Optimization of Steam Distillation Process for Volatile Oils from Forsythia suspensa and Lonicera japonica according to the Concept of Quality by Design
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Steam Distillation
2.3. Determination of the Volatile Oil Content in F. suspensa
2.4. Determination of β-Pinene Content in F. suspensa
2.4.1. Preparation of Reference Solution and Test Solution
2.4.2. Chromatographic Conditions
2.4.3. Methodological Validation
2.4.4. Determination of Content
2.5. Optimization of Distillation Process Parameters
2.6. Analysis of Chemical Constituents of Volatile Oil
2.7. Data Processing
2.7.1. Mathematical Model
2.7.2. Design Space
3. Results
3.1. Single-Factor Experiments
3.2. Methodological Validation
3.3. Characterization of Raw Material Properties of Different Batches of F. suspensa
3.4. Optimization of Distillation Parameters of Volatile Oil
3.4.1. Data Processing and Model Fitting
3.4.2. Contour Diagram
3.4.3. Design Space Calculation and Verification
3.5. Qualitative Analysis of Chemical Constituents of Volatile Oil
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China; China Medical Science and Technology Publishing House: Beijing, China, 2020. [Google Scholar]
- Liu, X.; Li, C.; Xue, J. Research progress on main active components and pharmacological effects of honeysuckle. J. Xinxiang Med. Univ. 2021, 38, 992–995. [Google Scholar]
- Tian, D.; Shi, M.; Wang, Y. Volatile Oil from Forsythia suspense: Chemical Constituents and Pharmacological Effects. Nat. Prod. Res. Dev. 2018, 30, 1834–1842. [Google Scholar]
- Xia, W.; Yu, Y.; Yang, H.; Tan, Z.; Xu, L.; Dong, W.; Lu, H.; Luo, F.; Liang, H. Research Advances on Chemical Constituent and Pharmacology Effects of Honeysuckle. J. Anhui Agric. Sci. 2017, 45, 126–127+165. [Google Scholar]
- Wang, Z.; Xia, Q.; Liu, X.; Liu, W.; Huang, W.; Mei, X.; Luo, J.; Shan, M.; Lin, R.; Zou, D.; et al. Phytochemistry, pharmacology, quality control and future research of Forsythia suspensa (Thunb.) Vahl: A review. J. Ethnopharmacol. 2018, 210, 318–339. [Google Scholar] [CrossRef] [PubMed]
- Shao, S.; Zhang, F.; Yang, Y.; Feng, Z.; Jiang, J.; Zhang, P. Neuroprotective and anti-inflammatory phenylethanoidglycosides from the fruits of Forsythia suspensa. Bioorg. Chem. 2021, 113, 105025. [Google Scholar] [CrossRef]
- Tang, X.; Liu, X.; Zhong, J.; Fang, R. Potential Application of Lonicera japonica Extracts in Animal Production: From the Perspective of Intestinal Health. Front. Microbiol. 2021, 12, 719877. [Google Scholar] [CrossRef]
- Kaya, D.A.; Ghica, M.V.; Dănilă, E.; Öztürk, Ş.; Türkmen, M.; Kaya, M.G.A.; Dinu-Pîrvu, C.-E. Selection of Optimal Operating Conditions for Extraction of Myrtus Communis L. Essential Oil by the Steam Distillation Method. Molecules 2020, 25, 2399. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Huang, T.; Liao, X.; Zhou, Y.; Chen, S.; Chen, J.; Xiong, W. Extraction of Camphor Tree Essential Oil by Steam Distillation and Supercritical CO2 Extraction. Molecules 2022, 27, 5385. [Google Scholar] [CrossRef]
