li, W.; Zhou, Y.-q. The key factors and mechanism study on lithium extraction by TBP-FeCl3 extraction system. Chem. Phys. Lett. 2020, 754, 137740. [Google Scholar] [CrossRef]
- Shi, D.; Cui, B.; Li, L.; Peng, X.; Zhang, L.; Zhang, Y. Lithium extraction from low-grade salt lake brine with ultrahigh Mg/Li ratio using TBP–kerosene–FeCl3 system. Sep. Purif. Technol. 2019, 211, 303–309. [Google Scholar] [CrossRef]
- Zhang, L.; Li, L.; Shi, D.; Li, J.; Peng, X.; Nie, F. Selective extraction of lithium from alkaline brine using HBTA-TOPO synergistic extraction system. Sep. Purif. Technol. 2017, 188, 167–173. [Google Scholar] [CrossRef]
- Shi, D.; Zhang, L.; Peng, X.; Li, L.; Song, F.; Nie, F.; Ji, L.; Zhang, Y. Extraction of lithium from salt lake brine containing boron using multistage centrifuge extractors. Desalination 2018, 441, 44–51. [Google Scholar] [CrossRef]
- Ji, L.; Hu, Y.; Li, L.; Shi, D.; Li, J.; Nie, F.; Song, F.; Zeng, Z.; Sun, W.; Liu, Z. Lithium Extraction with a Synergistic System of Dioctyl Phthalate and Tributyl Phosphate in Kerosene and FeCl3. Hydrometallurgy 2016, 162, 71–78. [Google Scholar] [CrossRef]
- Li, H.-F.; Li, L.-J.; Ji, L.-M.; Peng, X.-W.; Li, W. The extraction ability and mechanism in extraction lithium by several organic extractants. Chem. Phys. Lett. 2019, 733, 136668. [Google Scholar] [CrossRef]
- Li, H.; Li, L.; Peng, X.; Ji, L.; Li, W. Selective recovery of lithium from simulated brine using different organic synergist. Chin. J. Chem. Eng. 2019, 27, 335–340. [Google Scholar] [CrossRef]
Abbreviate | Purity | Manufacturers |
---|---|---|
LiCl·H2O | >97% | China Pharmaceutical Group Chemical Reagent Co. |
MgCl2·6H2O | >98% | China Pharmaceutical Group Chemical Reagent Co. |
FeCl3·6H2O | >99% | China Pharmaceutical Group Chemical Reagent Co. |
HCl | A.R. | Silver ring Chemical Reagent Co. |
NaOH | >98% | Tianjin Kemi’ou Chemical Reagent Co. |
Kerosene | 260# | Beijing Sinopec Chemical Reagent Co. |
TBP | >99% | China Pharmaceutical Group Chemical Reagent Co. |
DIBK | >97% | Aladdin Chemical Reagent Co. |
Ions | Li+ | Mg2+ | Na+ | K+ | Ca2+ | SO42− | Cl− | B |
---|---|---|---|---|---|---|---|---|
(mol/L) | 0.328 | 4.94 | 0.0736 | 0.0166 | <0.001 | 0.236 | 9.34 | 0.177 |
Abbreviate | Model | Manufacturers |
---|---|---|
Shaker | SR-2DW | TAITEC |
Centrifuge ICP-AES | TDL-40B-W ICAP6500 | Shanghai Anting Scientific Instrument Factory America Thermo Scientific |
FT-IR | 670 | Thermo Nicolet Corporation, Madison |
Section | Stages | Organic Phase | Aqueous Phase | Phase Ratio |
---|---|---|---|---|
Extraction | 3 | 35% TBP + 35% DIBK | Brine | 2/1 |
Scrubbing | 1 | 5.5 mol/LLiCl + 0.5 mol/L HCl | 15/1 | |
Stripping | 1 | 6 mol/L HCl | 5/1 | |
saturated MgCl2 | 50/1 | |||
Regeneration | 3 | 2 mol/L NaOH | 10/1 | |
saturated MgCl2 | 50/1 |
Cycle | E (Li+) (%) | DLi/DNa | DLi/DK | DLi/DCa | DLi/DMg |
---|---|---|---|---|---|
10 | 99.90 | 3.659 × 102 | 2.159 × 103 | 3.104 × 102 | 5.215 × 104 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Li, L.; Li, W. Lithium Extraction from Salt Lake Brine with High Mass Ratio of Mg/Li Using TBP-DIBK Extraction System. Separations 2023, 10, 24. https://doi.org/10.3390/separations10010024
Li H, Li L, Li W. Lithium Extraction from Salt Lake Brine with High Mass Ratio of Mg/Li Using TBP-DIBK Extraction System. Separations. 2023; 10(1):24. https://doi.org/10.3390/separations10010024
Chicago/Turabian StyleLi, Huifang, Lijuan Li, and Wu Li. 2023. "Lithium Extraction from Salt Lake Brine with High Mass Ratio of Mg/Li Using TBP-DIBK Extraction System" Separations 10, no. 1: 24. https://doi.org/10.3390/separations10010024
APA StyleLi, H., Li, L., & Li, W. (2023). Lithium Extraction from Salt Lake Brine with High Mass Ratio of Mg/Li Using TBP-DIBK Extraction System. Separations, 10(1), 24. https://doi.org/10.3390/separations10010024