A Preliminary Cytotoxicity Study of Fagonia arabica against Breast (MCF-7), Oral (KB-3-1), and Lung Cancer (A-549) Cell Lines: A Study Supported by Molecular Marker Analysis Using Dual Staining Dyes
Abstract
:1. Introduction
2. Methodology
2.1. Plant Collection, Extraction, and Phytochemical Analysis
2.2. Chemicals and Instrumentation
2.3. Phytochemical Analysis
2.4. Estimation of Total Phenols and Flavonoid Content
2.5. GCMS Analysis
2.6. Liquid Chromatography–Mass Spectrometry (LC-MS) Analysis
2.7. In Vitro Cytotoxicity of F. arabica Extracts
2.8. Detection of Live and Dead Cells Using Acridine Orange/Ethidium Bromide Dual Staining
2.9. Statistical Analysis
3. Results
3.1. Qualitative Phytochemical Analysis of F. arabica
3.2. Quantification of Total Phenols and Flavonoids in F. arabica
3.3. Cytotoxicity of F. arabica Extracts In Vitro
3.4. Acridine Orange/Ethidium Bromide Dual Staining Analysis
3.5. GCMS and LCMS Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Abdul Rahman, J. Lung Cancer in Saudi Arabia. J. Thorac. Oncol. 2019, 14, 957–962. [Google Scholar]
- Breast Cancer Statistics. J. Natl. Cancer Inst. 2000, 92, 445. [CrossRef] [PubMed]
- Alshehri, B.M. Trends in the Incidence of Oral Cancer in Saudi Arabia from 1994 to 2015. World J. Surg. Oncol. 2020, 18, 217. [Google Scholar] [CrossRef]
- Eckhardt, B.L.; Francis, P.A.; Parker, B.S.; Anderson, R.L. Strategies for the Discovery and Devel-opment of Therapies for Metastatic Breast Cancer. Nat. Rev. Drug Discov. 2012, 11, 479–497. [Google Scholar] [CrossRef]
- Cao, H.; Zhang, Z.; Zhao, S.; He, X.; Yu, H.; Yin, Q.; Zhang, Z.; Gu, W.; Chen, L.; Li, Y. Hydropho-bic Interaction Mediating Self-Assembled Nanoparticles of Succinobucol Suppress Lung Metastasis of Breast Cancer by Inhibition of VCAM-1 Expression. J. Control. Release 2015, 205, 162–171. [Google Scholar] [CrossRef]
- Gennari, A.; Conte, P.; Rosso, R.; Orlandini, C.; Bruzzi, P. Survival of Metastatic Breast Carcinoma Patients over a 20-Year Period: A Retrospective Analysis Based on Individual Patient Data from Six Consecutive Studies: A Retrospective Analysis Based on Individual Patient Data from Six Consecutive Studies. Cancer 2005, 104, 1742–1750. [Google Scholar] [CrossRef]
- Dan, Z.; Cao, H.; He, X.; Zhang, Z.; Zou, L.; Zeng, L.; Xu, Y.; Yin, Q.; Xu, M.; Zhong, D.; et al. A PH-Responsive Host-Guest Nanosystem Loading Succinobucol Suppresses Lung Metastasis of Breast Cancer. Theranostics 2016, 6, 435–445. [Google Scholar] [CrossRef]
- Long, Q.; Wang, Y.; Che, G. Primary Lung Cancer after Treatment for Breast Cancer. Int. J. Womens Health 2021, 13, 1217–1225. [Google Scholar] [CrossRef]
- Alqahtani, W.S.; Almufareh, N.A.; Domiaty, D.M.; Albasher, G.; Alduwish, M.A.; Alkhalaf, H.; Al-muzzaini, B.; Al-Marshidy, S.S.; Alfraihi, R.; Elasbali, A.M.; et al. Epidemiology of Cancer in Saudi Arabia Thru 2010–2019: A Systematic Review with Constrained Meta-Analysis. AIMS Public Health 2020, 7, 679–696. [Google Scholar] [CrossRef]
- Mouth Cancer. Available online: https://www.mayoclinic.org/diseases-conditions/mouth-cancer/symptoms-causes/syc-20350997 (accessed on 9 December 2022).
