Adsorption Performance of Zeolite for the Removal of Congo Red Dye: Factorial Design Experiments, Kinetic, and Equilibrium Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Analytical Measurements
2.3. Adsorption Experiments
2.4. The Factorial Design
2.5. Kinetics and Isotherm Studies
2.5.1. Adsorption Kinetics
2.5.2. Adsorption Isotherm
3. Results and Discussion
3.1. Effect of Contact Time and Initial Dye Concentration
3.2. Effect of pH
3.3. Influence of Adsorbent Dose
3.4. Effect of Ionic Strength
3.5. The Factorial Design
3.6. CR adsorption Kinetics and Isotherm Studies
3.6.1. Adsorption Kinetics
3.6.2. Adsorption Isotherm
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- de Luna, M.D.G.; Flores, E.D.; Genuino, D.A.D.; Futalan, C.M.; Wan, M.-W. Adsorption of Eriochrome Black T (EBT) dye using activated carbon prepared from waste rice hulls—Optimization, isotherm and kinetic studies. J. Taiwan Inst. Chem. Eng. 2013, 44, 646–653. [Google Scholar] [CrossRef]
- Gupta, V.; Kumar, R.; Nayak, A.; Saleh, T.; Barakat, M. Adsorptive Removal of Dyes from Aqueous Solution onto Carbon Nanotubes: A Review. Adv. Colloid Interface Sci. 2013, 193–194, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Mittal, H.; Babu, R.; Dabbawala, A.; Stephen, S.; Alhassan, S. Zeolite-Y Incorporated Karaya Gum Hydrogel Composites for Highly Effective Removal of Cationic Dyes. Colloids Surf. Physicochem. Eng. Asp. 2019, 586, 124161. [Google Scholar] [CrossRef]
- van der Zee, F.; Villaverde, S. Combined Anaerobic–Aerobic Treatment of Azo Dyes—A Short Review of Bioreactor Studies. Water Res. 2005, 39, 1425–1440. [Google Scholar] [CrossRef]
- Franca, R.; Vieira, A.; Mata, A.M.T.; Carvalho, G.; Pinheiro, H.; Lourenco, N. Effect of an Azo Dye on the Performance of an Aerobic Granular Sludge Sequencing Batch Reactor Treating a Simulated Textile Wastewater. Water Res. 2015, 85, 327–336. [Google Scholar] [CrossRef]
- Gurses, A.; Yalçin, M.; Doğar, Ç. Removal of Remazol Red Rb by Using Al (III) as Coagulant-Flocculant: Effect of Some Variables on Settling Velocity. Water Air Soil Pollut. 2003, 146, 297–318. [Google Scholar] [CrossRef]
- Yang, Z.; Lu, X.; Gao, B.; Wang, Y.; Yue, Q.; Chen, T. Fabrication and Characterization of Poly(Ferric Chloride)-Polyamine Flocculant and Its Application to the Decolorization of Reactive Dyes. J. Mater. Sci. 2014, 49, 4962–4972. [Google Scholar] [CrossRef]
- Hadadi, A.; Imessaoudene, A.; Bollinger, J.-C.; Cheikh, S.; Assadi, A.A.; Amrane, A.; Kebir, M.; Mouni, L. Parametrical Study for the Effective Removal of Mordant Black 11 from Synthetic Solutions: Moringa oleifera Seeds’ Extracts Versus Alum. Water 2022, 14, 4109. [Google Scholar] [CrossRef]