- Geraci, A.; Stefano, V.D.; Martino, E.D.; Schillaci, D.; Schicchi, R. Essential oil components of orange peels and antimicrobial activity. Nat. Prod. Res. 2017, 31, 653–659. [Google Scholar] [CrossRef]
- Haro-González, J.N.; Castillo-Herrera, G.A.; Martínez-Velázquez, M.; Espinosa-Andrews, H. Clove Essential Oil ( Syzygium aromaticum L. Myrtaceae): Extraction, Chemical Composition, Food Applications, and Essential Bioactivity for Human Health. Molecules 2021, 26, 6387. [Google Scholar] [CrossRef]
- Jeliazkova, E.; Zheljazkov, V.D.; Kačániova, M.; Astatkie, T.; Tekwani, B.L. Sequential Elution of Essential Oil Constituents during Steam Distillation of Hops (Humulus lupulus L.) and Influence on Oil Yield and Antimicrobial Activity. J. Oleo. Sci. 2018, 67, 871–883. [Google Scholar] [CrossRef] [Green Version]
- Romanik, G.; Gilgenast, E.; Przyjazny, A.; Kamiński, M. Techniques of preparing plant material for chromatographic separation and analysis. J. Biochem. Biophys. Methods 2007, 70, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Zhang, X.; Shi, Y.; Guo, D.; Cheng, J.; Cui, C.; Tai, J.; Liang, Y.; Wang, Y.; Wang, M. Kinetic study of extraction of volatile components from turmeric by steam distillation. China J. Tradit. Chin. Med. Pharm. 2020, 35, 1175–1180. [Google Scholar]
- Božović, M.; Navarra, A.; Garzoli, S.; Pepi, F.; Ragno, R. Esential oils extraction: A 24-hour steam distillation systematic methodology. Nat. Prod. Res. 2017, 31, 2387–2396. [Google Scholar] [CrossRef] [PubMed]
- Aziz, Z.A.A.; Ahmad, A.; Setapar, S.H.M.; Karakucuk, A.; Azim, M.M.; Lokhat, D.; Rafatullah, M.; Ganash, M.; Kamal, M.A.; Ashraf, G.M. Essential Oils: Extraction Techniques, Pharmaceutical And Therapeutic Potential - A Review. Curr. Drug Metab. 2018, 19, 1100–1110. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Tian, J.; FU, X.; Fu, C. Technological research on extraction of volatile oil from Lianqiao and inclusion of compunds with β-cyclodextrin. J. Luzhou Med. Coll. 2010, 33, 382–384. [Google Scholar]
- Wang, Y.; Gao, J.; Cui, J.; Wang, F.; Zhang, S.; Yang, Y. Optimization of extraction process of volatile oil from Shanxi Hypericum Perforatum L. and GC-MS analysis of its chemical compositions. Chem. Bioeng. 2016, 33, 28–32. [Google Scholar]
- Gu, K.; Wang, X.; Hu, P.; Li, H.; Wang, H.; Wang, X. Study on the technologies of steam distillation and salting out method for honeysuckle volatile oil extraction. Asia Pac. Tradit. Med. 2020, 16, 55–58. [Google Scholar]
- Li, J.; Ren, M.; Shang, X.; Lian, X.; Wang, H. Extraction of volatile oil from Honeysuckle by distillation and its component analysis. J. Henan Agric. Sci. 2017, 46, 144–148. [Google Scholar]
- Tong, Q.; Zhou, R.; Du, F.; Pei, G.; Peng, F. Study on the extraction technology of volatile oil from honeysuckle. J. Hunan Univ. Chin. Med. 2002, 22, 24–25. [Google Scholar]