- Polanski, J.; Jankowska-Polanska, B.; Rosinczuk, J.; Chabowski, M.; Szymanska-Chabowska, A. Qual-ity of Life of Patients with Lung Cancer. Onco. Targets. Ther. 2016, 9, 1023–1028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chemotherapy Side Effects. Available online: https://www.cancer.org/treatment/treatments-and-side-effects/treatment-types/chemotherapy/chemotherapy-side-effects.html (accessed on 9 December 2022).
- Le Saux, O.; Ray-Coquard, I.; Labidi-Galy, S.I. Challenges for Immunotherapy for the Treatment of Platinum Resistant Ovarian Cancer. Semin. Cancer Biol. 2021, 77, 127–143. [Google Scholar] [CrossRef] [PubMed]
- Pucci, C.; Martinelli, C.; Ciofani, G. Innovative Approaches for Cancer Treatment: Current Perspec-tives and New Challenges. Ecancermedicalscience 2019, 13, 961. [Google Scholar] [CrossRef]
- Wang, H.; Khor, T.O.; Shu, L.; Su, Z.; Fuentes, F.; Lee, J.H.; Kong, A.N.T. Plants Against Cancer: A Review on Natural Phytochemicals in Preventing and Treating Cancers and Their Druggability. Anticancer Agents Med. Chem. 2012, 12, 1281–1305. [Google Scholar] [CrossRef] [PubMed]
- Gutheil, W.G.; Reed, G.; Ray, A.; Anant, S.; Dhar, A. Crocetin: An Agent Derived from Saffron for Prevention and Therapy for Cancer. Curr. Pharm. Biotechnol. 2012, 13, 173–179. [Google Scholar] [CrossRef]
- Ahmad, R.; Ahmad, N.; Naqvi, A.A.; Shehzad, A.; Al-Ghamdi, M.S. Role of Traditional Islamic and Arabic Plants in Cancer Therapy. J. Tradit. Complement. Med. 2017, 7, 195–204. [Google Scholar] [CrossRef]
- Iqbal, J.; Abbasi, B.A.; Mahmood, T.; Kanwal, S.; Ali, B.; Shah, S.A.; Khalil, A.T. Plant-Derived Anticancer Agents: A Green Anticancer Approach. Asian Pac. J. Trop. Biomed. 2017, 7, 1129–1150. [Google Scholar] [CrossRef]
- Kasture, V.; Gosavi, S.; Kolpe, J.B.; Deshapande, S.G. Phytochemical and Biological Evaluation of Fagonia Species: A Review. WJPPS 2014, 3, 1206–1217. [Google Scholar]
- Irshad, S.; Anjum, I.; Mushtaq, M.N.; Ullah, K.; Barkat, K.; Hayat Malik, M.N.; Raza, M.A.; Zubair, M. Anti-Inflammatory, Analgesic and Anti-Pyretic Activity of Fagonia Bruguieri DC in Rats. Pak. J. Pharm. Sci. 2022, 35, 1209–1213. [Google Scholar]
- Puri, D.; Bhandari, A.; Gaur, P. Screening of Anti-Histaminic Activity of Fagonia Schweinfurthii Hadidi in Guinea Pig Ileum and Formulate Anti-Histaminic Syrup. Nat. Prod. J. 2015, 5, 176–179. [Google Scholar] [CrossRef]
- Rawal, A.K.; Muddeshwar, M.G.; Biswas, S.K. Rubia Cordifolia, Fagonia Cretica Linn and Tinospora Cordifolia Exert Neuroprotection by Modulating the Antioxidant System in Rat Hippocampal Slices Subjected to Oxygen Glucose Deprivation. BMC Complement. Altern. Med. 2004, 4, 11. [Google Scholar] [CrossRef] [PubMed]
- Puri, D.; Bhandari, A. Fagonia: A Potential Medicinal Desert Plant. J. NPA 2015, 27, 28–33. [Google Scholar] [CrossRef]
- Chopra, R.; Handa, K.; Kapur, L.; Chopra, I.C. Indigenous Drugs of India; Academic Publisher: New Delhi, India, 1994. [Google Scholar]
- Parveen, R.F.I.M. Review on Medicinal and Bioactive Role of Genus Fagonia. Fuuast J. Biol. 2017, 7, 33–36. [Google Scholar]
- Kakrani, H.N.; Saluja, A.K. Plants Used for Diuretic Activity in Traditional Medicine in Kutch Dis-trict, Gujarat. J. Nat. Remedies 2001, 1, 121–124. [Google Scholar] [CrossRef]
- Said, H.M. Medicinal Herbal: A Textbook for Medical Students and Doctors; MAS Printers: Karachi, Pakistan, 1996; Volume 1, p. 29. [Google Scholar]
- Wild Medicinal Plants of Madinat Al-Hikmah and Its Adjacent Areas. Hamdard Med. 1996, 39, 8–10.