- Hadadi, A.; Imessaoudene, A.; Bollinger, J.-C.; Assadi, A.A.; Amrane, A.; Mouni, L. Comparison of Four Plant-Based Bio-Coagulants Performances against Alum and Ferric Chloride in the Turbidity Improvement of Bentonite Synthetic Water. Water 2022, 14, 3324. [Google Scholar] [CrossRef]
- Hendaoui, K.; Ayari, F.; Ben Rayana, I.; Ben Amar, R.; Darragi, F.; Trabelsi-ayadi, M. Real Indigo Dyeing Effluent Decontamination Using Continuous Electrocoagulation Cell: Study and Optimization Using Response Surface Methodology. Process Saf. Environ. Prot. 2018, 116, 578–589. [Google Scholar] [CrossRef]
- Derouich, G.; Younssi, S.; Bennazha, J.; Cody, J.; Ouammou, M.; El Rhazi, M. Development of Low-Cost Polypyrrole/Sintered Pozzolan Ultrafiltration Membrane and Its Highly Efficient Performance for Congo Red Dye Removal. J. Environ. Chem. Eng. 2020, 8, 103809. [Google Scholar] [CrossRef]
- Tavangar, T.; Karimi, M.; Rezakazemi, M.; Reddy, R.; Aminabhavi, T. Textile Waste, Dyes/Inorganic Salts Separation of Cerium Oxide-Loaded Loose Nanofiltration Polyethersulfone Membranes. Chem. Eng. J. 2020, 385, 123787. [Google Scholar] [CrossRef]
- Wawrzkiewicz, M. Removal of C.I. Basic Blue 3 Dye by Sorption onto Cation Exchange Resin, Functionalized and Non-Functionalized Polymeric Sorbents from Aqueous Solutions and Wastewaters. Chem. Eng. J. 2013, 217, 414–425. [Google Scholar] [CrossRef]
- Wu, J.; Li, Q.; Li, W.; Li, Y.; Wang, G.; Li, A.; Li, H. Efficient Removal of Acid Dyes Using Permanent Magnetic Resin and Its Preliminary Investigation for Advanced Treatment of Dyeing Effluents. J. Clean. Prod. 2020, 251, 119694. [Google Scholar] [CrossRef]
- Torrades, F.; García-Montaño, J. Using Central Composite Experimental Design to Optimize the Degradation of Real Dye Wastewater by Fenton and Photo-Fenton Reactions. Dyes Pigments. 2014, 100, 184–189. [Google Scholar] [CrossRef] [Green Version]
- Muniyasamy, A.; Sivaporul, G.; Gopinath, A.; Lakshmanan, R.; Altaee, A.; Achary, A.; Chellam, P.V. Process Development for the Degradation of Textile Azo Dyes (Mono-, Di-, Poly-) by Advanced Oxidation Process-Ozonation: Experimental & Partial Derivative Modelling Approach. J. Environ. Manag. 2020, 265, 110397. [Google Scholar] [CrossRef]
- Lum, P.; Foo, K.Y.; Zakaria, N.; Palaniandy, P. Ash Based Nanocomposites for Photocatalytic Degradation of Textile Dye Pollutants: A Review. Mater. Chem. Phys. 2019, 241, 122405. [Google Scholar] [CrossRef]
- Mouni, L.; Belkhiri, L.; Bollinger, J.-C.; Bouzaza, A.; Assadi, A.; Tirri, A.; Dahmoune, F.; Madani, K.; Remini, H. Removal of Methylene Blue from Aqueous Solutions by Adsorption on Kaolin: Kinetic and Equilibrium Studies. Appl. Clay Sci. 2018, 153, 38–45. [Google Scholar] [CrossRef]
- Raman, C.; Kanmani, S. Textile Dye Degradation Using Nano Zero Valent Iron: A Review. J. Environ. Manag. 2016, 177, 341–355. [Google Scholar] [CrossRef]