- Yu, L.X.; Amidon, G.; Khan, M.A.; Hoag, S.W.; Polli, J.; Raju, G.K.; Woodcock, J. Understanding pharmaceutical quality by design. AAPS J. 2014, 16, 771–783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swain, S.; Parhi, R.; Jena, B.R.; Babu, S.M. Quality by Design: Concept to Applications. Curr. Drug Discov. Technol. 2019, 16, 240–250. [Google Scholar] [CrossRef]
- Kasemiire, A.; Avohou, H.T.; Bleye, C.D.; Sacre, P.-Y.; Dumont, E.; Hubert, P.; Ziemons, E. Design of experiments and design space approaches in the pharmaceutical bioprocess optimization. Eur. J. Pharm. Biopharm. 2021, 166, 144–154. [Google Scholar] [CrossRef] [PubMed]
- Debevec, V.; Srčič, S.; Horvat, M. Scientific, statistical, practical, and regulatory considerations in design space development. Drug Dev. Ind. Pharm. 2018, 44, 349–364. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.; Chen, H.; Pan, J.; Qu, H. Optimization of Panax notoginseng extraction process using a design space approach. Sep. Purif. Technol. 2015, 141, 197–206. [Google Scholar] [CrossRef]
- Tai, Y.; Qu, H.; Gong, X. Design Space Calculation and Continuous Improvement Considering a Noise Parameter: A Case Study of Ethanol Precipitation Process Optimization for Carthami Flos Extract. Separations 2021, 8, 74. [Google Scholar] [CrossRef]
- Chen, T.; Gong, X.; Zhang, Y.; Chen, H.; Qu, H. Optimization of a chromatographic process for the purification of saponins in Panax notoginseng extract using a design space approach. Sep. Purif. Technol. 2015, 154, 309–319. [Google Scholar] [CrossRef]
- Kusuma, H.S.; Mahfud, M. Box-Behnken design for investigation of microwave-assisted extraction of patchouli oil. Conf. Proc. 2015, 1699, 050014. [Google Scholar]
- Wan, N.; Lan, J.; Wu, Z.; Chen, X.; Zheng, Q.; Gong, X. Optimization of Steam Distillation Process and Chemical Constituents of Volatile Oil from Angelicae Sinensis Radix. Separations 2022, 9, 137. [Google Scholar] [CrossRef]
- Chen, Q.; Cao, C.; Wang, L.; He, J. Simultaneous Determination of Seven Components in Blumea balsamifera Oil by HPLC. J. Chin. Med. Mater. 2020, 43, 2189–2193. [Google Scholar]
- Zhao, X.; Zeng, Y.; Zhou, Y.; Li, R.; Yang, M. Gas Chromatography–Mass Spectrometry for Quantitative and Qualitative Analysis of Essential Oil from Curcuma wenyujin Rhizomes. World J. Tradit. Chin. Med. 2021, 7, 138–145. [Google Scholar] [CrossRef]
- Sadgrove, N.J.; Padilla-González, G.F.; Phumthum, M. Fundamental Chemistry of Essential Oils and Volatile Organic Compounds, Methods of Analysis and Authentication. Plants 2022, 11, 789. [Google Scholar] [CrossRef] [PubMed]
- Gong, L.; Jiang, H.; Zhang, H.; Cui, Q.; Rong, R. Analysis of volatile constituents in Forsythia Suspensa by gas chromatography-mass spectrometry. J. Shandong Univ. Tradit. Chin. Med. 2015, 39, 256–257+276. [Google Scholar]
- Dong, M.; Li, Y.; Wang, R.; Ni, Y. Study on volatile oil GC-MS characteristic spectrumin Shanxi Fructus forsythiae. Chin. J. Hosp. Pharm. 2011, 31, 355–357. [Google Scholar]
- Jiang, S.; Wang, M.; Yuan, H.; Xie, Q.; Liu, Y.; Li, B.; Jian, Y.; Liu, C.; Lou, H.; Rahman, A.U.; et al. Medicinal Plant of Bletilla striata: A Review of its Chemical Constituents, Pharmacological Activities, and Quality Control. World J. Tradit. Chin. Med. 2020, 6, 393–407. [Google Scholar]