- Watt, G. Dictionary of the Economic Products of India Pages 1 to 178. In A Dictionary of the Economic Products of India; Cambridge University Press: Cambridge, UK, 2014; pp. 1–178. ISBN 9781107239142. [Google Scholar]
- Hamid, A.; Majid, A.C.; Rehman, A. Isolation of Docosyl Docosanoate from Fagonia Cretica Linn. Arab Gulf J. Sci. Res. 1989, 7, 29–34. [Google Scholar]
- Satpute, R.M.; Kashyap, R.S.; Deopujari, J.Y.; Purohit, H.J.; Taori, G.M.; Daginawala, H.F. Protection of PC12 Cells from Chemical Ischemia Induced Oxidative Stress by Fagonia Arabica. Food Chem. Toxicol. 2009, 47, 2689–2695. [Google Scholar] [CrossRef]
- Ghasemi, M.; Turnbull, T.; Sebastian, S.; Kempson, I. The MTT Assay: Utility, Limitations, Pitfalls, and Interpretation in Bulk and Single-Cell Analysis. Int. J. Mol. Sci. 2021, 22, 12827. [Google Scholar] [CrossRef]
- Liu, K.; Liu, P.-C.; Liu, R.; Wu, X. Dual AO/EB Staining to Detect Apoptosis in Osteosarcoma Cells Compared with Flow Cytometry. Med. Sci. Monit. Basic Res. 2015, 21, 15–20. [Google Scholar] [CrossRef]
- Gul, R.; Jan, S.U.; Faridullah, S.; Sherani, S.; Jahan, N. Preliminary Phytochemical Screening, Quanti-tative Analysis of Alkaloids, and Antioxidant Activity of Crude Plant Extracts from Ephedra Inter-media Indigenous to Balochistan. Sci. World J. 2017, 2017, 5873648. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. In Oxidants and Antioxidants Part A; Elsevier: Amsterdam, The Netherlands, 1999; pp. 152–178. ISBN 9780121822002. [Google Scholar]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The Determination of Flavonoid Contents in Mulberry and Their Scavenging Effects on Superoxide Radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Davies, N.W. Gas Chromatographic Retention Indices of Monoterpenes and Sesquiterpenes on Methyl Silicon and Carbowax 20M Phases. J. Chromatogr. A 1990, 503, 1–24. [Google Scholar] [CrossRef]
- Irawan, C.; Rochaeni, H.; Sulistiawaty, L.; Roziafanto, A.N. Phyto-chemical Screening, LC-MS Studies and Antidiabetic Potential of Methanol Extracts of Seed Shells of Archidendron Bubalinum (Jack) I.c. Nielson (Julang Jaling) from Lampung, Indonesia. Pharmacogn. J. 2018, 10, s77–s82. [Google Scholar] [CrossRef]
- van Meerloo, J.; Kaspers, G.J.L.; Cloos, J. Cell Sensitivity Assays: The MTT Assay. Methods Mol. Biol. 2011, 731, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Singh, R.K.; Singh, S.K.; Mahto, S.K.; Misra, N. In Vitro Biocompatibility Analysis of Functionalized Poly(Vinyl Chloride)/Layered Double Hydroxide Nanocomposites. RSC Adv. 2018, 8, 40611–40620. [Google Scholar] [CrossRef]
- Sani, G.; Gualtieri, I.; Paolini, M.; Bonanni, L.; Spinazzola, E.; Maggiora, M.; Pinzone, V.; Brugnoli, R.; Angeletti, G.; Girardi, P.; et al. Drug Treatment of Trichotillomania (Hair-Pulling Disorder), Excoriation (Skin-Picking) Disorder, and Nail-Biting (Onychophagia). Curr. Neuropharmacol. 2019, 17, 775–786. [Google Scholar] [CrossRef]
