Development and Validation of a Stability-Indicating Greener HPTLC Method for the Estimation of Flufenamic Acid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Equipment and Measurement Procedures
2.3. Calibration Curve for FFA
2.4. Sample Processing for the Assay of FFA in Marketed Tablets
2.5. Validation Parameters
2.6. Force Degradation/Selectivity Studies
2.7. Application of the Greener HPTLC Assay in the Determination of FFA in Marketed Tablets
2.8. Greenness Assessment
3. Results and Discussion
3.1. Analytical Method Development
3.2. Analytical Method Validation
3.3. Selectivity/Force Degradation Studies
3.4. Application of Greener HPTLC Assay in the Determination of FFA in Marketed Products
3.5. Greenness Assessment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Acree, W.E., Jr. IUPAC-NIST solubility data series. 102. Solubility of non-steroidal anti-inflammatory drugs (NSAIDs) in neat organic solvents and organic solvent mixtures. J. Phys. Chem. Ref. Data 2014, 43, E023102. [Google Scholar] [CrossRef] [Green Version]
- Perlovich, G.L.; Surov, A.O.; Bauer-Brandl, A. Thermodynamic properties of flufenamic and niflumic acids—Specific and non-specific interactions in solution and in crystal lattices, mechanism of solvation, partitioning and distribution. J. Pharm. Biomed. Anal. 2007, 45, 679–687. [Google Scholar] [CrossRef] [PubMed]
- Alshehri, S.; Shakeel, F.; Ibrahim, M.; Elzayat, E.; Altamimi, M.; Shazly, G.; Mohsin, K.; Alkholief, M.; Alsulays, B.; Alshetaili, A.; et al. Influence of the microwave technology on solid dispersions of mefenamic acid and flufenamic acid. PLoS ONE 2017, 12, E0182011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alshehri, S.; Shakeel, F. Solubility measurement, thermodynamics and molecular interactions of flufenamic acid in different neat solvents. J. Mol. Liq. 2017, 240, 447–453. [Google Scholar] [CrossRef]
- Shakeel, F.; Alshehri, S. Solubilization, Hansen solubility parameters, solution thermodynamics and solvation behavior of flufenamic acid in (Carbitol + water) mixtures. Processes 2020, 8, E1204. [Google Scholar] [CrossRef]
- Albero, M.I.; Sanchez-Pedreno, C.; Garcia, M.S. Flow-injection spectrofluorimetric determination of flufenamic and mefenamic acid in pharmaceuticals. J. Pharm. Biomed. Anal. 1995, 13, 1113–1117. [Google Scholar] [CrossRef]
- Aly, F.A.; Al-Tamimi, S.A.; Alwarthan, A.A. Determination of flufenamic acid and mefenamic acid in pharmaceutical preparations and biological fluids using flow injection analysis with tris(2,20-bipyridyl)ruthenium(II) chemiluminescence detection. Anal. Chim. Acta 2000, 416, 87–96. [Google Scholar] [CrossRef]
- Kubo, O.; Nishide, K.; Kiriyama, N. Quantitative determination of flufenamic acid and its major metabolites in plasma by high-performance liquid chromatography. J. Chromatogr. 1979, 174, 254–257. [Google Scholar] [CrossRef]
- Papadoyannis, L.N.; Zotou, A.C.; Samanidou, V.F. Simultaneous reversed-phase gradient-HPLC analysis of anthranilic acid derivatives in anti-inflammatory drugs and samples of biological interest. J. Liq. Chromatogr. 1992, 15, 1923–1945. [Google Scholar] [CrossRef]
- Cerretani, D.; Micheli, L.; Fiaschi, A.I.; Giorgi, G. High-performance liquid chromatography of flufenamic acid in rat plasma. J. Chromatogr. B. 1996, 678, 365–368. [Google Scholar] [CrossRef]
- Mikami, E.; Goto, T.; Ohno, T.; Matsumoto, H.; Inagaki, K.; Ishihara, H.; Nishida, M. Simultaneous analysis of anthranilic acid derivatives in pharmaceuticals and human urine by high-performance liquid chromatography with isocratic elution. J. Chromatogr. B. 2000, 744, 81–89. [Google Scholar] [CrossRef]
- Abdel-Hamid, M.E.; Novotny, L.; Hamza, H. Determination of diclofenac sodium, flufenamic acid, indomethacin and ketoprofen by LC-APCI-MS. J. Pharm. Biomed. Anal. 2001, 24, 587–594. [Google Scholar] [CrossRef] [PubMed]