- Khanday, W.; Asif, M.; Hameed, B. Cross-Linked Beads of Activated Oil Palm Ash Zeolite/Chitosan Composite as a Bio-Adsorbent for the Removal of Methylene Blue and Acid Blue 29 Dyes. Int. J. Biol. Macromol. 2016, 95, 895–902. [Google Scholar] [CrossRef]
- Ma, C.; Bai, J.; Hu, X.; Jiang, Z.; Wang, L. Nitrogen-doped porous carbons from polyacrylonitrile fiber as effective CO2 adsorbents. J. Environ. Sci. 2023, 125, 533–543. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Bai, J.; Demir, M.; Hu, X.; Jiang, Z.; Wang, L. Efficient N-Doped Porous Carbonaceous CO2 Adsorbents Derived from Commercial Urea-Formaldehyde Resin. Energy Fuels. 2022, 36, 5825–5832. [Google Scholar] [CrossRef]
- Ma, C.; Bai, J.; Demir, M.; Hu, X.; Liu, S.; Wang, L. Water chestnut shell-derived N/S-doped porous carbons and their applications in CO2 adsorption and supercapacitor. Fuel 2022, 326, 125119. [Google Scholar] [CrossRef]
- Gupta, V.; Suhas, D. Application of Low-Cost Adsorbents for Dye Removal—A Review. J. Environ. Manag. 2009, 90, 2313–2342. [Google Scholar] [CrossRef] [PubMed]
- Crini, G. Non-Conventional Low-Cost Adsorbents for Dye Removal: A Review. Bioresour. Technol. 2006, 97, 1061–1085. [Google Scholar] [CrossRef] [PubMed]
- Moradi, O.; Sharma, G. Emerging novel polymeric adsorbents for removing dyes from wastewater: A comprehensive review and comparison with other adsorbents. Environ. Res. 2021, 201, 111534. [Google Scholar] [CrossRef]
- Humelnicu, I.; Baiceanu, A.; Ignat, M.-E.; Viorica, D. The Removal of Basic Blue 41 Textile Dye from Aqueous Solution by Adsorption onto Natural Zeolitic Tuff: Kinetics and Thermodynamics. Process Saf. Environ. Prot. 2016, 105, 274–287. [Google Scholar] [CrossRef]
- Ouki, S.; Cheeseman, C.R.; Perry, R. Natural Zeolite Utilisation in Pollution Control: A Review of Applications to Metals’ Effluents. J. Chem. Technol. Biotechnol. 1994, 59, 121–126. [Google Scholar] [CrossRef]
- Hernández-Beltrán, N.; Olguín, M.; Rosas Aburto, A. Effect of Acid Phosphate Media on the Stability of Clinoptilolite-Rich Tuff. J. Incl. Phenom. 2008, 61, 93–100. [Google Scholar] [CrossRef]
- Goupy, J. Plans D’expériences Pour Surfaces de Réponse; Dunod: Paris, France, 1999. [Google Scholar]
- Jiju Antony, J. Design of Experiments for Engineers and Scientists; Elsevier Ltd.: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Zhang, K.; Cheung, W.H.; Valix, M. Roles of physical and chemical properties of activated carbon in the adsorption of lead ions. Chemosphere 2005, 60, 1129–1140. [Google Scholar] [CrossRef]
- Vuono, D.; Catizzone, E.; Aloise, A.; Policicchio, A.; Agostino, R.G.; Migliori, M.; Giordano, G. Modelling of adsorption of textile dyes over multi-walled carbon nanotubes: Equilibrium and kinetic. Chin. J. Chem. Eng. 2017, 25, 523–532. [Google Scholar] [CrossRef]