- Kumar, N.R.; Reddy, J.S.; Gopikrishna, G.; Solomon, K.A. GC-MS determination of bioactive constituents of Cycas beddomei cones. Int. J. Pharm. Bio. Sci. 2012, 3, 344–350. [Google Scholar]
- Venkata, R.B.; Samuel, L.A.; Pardha, S.M.; Narashimha, R.B.; Naga, V.K.; Sudhakar, M.; Radhakrishnan, T.M. Antibacterial, Antioxidant Activity and GC-MS Analysis of Eupatorium Odoratum. Asian J. Pharm. Clin. Res. 2012, 5, 99–106. [Google Scholar]
- Lewis, R.A. Hawley’s Condensed Chemical Dictionary, 16th ed.; Larranaga, M.D., Lewis, R.J., Eds.; Wiley: New York, NY, USA, 2020; ISBN 9781119371755. [Google Scholar]
- El-Demerdash, E. Anti-Inflammatory and Antifibrotic Effects of Methyl Palmitate. Toxicol. Appl. Pharmacol. 2011, 254, 238–244. [Google Scholar] [CrossRef]
- Sutanto, H.; Susanto, B.H.; Nasikin, M. Solubility and Antioxidant Potential of a Pyrogallol Derivative for Biodiesel Additive. Molecules 2019, 24, 2439. [Google Scholar] [CrossRef]
- Sehat, N.; Yurawecz, M.P.; Roach, J.A.G.; Mossoba, M.M.; Eulitz, K.; Mazzola, E.P.; Ku, Y. Autoxidation of the Furan Fatty Acid Ester, Methyl 9,12-Epoxyoctadeca-9,11-Dienoate. J. Am. Oil Chem. Soc. 1998, 75, 1313–1319. [Google Scholar] [CrossRef]
- Preedy, V.R.; Watson, R.R. Olives and Olive Oil in Health and Disease Prevention; Academic Press: San Diego, CA, USA, 2020; ISBN 9780128199893. [Google Scholar]
- Dilika, F.; Bremner, P.D.; Meyer, J.J. Antibacterial Activity of Linoleic and Oleic Acids Isolated from Helichrysum Pedunculatum: A Plant Used during Circumcision Rites. Fitoterapia 2000, 71, 450–452. [Google Scholar] [CrossRef] [PubMed]
- Moorthy, B.; Chu, C.; Carlin, D.J. Polycyclic Aromatic Hydrocarbons: From Metabolism to Lung Cancer. Toxicol. Sci. 2015, 145, 5–15. [Google Scholar] [CrossRef]
- UCSD/CCMS—Spectrum Library. Available online: http://gnps.ucsd.edu/ProteoSAFe/gnpslibraryspectrum.jsp?SpectrumID=CCMSLIB00000078682 (accessed on 13 January 2023).
- Falzone, L.; Salomone, S.; Libra, M. Evolution of Cancer Pharmacological Treatments at the Turn of the Third Millennium. Front. Pharmacol. 2018, 9, 1300. [Google Scholar] [CrossRef]
- El-Negoumy, S.I.; Al-Wakeel, S.A.M.; El-Hadidi, M.N.; Saleh, N.A.M. The Flavonoids of the Fagonia Arabica-Complex (Zygophyllaceae). Phytochemistry 1986, 25, 2423–2424. [Google Scholar] [CrossRef]
- El-Wakil, E.A. Phytochemical and Molluscicidal Investigations of Fagonia Arabica. Z. Naturforsch. C 2007, 62, 661–667. [Google Scholar] [CrossRef]
- Tawaha, K.; Alali, F.; Gharaibeh, M.; Mohammad, M.; Elelimat, T. Antioxidant Activity and Total Phenolic Content of Selected Jordanian Plant Species. Food Chem. 2007, 104, 1372–1378. [Google Scholar] [CrossRef]
- Pandey, A.K.; Kumar, S.; Pandey, A.K.; Reis, F. Editorial: Combating Redox Imbalance-Associated Complications with Natural Products. Front. Pharmacol. 2021, 12, 802750. [Google Scholar] [CrossRef]
