Fenton Oxidation Combined with Iron–Carbon Micro-Electrolysis for Treating Leachate Generated from Thermally Treated Sludge
Abstract
:1. Introduction
2. Methodology
2.1. Materials
2.2. Leachate Treatment
2.3. The Optimization of the Processes
2.4. The Composition Variation of the Leachate
3. Results and Discussion
3.1. The Leachate Treated by Different Processes
3.1.1. ICME Process
3.1.2. ICME-Fenton Combined Process Research
3.1.3. Fenton-ICME Process
3.2. The Characteristics of the Leachate after Fenton-ICME Treatment
3.2.1. Organic Matter in the Leachate before and after Treatment
3.2.2. FTIR Analysis
3.2.3. The 3D-EEM Analysis
3.3. Characteristics of Fenton Precipitation Solution
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Okan, B.; Aksoy, A.; Erguder, T.H. Model-based comparison of biological wastewater and sludge treatment combinations for nutrient removal, sludge and biogas production. J. Water Process Eng. 2023, 55, 104198. [Google Scholar] [CrossRef]
- Bonu, R.; Anand, N.; Palani, S.G. Impact of thermal pre-treatment on anaerobic co-digestion of sewage sludge and landfill leachate. Mater. Today Proc. 2023, 72 Pt 1, 99–103. [Google Scholar] [CrossRef]
- Zanona, V.R.C.M.; Barquilha, C.E.R.; Braga, M.C.B. Removal of recalcitrant organic matter of landfill leachate by adsorption onto biochar from sewage sludge: A quali-quantitative analysis. J. Environ. Manag. 2023, 344, 118387. [Google Scholar] [CrossRef] [PubMed]
- Skrzypczak, D.; Lale, D.; Mikula, K.; Izydorczyk, G.; Połomska, X.; Matejko, M.; Moustakas, K.; Witek-Krowiak, A.; Chojnacka, K. Maximizing the potential of leachate from sewage sludge as a sustainable nutrients source to alleviate the fertilizer crisis. J. Environ. Manag. 2023, 338, 117794. [Google Scholar] [CrossRef]
- Kanmani, S.; Bharathi Dileepan, A.G. Treatment of landfill leachate using photocatalytic based advanced oxidation process—A critical review. J. Environ. Manag. 2023, 345, 118794. [Google Scholar] [CrossRef] [PubMed]
- Faggiano, A.; De Carluccio, M.; Cerrato, F.; Junior, C.A.G.; Proto, A.; Fiorentino, A.; Rizzo, L. Improving organic matter and nutrients removal and minimizing sludge production in landfill leachate pre-treatment by Fenton process through a comprehensive response surface methodology approach. J. Environ. Manag. 2023, 340, 117950. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zhong, Y.; Shao, Z. Double Perovskites in Catalysis, Electrocatalysis, and Photo(electro)catalysis. Trends Chem. 2019, 1, 410–424. [Google Scholar] [CrossRef]
- Ilmasari, D.; Yuniarto, A.; Khen, C.; Purba, L.D.A.; Lei, Z.; Yuzir, A. Microalgal-bacterial aerobic granular sludge for old leachate treatment: Development, performance, and lipid production. J. Clean. Prod. 2023, 417, 138053. [Google Scholar] [CrossRef]
- Yang, X. Interior Microelectrolysis oxidation of polyester wastewater and its treatment technology. J. Hazard. Mater. 2009, 169, 480–485. [Google Scholar] [CrossRef]
- Chen, X.; Liang, S.; Tao, S.; Yu, W.; Yuan, S.; Jian, S.; Wan, N.; Zhu, Y.; Bian, S.; Liu, Y.; et al. Sludge-derived iron-carbon material enhancing the removal of refractory organics in landfill leachate: Characteristics optimization, removal mechanism, and molecular-level investigation. Sci. Total Environ. 2023, 904, 166883. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Xu, H.; Zhang, L.; Ma, X.; Man, Y.; Su, Z.; Wang, J. An internal circulation iron–carbon micro–electrolysis reactor for aniline wastewater treatment: Parameter optimization, degradation pathways and mechanism. Chin. J. Chem. Eng. 2023, 63, 96–107. [Google Scholar] [CrossRef]