- Hoshina, K.; Horiyama, S.; Matsunaga, H.; Haginaka, J. Simultaneous determination of non-steroidal anti-inflammatory drugs in river water samples by liquid chromatography–tandem mass spectrometry using molecularly imprinted polymers as a pretreatment column. J. Pharm. Biomed. Anal. 2011, 55, 916–922. [Google Scholar] [CrossRef] [PubMed]
- Bettaieb, L.; Aaron, J.-J. Photochemically-induced fluorescence properties and determination of flufenamic acid, a non-steroidal anti-inflammatory drug, in urine and pharmaceutical preparation. Turk. J. Chem. 2001, 25, 165–171. [Google Scholar]
- Lopez-Flores, J.; Cordova, M.L.F.-D.; Molina-Diaz, A. Multicommutated flow-through optosensors implemented with photochemically induced fluorescence: Determination of flufenamic acid. Anal. Biochem. 2007, 361, 280–286. [Google Scholar] [CrossRef]
- Amor-Garcia, I.; Blanco-Lopez, M.C.; Lobo-Castenan, M.J.; Miranda-Ordieres, A.J.; Tunon-Blanco, P. Flufenamic acid determination in human serum by adsorptive voltammetry with in situ surfactant modified carbon paste electrodes. Electroanalysis 2005, 17, 1555–1562. [Google Scholar] [CrossRef]
- Perez-Ruiz, T.; Martinez-Lozano, C.; Sanz, A.; Bravo, E. Determination of flufenamic, meclofenamic and mefenamic acids by capillary electrophoresis using beta-cyclodextrin. J. Chromatogr. B. 1998, 708, 249–256. [Google Scholar] [CrossRef]
- Polasek, M.; Pospisilova, M.; Urbanek, M. Capillary isotachophoretic determination of flufenamic, mefenamic, niflumic and tolfenamic acid in pharmaceuticals. J. Pharm. Biomed. Anal. 2000, 23, 135–142. [Google Scholar] [CrossRef]
- Cotellessa, L.; Riva, R.; Salva, P.; Marcucci, F.; Mussini, A. Quantitative determination of flufenamic acid in rat plasma and uterus by gas chromatography. J. Chromatogr. 1980, 192, 441–445. [Google Scholar] [CrossRef]
- Umesh, N.M.; Rani, K.K.; Wang, S.-F.; Sireesha, P.; Amalraj, A.J.J. A novel amperometric determination of flufenamic acid using CuMOF ribbons incorporated with activated carbon. New J. Chem. 2020, 44, 12586–12594. [Google Scholar] [CrossRef]
- Kokulnathan, T.; Wang, T.-J.; Kumar, E.A.; Liu, Z.-Y. Zinc manganate: Synthesis, characterization, and electrochemical application toward flufenamic acid detection. Inorg. Chem. 2021, 60, 4723–4732. [Google Scholar] [PubMed]
- Pulgarin, J.A.M.; Molina, A.A.; Ferreras, F.M. Simultaneous determination of mefenamic and flufenamic acids in real samples by terbium-sensitized luminescence. Anal. Lett. 2012, 45, 2807–2822. [Google Scholar] [CrossRef]
- Abdelrahman, M.M.; Abdelwahab, N.S.; Hegazy, M.A.; Fares, M.Y.; El-Sayed, G.M. Determination of the abused intravenously administered madness drops (tropicamide) by liquid chromatography in rat plasma; an application to pharmacokinetic study and greenness profile assessment. Microchem. J. 2020, 159, E105582. [Google Scholar] [CrossRef]
- Duan, X.; Liu, X.; Dong, Y.; Yang, J.; Zhang, J.; He, S.; Yang, F.; Wang, Z.; Dong, Y. A green HPLC method for determination of nine sulfonamides in milk and beef, and its greenness assessment with analytical eco-scale and greenness profile. J. AOAC Int. 2020, 103, 1181–1189. [Google Scholar] [CrossRef]
- Pena-Pereira, F.; Wojnowski, W.; Tobiszewski, M. AGREE-Analytical GREEnness metric approach and software. Anal. Chem. 2020, 92, 10076–10082. [Google Scholar] [CrossRef]
- Alam, P.; Salem-Bekhit, M.M.; Al-Joufi, F.A.; Alqarni, M.H.; Shakeel, F. Quantitative analysis of cabozantinib in pharmaceutical dosage forms using green RP-HPTLC and green NP-HPTLC methods: A comparative evaluation. Sustain. Chem. Pharm. 2021, 21, E100413. [Google Scholar] [CrossRef]
- Foudah, A.I.; Shakeel, F.; Alqarni, M.H.; Alam, P. A rapid and sensitive stability-indicating green RP-HPTLC method for the quantitation of flibanserin compared to green NP-HPTLC method: Validation studies and greenness assessment. Microchem. J. 2021, 164, E105960. [Google Scholar] [CrossRef]