- Tanzifi, M.; Yaraki, M.T.; Karami, M.; Karimi, S.; Kiadehi, A.D.; Karimipour, K.; Wang, S. Modelling of dye adsorption from aqueous solution on polyaniline/carboxymethylcellulose/TiO2 nanocomposites. J. Colloid Interface Sci. 2018, 519, 154–173. [Google Scholar] [CrossRef] [PubMed]
- Krstic, V. Role of zeolite adsorbent in water treatment. Chapter 14. In Handbook of Nanomaterials for Wastewater Treatment; Elsevier: Amsterdam, The Netherlands, 2021; pp. 417–481. [Google Scholar]
- Tran, H.N.; You, S.J.; Hosseini-Bandegharaei, A.; Chao, H.P. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review. Water Res. 2017, 120, 88–116. [Google Scholar] [CrossRef] [PubMed]
- Lima, E.C.; Sher, F.; Guleria, A.; Saeb, M.R.; Anastopoulos, I.; Tran, H.N.; Hosseini-Bandegharaei, A. Is one performing the treatment data of adsorption kinetics correctly? J. Environ. Chem. Eng. 2021, 9, 104813. [Google Scholar] [CrossRef]
- Chahkandi, M. Mechanism of Congo red adsorption on new sol-gel-derived hydroxyapatite nano-particle. Mater. Chem. Phys. 2017, 202, 340–351. [Google Scholar] [CrossRef]
- Tran, H.N.; Lima, E.C.; Juang, R.S.; Bollinger, J.C.; Chao, H.P. Thermodynamic parameters of liquid–phase adsorption process calculated from different equilibrium constants related to adsorption isotherms: A comparison study. J. Environ. Chem. Eng. 2021, 9, 106674. [Google Scholar] [CrossRef]
- Imessaoudene, A.; Cheikh, S.; Bollinger, J.-C.; Belkhiri, L.; Tiri, A.; Bouzaza, A.; El Jery, A.; Assadi, A.; Amrane, A.; Mouni, L. Zeolite Waste Characterization and Use as Low-Cost, Ecofriendly, and Sustainable Material for MalachiteGreen and Methylene Blue Dyes Removal: Box–Behnken Design, Kinetics, and Thermodynamics. Appl. Sci. 2022, 12, 7587. [Google Scholar] [CrossRef]
- Purkait, M.K.; Maiti, A.; DasGupta, S.; De, S. Removal of congo red using activated carbon and its regeneration. J. Hazard. Mater. 2007, 145, 287–295. [Google Scholar] [CrossRef]
- Tu, N.T.T.; Thien, T.V.; Du, P.D.; Chau, V.T.T.; Mau, T.X.; Khieu, D.Q. Adsorptive removal of congo red from aqueous solution using zeolitic imidazolateframework–67. J. Environ. Chem. Eng. 2018, 6, 2269–2280. [Google Scholar] [CrossRef]
- Wu, Z.; Yuan, X.; Zhong, H.; Wang, H.; Jiang, L.; Zeng, G.; Wang, H.; Liu, Z.; Li, Y. Highly efficient adsorption of Congo red in single and binary water with cationic dyes by reduced graphene oxide decorated NH2-MIL-68(Al). J. Mol. Liq. 2017, 247, 215–229. [Google Scholar] [CrossRef]
- Banerjee, S.; Chattopadhyaya, M.C. Adsorption characteristics for the removal of a toxic dye, tartrazine from aqueous solutions by a low cost agricultural by-product. Arab. J. Chem. 2017, 10, S1629–S1638. [Google Scholar] [CrossRef] [Green Version]
- Polatoglu, I.; Cakicioglu-Ozkan, F. Aqueous interactions of zeolitic material in acidic and basic solutions. Microporous Mesoporous Mater. 2010, 132, 219–225. [Google Scholar] [CrossRef] [Green Version]