- George, S.; Abrahamse, H. Redox Potential of Antioxidants in Cancer Progression and Prevention. Antioxidants 2020, 9, 1156. [Google Scholar] [CrossRef]
- Iftikhar, N.; Chatha, S.A.S.; Ahmad, T.; Ali, Q.; Hussain, A.I.; Rathore, H.A. Fagonia Arabica L.: A Review of Its Phytochemistry, Pharmacology and Traditional Uses. Comb. Chem. High Throughput Screen. 2022, 25, 1187–1199. [Google Scholar] [CrossRef]
- Patel, D.K.; Singh, R.K.; Singh, S.K.; Aswal, V.K.; Rana, D.; Ray, B.; Maiti, P. Graphene as a Chain Extender of Polyurethanes for Biomedical Applications. RSC Adv. 2016, 6, 58628–58640. [Google Scholar] [CrossRef]
- Rooprai, H.K.; Lawrence, P.; Keshavarz, S.; Yashod, P.; Gullan, R.W.; Selway, R.P.; Davies, D. DRAQ7 as an Alternative to MTT Assay for Measuring Viability of Glioma Cells Treated with Polyphenols. Anticancer Res. 2020, 40, 5427–5436. [Google Scholar] [CrossRef] [PubMed]
Tests | Hexane | Ethyl Acetate | Methanol | Aqueous |
---|---|---|---|---|
Alkaloids | − | − | − | − |
Flavonoids | − | − | + | + |
Glycosides | − | + | − | − |
Phenols | − | − | + | + |
Saponins | − | + | − | − |
Tannins | − | − | − | − |
Terpenoids | − | − | + | + |
Steroids | + | + | − | − |
Concentration (µg/mL) | Percentage (%) of Cell Viability | |||
---|---|---|---|---|
Hexane | Ethyl Acetate | Methanol Extract | Aqueous Extract | |
50 | 90.85 ± 0.014 * | 90.85 ± 0.009 * | 94.36 ± 0.002 | 78.09 ± 0.005 * |
100 | 77.87 ± 0.016 * | 72.28 ± 0.013 * | 85.22 ± 0.002 * | 70.71 ± 0.016 * |
150 | 67.86 ± 0.001 * | 58.75 ± 0.008 * | 77.22 ± 0.005 * | 55.42 ± 0.021 * |
200 | 47.42 ± 0.001 * | 45.66 ± 0.007 * | 65.30 ± 0.022 * | 49.25 ± 0.003 * |
250 | 32.80 ± 0.015 * | 28.11 ± 0.010 * | 50.15 ± 0.022 * | 33.16 ± 0.018 * |
Concentration in µg/mL | Percentage (%) of Cell Viability | |||
---|---|---|---|---|
Hexane | Ethyl Acetate | Methanol | Aqueous | |
50 | 72.32 ± 0.005 * | 67.04 ± 0.011 * | 80.13 ± 0.014 * | 76.59 ± 0.012 * |
100 | 62.90 ± 0.012 * | 60.74 ± 0.002 * | 73.70 ± 0.001 * | 51.74 ± 0.015 * |
150 | 45.73 ± 0.010 * | 51.86 ± 0.002 * | 65.30 ± 0.015 * | 39.19 ± 0.015 * |
200 | 27.31 ± 0.011 * | 42.67 ± 0.009 * | 57.74 ± 0.008 * | 19.38 ± 0.003 * |
250 | 10.86 ± 0.001 * | 33.43 ± 0.011 * | 50.96 ± 0.014 * | 8.36 ± 0.002 * |
Concentration in µg/mL | Percentage (%) of Cell Viability | |||
---|---|---|---|---|
Hexane | Ethyl Acetate | Methanol | Aqueous | |
50 | 83.22 ± 0.008 * | 70.71 ± 0.012 * | 65.24 ± 0.003 * | 81.09 ± 0.009 * |
100 | 77.15 ± 0.007 * | 63.33 ± 0.009 * | 59.94 ± 0.021 * | 58.46 ± 0.007 * |
150 | 65.68 ± 0.009 * | 46.44 ± 0.006 * | 46.22 ± 0.002 * | 51.53 ± 0.003 * |
200 | 55.95 ± 0.012 * | 32.73 ± 0.008 * | 37.54 ± 0.012 * | 38.41 ± 0.009 * |
250 | 49.01 ± 0.004 * | 25.19 ± 0.002 * | 25.90 ± 0.022 * | 23.55 ± 0.014 * |