- International Conference on Harmonization (ICH). Q2 (R1): Validation of Analytical Procedures–Text and Methodology; ICH Secretariat: Geneva, Switzerland, 2005. [Google Scholar]
- Alam, P.; Shakeel, F.; Ali, A.; Alqarni, M.H.; Foudah, A.I.; Aljarba, T.M.; Alkholifi, F.K.; Alshehri, S.; Ghoneim, M.M.; Ali, A. Simultaneous determination of caffeine and paracetamol in commercial formulations using greener normal-phase and reversed-phase HPTLC methods: A contrast of validation parameters. Molecules 2022, 27, 405. [Google Scholar] [CrossRef] [PubMed]
- Haq, N.; Iqbal, M.; Alanazi, F.K.; Alsarra, I.A.; Shakeel, F. Applying green analytical chemistry for rapid analysis of drugs: Adding health to pharmaceutical industry. Arabian J. Chem. 2017, 10, S777–S785. [Google Scholar] [CrossRef]
Parameters | Greener HPTLC |
---|---|
Rf | 0.71 ± 0.01 |
As | 1.06 ± 0.02 |
N/m | 4987 ± 4.67 |
Parameters | Value |
---|---|
Linearity range (ng/band) | 25–1400 |
Regression equation | y = 14.447x + 511.64 |
R2 | 0.9974 |
R | 0.9986 |
SE of slope | 0.28 |
SE of intercept | 1.97 |
95% CI of slope | 13.19–15.69 |
95% CI of intercept | 503.13–520.14 |
LOD ± SD (ng/band) | 8.51 ± 0.04 |
LOQ ± SD (ng/band) | 25.53 ± 0.12 |
Conc. (ng/band) | Intra-Day Precision | Inter-Day Precision | ||||
---|---|---|---|---|---|---|
Conc. (ng/band) ± SD | SE | RSD (%) | Conc. (ng/band) ± SD | SE | (%) RSD | |
50 | 49.54 ± 0.45 | 0.18 | 0.90 | 49.42 ± 0.47 | 0.19 | 0.95 |
400 | 405.21 ± 3.51 | 1.43 | 0.86 | 409.22 ± 3.61 | 1.47 | 0.88 |
1400 | 1415.51 ± 11.56 | 4.72 | 0.81 | 1381.12 ± 11.68 | 4.76 | 0.84 |
Conc. (ng/band) | Conc. Found (ng/band) ± SD | Recovery (%) | RSD (%) |
---|---|---|---|
Intra-day accuracy | |||
50 | 50.31 ± 0.56 | 100.62 | 1.13 |
400 | 403.51 ± 3.76 | 100.87 | 0.93 |
1400 | 1387.41 ± 10.12 | 99.10 | 0.72 |
Inter-day accuracy | |||
50 | 49.61 ± 0.61 | 99.22 | 1.22 |
400 | 393.45 ± 3.84 | 98.36 | 0.97 |
1400 | 1383.21 ± 10.38 | 98.80 | 0.75 |
Conc. (ng/band) | Greener Eluent System (Ethanol–Water) | Results | ||||
---|---|---|---|---|---|---|
Original | Used | Level | Conc. (ng/band) ± SD | RSD (%) | Rf | |
72:28 | +2.0 | 391.23 ± 3.87 | 0.98 | 0.70 | ||
400 | 70:30 | 70:30 | 0.0 | 397.84 ± 3.97 | 0.99 | 0.71 |
68:32 | -2.0 | 408.51 ± 4.15 | 1.01 | 0.72 |
Stress Condition | Number of Degradation Products (Rf) | FFA Rf | FFA Remained (ng/band) | FFA Recovered (%) |
---|---|---|---|---|
1M HCl | 1 (0.79) | 0.70 | 349.40 | 87.35 ± 1.41 |
1M NaOH | 0 | 0.70 | 400.00 | 100.00 ± 0.00 |
30% H2O2 | 0 | 0.71 | 400.00 | 100.00 ± 0.00 |
Thermal | 0 | 0.71 | 400.00 | 100 ± 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alam, P.; Shakeel, F.; Alqarni, M.H.; Foudah, A.I.; Aljarba, T.M.; Ghoneim, M.M.; Asdaq, S.M.B.; Alshehri, S. Development and Validation of a Stability-Indicating Greener HPTLC Method for the Estimation of Flufenamic Acid. Separations 2023, 10, 39. https://doi.org/10.3390/separations10010039
Alam P, Shakeel F, Alqarni MH, Foudah AI, Aljarba TM, Ghoneim MM, Asdaq SMB, Alshehri S. Development and Validation of a Stability-Indicating Greener HPTLC Method for the Estimation of Flufenamic Acid. Separations. 2023; 10(1):39. https://doi.org/10.3390/separations10010039
Chicago/Turabian StyleAlam, Prawez, Faiyaz Shakeel, Mohammed H. Alqarni, Ahmed I. Foudah, Tariq M. Aljarba, Mohammed M. Ghoneim, Syed Mohammed Basheeruddin Asdaq, and Sultan Alshehri. 2023. "Development and Validation of a Stability-Indicating Greener HPTLC Method for the Estimation of Flufenamic Acid" Separations 10, no. 1: 39. https://doi.org/10.3390/separations10010039
APA StyleAlam, P., Shakeel, F., Alqarni, M. H., Foudah, A. I., Aljarba, T. M., Ghoneim, M. M., Asdaq, S. M. B., & Alshehri, S. (2023). Development and Validation of a Stability-Indicating Greener HPTLC Method for the Estimation of Flufenamic Acid. Separations, 10(1), 39. https://doi.org/10.3390/separations10010039