- Vimonses, V.; Lei, S.; Jin, B.; Chow, C.W.K.; Saint, C. Kinetic study and equilibrium isotherm analysis of Congo Red adsorption by clay materials. J. Chem. Eng. 2009, 148, 354–364. [Google Scholar] [CrossRef]
- Djomgoue, P.; Siewe, M.; Djoufac, E.; Kenfack, P.; Njopwouo, D. Surface modification of Cameroonian magnetite rich clay with Eriochrome BlackT. Application for adsorption of nickel in aqueous solution. Appl. Surf. Sci. 2012, 258, 7470–7479. [Google Scholar] [CrossRef]
- Debnath, S.; Kitinya, J.; Onyango, M.S. Removal of Congo red from aqueous solution by two variants of calcium and iron based mixed oxide nano-particle agglomerates. J. Ind. Eng. Chem. 2014, 20, 2119–2129. [Google Scholar] [CrossRef]
- Carmona, M.E.R.; da Silva, M.A.P.; Ferreira Leite, S.G. Biosorption of chromium using factorial experimental design. Process Biochem. 2005, 40, 779–788. [Google Scholar] [CrossRef]
- Bingol, D.; Tekin, N.; Alkan, M. Brilliant Yellow dye adsorption onto sepiolite using a full factorial design. Appl. Clay Sci. 2010, 50, 315–321. [Google Scholar] [CrossRef]
- Tran, H.N.; You, S.J.; Chao, H.P. Fast and efficient adsorption of methylene green 5 on activated carbon prepared from new chemical activation method. J. Environ. Manag. 2017, 188, 322–336. [Google Scholar] [CrossRef]
Factors | Real Unit | Low Level (−1) | High Level (+1) |
---|---|---|---|
D | g/L | 0.02 | 0.1 |
C0 | mg/L | 8.3 | 25.9 |
I | mg Na2SO4/L | 0 | 9.1 |
Coded Experiments Matrix | qe (mg/g) | ||||||
---|---|---|---|---|---|---|---|
Std Order | Run Order | D | C0 | I | Observed | Predicted | Residual |
16 | 1 | +1 | +1 | +1 | 238.5 | 239.93 | −1.43 |
4 | 2 | +1 | +1 | −1 | 230.8 | 232.34 | −1.56 |
7 | 3 | −1 | +1 | +1 | 1175.3 | 1170.34 | 5.00 |
10 | 4 | +1 | −1 | −1 | 73.7 | 75.28 | −1.56 |
1 | 5 | −1 | −1 | −1 | 289.5 | 286.86 | 2.60 |
9 | 6 | −1 | −1 | −1 | 284.3 | 286.86 | −2.60 |
12 | 7 | +1 | +1 | −1 | 233.9 | 232.34 | 1.56 |
6 | 8 | +1 | −1 | +1 | 77.4 | 77.65 | −0.29 |
5 | 9 | −1 | −1 | +1 | 339.7 | 333.98 | 5.71 |
2 | 10 | +1 | −1 | −1 | 76.8 | 75.28 | 1.56 |
8 | 11 | +1 | +1 | +1 | 241.4 | 239.93 | 1.43 |
3 | 12 | −1 | +1 | −1 | 1146.1 | 1148.08 | −1.95 |
14 | 13 | +1 | −1 | +1 | 77.9 | 77.65 | 0.,29 |
13 | 14 | −1 | −1 | +1 | 328.3 | 333.98 | −5.71 |
15 | 15 | −1 | +1 | +1 | 1165.3 | 1170.34 | −5.00 |
11 | 16 | −1 | +1 | −1 | 1150.0 | 1148.08 | 1.95 |
Term | Effect (ωi) | Coefficient (ai) | Standard Error (SE) |
---|---|---|---|
Constant | 445.56 | 1.08 | |
D | −578.51 | −289.26 | 1.08 |
C0 | 504.23 | 252.12 | 1.08 |
I | 19.83 | 9.92 | 1.08 |
D.C0 | −344.56 | −172.28 | 1.08 |
D.I | −14.86 | −7.43 | 1.08 |
C0.I | −4.91 | −2.45 | 1.08 |
D.C0.I | 7.52 | 3.76 | 1.08 |
Source | Degrees of Freedom (DF) | Sum of Squares (SS) | Mean Square (MS) | F-Value | p-Value |