- Jiang, H.; Wang, X.; Yang, L.; Zhang, J.; Hou, A.; Man, W.; Wang, S.; Yang, B.; Chan, K.; Wang, Q.; et al. The Fruits of Xanthium sibiricum Patr: A Review on Phytochemistry, Pharmacological Activities, and Toxicity. World J. Tradit. Chin. Med. 2020, 6, 408–422. [Google Scholar]
Medicinal Material | Design of Experiment | Material/Liquid Ratio (g:mL) | Soaking Time (h) | Distillation Time (h) | Optimum Conditions | Volatile Oil Yield | Reference |
---|---|---|---|---|---|---|---|
F. suspensa | Taguchi design | 1:8~1:12 | 1~4 | 2~6 | Material/liquid ratio 1:8, soaking time 2 h, distillation time 6 h. | 0.926 mL/100 g | [17] |
F. suspensa | Box–Behnken design | 1:4~1:10 | 8~24 | 8~20 | Material/liquid ratio 1:5, soaking time 21 h, distillation time 11 h. | 0.342 mL/100 g | [18] |
L. japonica | Single-factor design, Box–Behnken design | 1:15~1:25 | 0~5 | 7~11 | Material/liquid ratio 1:20, soaking time 1 h, distillation time 7 h. | 0.14998 g/100 g | [19] |
L. japonica | Single-factor design, Taguchi design | 1:9~1:11 | 20~28 | 38~42 | Material/liquid ratio 1:10, soaking time 28 h, distillation time 42 h | 0.171 g/100 g | [20] |
Medicinal Materials | Number | Origin | Companies |
---|---|---|---|
L. japonica | JYH-1 | Shandong | Zhejiang Huqing Yutang Materia Medica Co., Ltd. |
JYH-2 | Hebei | Hebei Linyitang Pharmaceutical Co., Ltd. | |
F. suspensa | LQ-1 | Shanxi | Haozhou Feimao Pharmaceutical Co., Ltd. |
LQ-2 | Shaanxi | Haozhou Chujian Huakai E-Commerce Co., Ltd. | |
LQ-3 | Shanxi | Nanjing Shangyuantang Pharmaceutical Co., Ltd. | |
LQ-4 | Shaanxi | Anguo Pharmaceutical Source Trading Co., Ltd. | |
LQ-5 | Shanxi | Hebei Linyitang Pharmaceutical Co., Ltd. | |
LQ-6 | Gansu | Sichuan Xunbai Herbal Industry Co., Ltd. |
Factor | Level | ||
---|---|---|---|
Low (−1) | Medium (0) | High (1) | |
X1: water addition (mL/g) | 8 | 10 | 12 |
X2: distillation time (h) | 3.0 | 4.5 | 6.0 |
X3: collection temperature (°C) | 5 | 15 | 25 |
No | X1: Water Addition (mL/g) | X2: Distillation Time (h) | X3: Collection Temperature (°C) | Z1: Volatile Oil Content (mL/100 g) | Z2: β-Pinene Content (mg/g) | Y: Volatile Oil Yield (mL/100 g) |
---|---|---|---|---|---|---|
1 | 8 | 3.0 | 15 | 1.601 | 0.857 | 0.63 |
2 | 12 | 3.0 | 15 | 1.599 | 0.867 | 0.54 |
3 | 8 | 6.0 | 15 | 1.792 | 1.039 | 0.92 |
4 | 12 | 6.0 | 15 | 1.349 | 0.812 | 0.83 |
5 | 8 | 4.5 | 5 | 1.969 | 1.139 | 0.90 |
6 | 12 | 4.5 | 5 | 1.601 | 0.857 | 0.80 |
7 | 8 | 4.5 | 25 | 1.599 | 0.867 | 0.80 |
8 | 12 | 4.5 | 25 | 1.792 | 1.039 | 0.83 |
9 | 10 | 3.0 | 5 | 1.349 | 0.812 | 0.74 |
10 | 10 | 6.0 | 5 | 1.969 | 1.139 | 0.98 |
11 | 10 | 3.0 | 25 | 1.601 | 0.857 | 0.61 |
12 | 10 | 6.0 | 25 | 1.599 | 0.867 | 0.71 |
13 | 10 | 4.5 | 15 | 1.792 | 1.039 | 0.82 |
14 | 10 | 4.5 | 15 | 1.349 | 0.812 | 0.80 |
15 | 10 | 4.5 | 15 | 1.969 | 1.139 | 0.89 |
16 | 10 | 4.5 | 15 | 1.969 | 1.139 | 0.94 |
17 | 10 | 4.5 | 15 | 1.969 | 1.139 | 0.90 |
Factor | Medicine Number | Particle Size | Soaking Time (h) | Water Addition (mL/g) | Distillation (h) | Volatile Oil Yield (mL/100 g) |