- Hu, M.; Luo, T.; Li, Q.; Xie, Y.; Liu, G.; Wang, L.; Peijnenburg, W.J.G.M. Remediation of low C/N wastewater by iron–carbon micro-electrolysis coupled with biological denitrification: Performance, mechanisms, and application. J. Water Process Eng. 2022, 48, 102899. [Google Scholar] [CrossRef]
- Li, S.; Yang, Y.; Zheng, H.; Zheng, Y.; Jing, T.; Ma, J.; Nan, J.; Leong, Y.K.; Chang, J.-S. Advanced oxidation process based on hydroxyl and sulfate radicals to degrade refractory organic pollutants in landfill leachate. Chemosphere 2022, 297, 134214. [Google Scholar] [CrossRef] [PubMed]
- Yao, Q.-S.; Huang, C.; Wang, M.-K. Treatment of Water Hyacinth Anaerobic Fermentation Wastewater by Combining Fe-C Micro-Electrolysis with Fenton Reaction. J. Environ. Chem. Eng. 2020, 8, 104157. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, X.; Yi, J. Pretreatment of printing and dyeing wastewater by Fe/C Micro-Electrolysis combined with H2O2 Process. Water Sci. Technol. 2018, 2017, 707–717. [Google Scholar] [CrossRef] [PubMed]
- Thamdrup, B. Bacterial manganese and iron reduction in aquatic sediments. In Advances in Microbial Ecology; Schink, B., Ed.; Kluwer Academic/Plenum Publishers: New York, NY, USA, 2000; Volume 16, pp. 41–84. [Google Scholar]
- Lai, B.; Zhou, Y.; Qin, H. Pretreatment of wastewater from acrylonitrile-butadiene-styrene (ABS) resin manufacturing by micro- electrolysis. Chem. Eng. J. 2012, 179, 1–7. [Google Scholar] [CrossRef]
- El Farissi, H.; Talhaoui, A.; Bachiri, A.E.L. Cistus shells used as a sustainable matrix for bioenergy production through slow pyrolysis process: Kinetic and thermodynamic study. Renew. Energy 2023, 218, 119337. [Google Scholar] [CrossRef]
- Tang, M.; Wang, L.; Li, H. Promoting effect of FeOx addition on the mechanochemically prepared vanadium-based catalyst for real PCDD/FS removal and mechanism insight. J. Environ. Sci. 2022, 137, 478–487. [Google Scholar] [CrossRef]
- El Farissi, H.; Beraich, A.; Lamsayah, M.; Talhaoui, A.; El Bachiri, A. The efficiency of carbon modified by phosphoric acid (H3PO4) used in the removal of two antibiotics amoxicillin and metronidazole from polluted water: Experimental and theoretical investigation. J. Mol. Liq. 2023, 391, 123237. [Google Scholar] [CrossRef]
- Yuan, L.; Shen, J.; Chen, Z. Role of Fe/Pumice composition and structure in promoting ozonation reactions. Appl. Catal. B Environ. 2016, 180, 707–714. [Google Scholar] [CrossRef]
- Liu, H.; Sha, W.; Cooper, A.T. Preparation and characterization of a novel silica aerogel as adsorbent for toxic organic compounds. Colloids Surf. A Physicochem. Eng. Asp. 2009, 347, 38–44. [Google Scholar] [CrossRef]
- Chen, W.; Westerhoff, P.; Leenheer, J.A.; Booksh, K. Fluorescence Excitation−Emission Matrix Regional Integration to Quantify Spectra for Dissolved Organic Matter. Environ. Sci. Technol. 2003, 37, 5701–5710. [Google Scholar] [CrossRef] [PubMed]