---|---|---|---|---|---|
D | 1 | 1,338,717 | 1,338,717 | 71,317.01 | 0.000 |
C0 | 1 | 1,016,998 | 1,016,998 | 54,178.17 | 0.000 |
I | 1 | 1573 | 1573 | 83.80 | 0.000 |
D.C0 | 1 | 474,895 | 474,895 | 25,298.92 | 0.000 |
D.I | 1 | 883 | 883 | 47.04 | 0.000 |
C0.I | 1 | 96 | 96 | 5.14 | 0.053 |
D.C0.I | 1 | 226 | 226 | 12.05 | 0.008 |
Error | 8 | 150 | 19 | ||
Total | 15 | 2,833,538 |
Model | C0 (mg/L) | qe,exp (mg/g) | qe,cal (mg/g) | k1 (min−1) | k2 (g/mg min) | kid (mg/g min) | Ci (mg/g) | R2 | MSE | RMSE |
---|---|---|---|---|---|---|---|---|---|---|
PFO | 24 ± 2 | 232.0 | 228.2 ± 1.3 | 0.666 ± 0.044 | - | - | - | 0.865 | 28.735 | 5.360 |
PSO | 233.8 ± 0.4 | - | 0.006 ± 2 × 10−4 | - | - | 0.989 | 2.197 | 1.482 | ||
IPD | - | - | - | 2.948 ± 0.752 | 204.398 ± 5.736 | 0.474 | 112.370 | 10.600 | ||
PFO | 31 ± 2 | 311.2 | 305.8 ± 1.4 | 0.694 ± 0.049 | - | - | - | 0.725 | 30.819 | 5.551 |
PSO | 310.9 ± 0.3 | - | 0.007 ± 2 × 10−4 | - | - | 0.990 | 1.017 | 1.008 | ||
IPD | - | - | - | 2.668 ± 0.509 | 285.737 ± 3.672 | 0.646 | 39.711 | 6.301 |
Model | qmax (mg/g) | KL (L/mg) | KF (mg/g)/(mg/L)n | n | βT | AT | R2 | MSE | RMSE |
---|---|---|---|---|---|---|---|---|---|
Langmuir | 666.5 ± 71.6 | 0.205 ± 0.039 | - | - | - | - | 0.985 | 122.374 | 11.062 |
Freundlich | - | - | 126.319 ± 3.604 | 0.613 ± 0.020 | - | - | 0.996 | 29.614 | 5.441 |
Temkin | - | - | - | - | 138.942 ± 13.031 | 2.160 ± 0.38 | 0.966 | 285.500 | 16.896 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imessaoudene, A.; Cheikh, S.; Hadadi, A.; Hamri, N.; Bollinger, J.-C.; Amrane, A.; Tahraoui, H.; Manseri, A.; Mouni, L. Adsorption Performance of Zeolite for the Removal of Congo Red Dye: Factorial Design Experiments, Kinetic, and Equilibrium Studies. Separations 2023, 10, 57. https://doi.org/10.3390/separations10010057
Imessaoudene A, Cheikh S, Hadadi A, Hamri N, Bollinger J-C, Amrane A, Tahraoui H, Manseri A, Mouni L. Adsorption Performance of Zeolite for the Removal of Congo Red Dye: Factorial Design Experiments, Kinetic, and Equilibrium Studies. Separations. 2023; 10(1):57. https://doi.org/10.3390/separations10010057
Chicago/Turabian StyleImessaoudene, Ali, Sabrina Cheikh, Amina Hadadi, Nadia Hamri, Jean-Claude Bollinger, Abdeltif Amrane, Hichem Tahraoui, Amar Manseri, and Lotfi Mouni. 2023. "Adsorption Performance of Zeolite for the Removal of Congo Red Dye: Factorial Design Experiments, Kinetic, and Equilibrium Studies" Separations 10, no. 1: 57. https://doi.org/10.3390/separations10010057
APA StyleImessaoudene, A., Cheikh, S., Hadadi, A., Hamri, N., Bollinger, J. -C., Amrane, A., Tahraoui, H., Manseri, A., & Mouni, L. (2023). Adsorption Performance of Zeolite for the Removal of Congo Red Dye: Factorial Design Experiments, Kinetic, and Equilibrium Studies. Separations, 10(1), 57. https://doi.org/10.3390/separations10010057