---|---|---|---|---|---|---|
Particle size | LQ-5 | Not crushed | 0 | 10 | 5 | 1.900 |
Coarsest flour | 1.820 | |||||
Coarse flour | 1.827 | |||||
Soaking time | LQ-5 | Not crushed | 0 | 10 | 5 | 1.900 |
2 | 1.922 | |||||
4 | 1.952 | |||||
Water addition | LQ-1 | Not crushed | 0 | 8 | 5 | 1.485 |
10 | 1.479 | |||||
12 | 1.350 |
Medicine Number | Water Addition (mL/g) | Distillation Time (h) | Collection Time (°C) | Volatile Oil Yield (mL/100 g) |
---|---|---|---|---|
LQ-5 | 10 | 5 | 5 | 1.864 |
JYH-1 | 10 | 5 | 5 | 0 |
JYH-2 | 10 | 5 | 5 | 0 |
Medicine Number | Water Addition (mL/g) | Distillation Time (h) | Collection Temperature (°C) | Volatile Oil Yield (mL/100 g) | |
---|---|---|---|---|---|
LQ-5 | JYH-2 | 10 | 5 | Indoor temperature | 0.930 |
12 | 5 | Indoor temperature | 0.851 | ||
LQ-1 | JYH-2 | 10 | 5 | 5 | 0.880 |
12 | 5 | 5 | 0.930 |
Medicine Number | Volatile Oil Content (mL/100 g) | β-Pinene Content (mg/100 g) |
---|---|---|
LQ-1 | 1.601 | 0.857 |
LQ-2 | 1.599 | 0.867 |
LQ-3 | 1.792 | 1.039 |
LQ-4 | 1.394 | 0.812 |
LQ-5 | 1.969 | 1.139 |
LQ-6 | 1.500 | 0.746 |
Factor | Y | |
---|---|---|
Coefficient | p Value | |
Constant | 0.2294 | |
X2 | 0.04977 | 0.0067 ** |
Z1 | −0.5199 | 0.0014 ** |
Z2 | 1.325 | 0.0001 ** |
X1X3 | −0.000318 | 0.0139 * |
Model p value | <0.0001 | |
R2 | 0.9022 | |
R2adj | 0.8695 |
No | Retention Time (Min) | IUPAC Name | Common Name | Chemical Formula | Base Peak (m/z) | Relative Content (%) |
---|---|---|---|---|---|---|
1 | 10.14 | Bicyclo [3.1.0]hex-2-ene, 2-methyl-5-(1-methylethyl)- | α-Thujene | C10H16 | 93.20 | 4.25 |
2 | 10.51 | Bicyclo [3.1.1]hept-2-ene, 2,6,6-trimethyl- | α-Pinene | C10H16 | 93.29 | 21.12 |
3 | 11.15 | Bicyclo [2.2.1]heptane, 2,2-dimethyl-3-methylene- | Camphene | C10H16 | 93.20 | 1.62 |
4 | 13.09 | Bicyclo [3.1.1]heptane, 6,6-dimethyl-2-methylene- | β-Pinene | C10H16 | 93.29 | 53.71 |
5 | 14.13 | 1,6-Octadiene, 7-methyl-3-methylene- | β-Myrcene | C10H16 | 93.20 | 1.66 |
6 | 15.49 | 1,3-Cyclohexadiene, 1-methyl-4-(1-methylethyl)- | α-Terpinene | C10H16 | 121.20 | 0.82 |
7 | 16.04 | Benzene, 1-methyl-3-(1-methylethyl)- | m-cymene | C10H14 | 119.20 | 2.38 |
8 | 16.28 | Cyclohexene, 1-methyl-4-(1-methylethenyl)-, (4R)- | (+)-Limonene | C10H16 | 93.20 | 4.36 |
9 | 18.35 | 1,4-Cyclohexadiene, 1-methyl-4-(1-methylethyl)- | γ-Terpinene | C10H16 | 93.20 | 1.96 |
10 | 20.32 | Cyclohexene, 1-methyl-4-(1-methylethylidene)- | Terpinolene | C10H16 | 93.20 | 0.38 |
11 | 23.53 | Bicyclo [3.1.1]heptan-3-ol, 6,6-dimethyl-2-methylene-, (1S,3R,5S)- | (-)-trans-Pinocarveol | C10H16O | 92.20 | 0.32 |
12 | 25.16 | Bicyclo [3.1.1]heptan-3-one, 6,6-dimethyl-2-methylene- | Pinocarvone | C10H14O | 81.20 | 0.18 |
13 | 26.39 | 3-Cyclohexen-1-ol, 4-methyl-1-(1-methylethyl)- | Terpinen-4-ol | C10H18O | 71.20 | 5.97 |
14 | 27.36 | 3-Cyclohexene-1-methanol, α,α,4-trimethyl- | α-Terpineol | C10H18O | 59.20 | 0.40 |
15 | 27.47 | Bicyclo [3.1.1]hept-2-ene-2-carboxaldehyde, 6,6-dimethyl- | Myrtenal | C10H14O | 79.20 | 0.50 |