- Ghernaout, D.; Elboughdiri, N.; Ghareba, S. Fenton technology for wastewater treatment: Dares and Trends. Open Access Libr. J. 2020, 7, 1–26. [Google Scholar] [CrossRef]
- Dong, Q.F.; Jin, H.L.; Sen, G. Biochar enhanced the degra- dation of organic pollutants through a Fenton process using trace aqueous Iron. J. Environ. Chem. Eng. 2020, 9, 104677. [Google Scholar]
Property | Value | Property | Value |
---|---|---|---|
Product Model | TMIE-1 | Cylinder compressive strength (MPa) | ≥5 |
Appearance | Spherical three holes with grooved side | Packing density (g/cm3) | 0.9~1.0 |
Size Deviation (mm) | ±0.50 | Polymetallic content (%) | 60~65 |
Specific surface area (m2/g) | ≥2 | Carbon content (%) | 15~20 |
Porosity %) | 50~55 | Catalyst content (%) | ≥3 |
Peak Number | Substance | Before | After | ||
---|---|---|---|---|---|
Time (min) | Peak Area | Time (min) | Peak Area | ||
1 | Heptane, 2, 4-dimethyl- | — | — | 4.929 | 97,431 |
2 | Octane, 4-methyl- | — | — | 5.616 | 26,169 |
3 | Pyrazine, 2, 5-dimethyl- | 6.320 | 306,193 | — | — |
4 | 1H-Pyrrole-2-carboxaldehyde | 7.659 | 162,964 | — | — |
5 | Decane, 4-methyl- | 7.830 | 264,951 | 7.830 | 69,510 |
6 | 2-Cyclopenten-1-one, 2-hydroxy-3-methyl- | 7.899 | 224,655 | — | — |
7 | p-Cresol | 8.437 | 671,385 | — | — |
8 | Benzene, 1-methyl-3-(1-methylethyl)- | 8.614 | 138,834 | — | — |
9 | Phenol, 2-methoxy- | 8.654 | 453,017 | — | — |
10 | Benzene, 1, 2, 3, 5-tetramethyl- | 9.015 | 348,810 | 9.020 | 43,653 |
11 | Phenol, 4-ethyl- | 9.450 | 1,054,345 | — | — |
12 | Undecane, 2, 6-dimethyl- | — | — | 9.947 | 62,421 |
13 | Dodecane, 4-methyl- | 10.028 | 189,918 | — | — |
14 | Dodecane, 4, 6-dimethyl- | 10.354 | 174,253 | — | — |
15 | Odecane, 2, 6, 10-trimethyl- | — | — | 10.817 | 40,755 |
16 | Phenol, 2, 6-dimethoxy- | 11.309 | 542,295 | — | — |
17 | Decane, 3, 8-dimethyl- | 13.735 | 158,398 | — | — |
18 | Sulfurous acid, butyl heptadecylster | — | — | 13.821 | 37,787 |
19 | Heneicosane, 11-(1-ethylpropyl)- | 14.880 | 166,580 | — | — |
20 | Heptadecane, 2, 6, 10, 15-tetramethyl- | — | — | 16.819 | 186,213 |
21 | 9-Octadecenamide, (Z)- | 18.399 | 310,423 | — | — |
22 | Phenol, 2, 2’-methylenebis[6-(1, 1-dimethylethyl)-4-methyl- | 18.776 | 207,837 | 18.776 | 144,798 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, X.; Liu, H.; Li, J.; Gan, R.; Liu, Q.; Zhang, X. Fenton Oxidation Combined with Iron–Carbon Micro-Electrolysis for Treating Leachate Generated from Thermally Treated Sludge. Separations 2023, 10, 568. https://doi.org/10.3390/separations10110568
Dong X, Liu H, Li J, Gan R, Liu Q, Zhang X. Fenton Oxidation Combined with Iron–Carbon Micro-Electrolysis for Treating Leachate Generated from Thermally Treated Sludge. Separations. 2023; 10(11):568. https://doi.org/10.3390/separations10110568
Chicago/Turabian StyleDong, Xiaoqing, Hui Liu, Ji Li, Ruiqi Gan, Quanze Liu, and Xiaolei Zhang. 2023. "Fenton Oxidation Combined with Iron–Carbon Micro-Electrolysis for Treating Leachate Generated from Thermally Treated Sludge" Separations 10, no. 11: 568. https://doi.org/10.3390/separations10110568
APA StyleDong, X., Liu, H., Li, J., Gan, R., Liu, Q., & Zhang, X. (2023). Fenton Oxidation Combined with Iron–Carbon Micro-Electrolysis for Treating Leachate Generated from Thermally Treated Sludge. Separations, 10(11), 568. https://doi.org/10.3390/separations10110568