16 | 27.69 | Bicyclo [3.1.1]hept-2-ene-2-methanol, 6,6-dimethyl- | Myrtenol | C10H16O | 79.20 | 0.39 |
No | Retention Time (Min) | IUPAC Name | Common Name | Chemical Formula | Base Peak (m/z) | Relative Content (%) |
---|---|---|---|---|---|---|
1 | 10.13 | Bicyclo [3.1.0]hex-2-ene, 2-methyl-5-(1-methylethyl)- | α-Thujene | C10H16 | 93.20 | 4.48 |
2 | 10.50 | Bicyclo [3.1.1]hept-2-ene, 2,6,6-trimethyl- | α-Pinene | C10H16 | 93.29 | 21.38 |
3 | 11.15 | Bicyclo [2.2.1]heptane, 2,2-dimethyl-3-methylene- | Camphene | C10H16 | 93.20 | 1.63 |
4 | 13.13 | Bicyclo [3.1.1]heptane, 6,6-dimethyl-2-methylene- | β-Pinene | C10H16 | 93.29 | 54.75 |
5 | 14.13 | 1,6-Octadiene, 7-methyl-3-methylene- | β-Myrcene | C10H16 | 93.20 | 1.56 |
6 | 15.49 | 1,3-Cyclohexadiene, 1-methyl-4-(1-methylethyl)- | α-Terpinene | C10H16 | 121.20 | 1.23 |
7 | 16.03 | Benzene, 1-methyl-3-(1-methylethyl)- | m-cymene | C10H14 | 119.20 | 1.66 |
8 | 16.27 | Cyclohexene, 1-methyl-4-(1-methylethenyl)-, (4R)- | (+)-Limonene | C10H16 | 93.20 | 4.41 |
9 | 18.35 | 1,4-Cyclohexadiene, 1-methyl-4-(1-methylethyl)- | γ-Terpinene | C10H16 | 93.20 | 2.29 |
10 | 20.32 | Cyclohexene, 1-methyl-4-(1-methylethylidene)- | Terpinolene | C10H16 | 93.20 | 0.37 |
11 | 23.53 | Bicyclo [3.1.1]heptan-3-ol, 6,6-dimethyl-2-methylene-, (1S,3R,5S)- | (-)-trans-Pinocarveol | C10H16O | 92.20 | 0.28 |
12 | 25.17 | Bicyclo [3.1.1]heptan-3-one, 6,6-dimethyl-2-methylene- | Pinocarvone | C10H14O | 81.20 | 0.14 |
13 | 26.37 | 3-Cyclohexen-1-ol, 4-methyl-1-(1-methylethyl)- | Terpinen-4-ol | C10H18O | 71.20 | 4.98 |
14 | 27.42 | 3-Cyclohexene-1-methanol, α,α,4-trimethyl- | α-Terpineol | C10H18O | 59.20 | 0.28 |
15 | 27.47 | Bicyclo [3.1.1]hept-2-ene-2-carboxaldehyde, 6,6-dimethyl- | Myrtenal | C10H14O | 79.20 | 0.43 |
16 | 27.70 | Bicyclo [3.1.1]hept-2-ene-2-methanol, 6,6-dimethyl- | Myrtenol | C10H16O | 79.20 | 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Guo, D.; Gong, X.; Wan, N.; Wu, Z. Optimization of Steam Distillation Process for Volatile Oils from Forsythia suspensa and Lonicera japonica according to the Concept of Quality by Design. Separations 2023, 10, 25. https://doi.org/10.3390/separations10010025
Chen X, Guo D, Gong X, Wan N, Wu Z. Optimization of Steam Distillation Process for Volatile Oils from Forsythia suspensa and Lonicera japonica according to the Concept of Quality by Design. Separations. 2023; 10(1):25. https://doi.org/10.3390/separations10010025
Chicago/Turabian StyleChen, Xinying, Dongyun Guo, Xingchu Gong, Na Wan, and Zhenfeng Wu. 2023. "Optimization of Steam Distillation Process for Volatile Oils from Forsythia suspensa and Lonicera japonica according to the Concept of Quality by Design" Separations 10, no. 1: 25. https://doi.org/10.3390/separations10010025
APA StyleChen, X., Guo, D., Gong, X., Wan, N., & Wu, Z. (2023). Optimization of Steam Distillation Process for Volatile Oils from Forsythia suspensa and Lonicera japonica according to the Concept of Quality by Design. Separations, 10(1), 25. https://doi.org/10.3390/separations10010025