Concentration (µg/mL) | Percentage (%) of Cell Viability | |||
---|---|---|---|---|
Hexane | Ethyl Acetate | Methanol | Aqueous | |
50 | 93.26 ± 0.013 | 94.74 ± 0.035 | 85.22 ± 0.015 * | 93.43 ± 0.004 |
100 | 81.27 ± 0.007 * | 79.17 ± 0.004 * | 76.43 ± 0.002 * | 83.50 ± 0.028 * |
150 | 72.22 ± 0.022 * | 70.93 ± 0.023 * | 63.98 ± 0.005 * | 74.86 ± 0.039 * |
200 | 59.23 ± 0.030 * | 56.54 ± 0.003 * | 46.33 ± 0.014 * | 69.50 ± 0.032 * |
250 | 48.99 ± 0.017 * | 45.79 ± 0.033 * | 36.08 ± 0.010 * | 54.29 ± 0.007 * |
Extract/Standard | L929 | MCF-7 | A549 | KB-3-1 |
---|---|---|---|---|
Hexane | 195.72 | 240.47 | 130.55 | 244.93 |
Ethyl acetate | 180.04 | 140.46 | 156.74 | 212.98 |
Methanol | 296.11 | 135.02 | 254.79 | 195.21 |
Aqueous | 182.89 | 152.24 | 116.06 | 286.17 |
Cisplatin | 10.54 | 2.87 | 12.82 | 16.27 |
Peak No. | Compound Name | Rt | Base m/z | Nature | Uses |
---|---|---|---|---|---|
1 | Mome inositol | 25.949 | 87.05 | Sugar derivative | Anti-alopecia, anti-cirrhotic, and anti-neuropathic [42,43] |
2 | Neophytadiene | 26.611 | 68.05 | Diterpene | Anti-inflammatory and antimicrobial agent [44] |
3 | Methylpalmitate | 28.374 | 74.05 | Fatty acid methyl ester | Used in detergents, lubricants, and animal feeds [45]; anti-inflammatory and anti-fibrotic agent [46] |
4 | Methyl octadeca-9,12-dienoate | 31.601 | 67.05 | Fatty acid methyl ester | Industry use, antioxidant [47,48] |
5 | Oleic acid ester | 31.703 | 55.05 | Fatty acid methyl ester | Antioxidant, antibacterial, antihypertensive [49,50] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Walbi, I.A.; Alshabi, A.M.; Alkahtani, S.A.; Shaikh, I.A.; Abdel-Wahab, B.A.; Khateeb, M.M.; Habeeb, M.S.; Orabi, M.A.A.; Shettar, A.K.; Hoskeri, J.H. A Preliminary Cytotoxicity Study of Fagonia arabica against Breast (MCF-7), Oral (KB-3-1), and Lung Cancer (A-549) Cell Lines: A Study Supported by Molecular Marker Analysis Using Dual Staining Dyes. Separations 2023, 10, 110. https://doi.org/10.3390/separations10020110
Walbi IA, Alshabi AM, Alkahtani SA, Shaikh IA, Abdel-Wahab BA, Khateeb MM, Habeeb MS, Orabi MAA, Shettar AK, Hoskeri JH. A Preliminary Cytotoxicity Study of Fagonia arabica against Breast (MCF-7), Oral (KB-3-1), and Lung Cancer (A-549) Cell Lines: A Study Supported by Molecular Marker Analysis Using Dual Staining Dyes. Separations. 2023; 10(2):110. https://doi.org/10.3390/separations10020110
Chicago/Turabian StyleWalbi, Ismail A., Ali Mohamed Alshabi, Saad Ahmed Alkahtani, Ibrahim Ahmed Shaikh, Basel A. Abdel-Wahab, Masood Medleri Khateeb, Mohammed Shafiuddin Habeeb, Mohamed A. A. Orabi, Arun K. Shettar, and Joy H. Hoskeri. 2023. "A Preliminary Cytotoxicity Study of Fagonia arabica against Breast (MCF-7), Oral (KB-3-1), and Lung Cancer (A-549) Cell Lines: A Study Supported by Molecular Marker Analysis Using Dual Staining Dyes" Separations 10, no. 2: 110. https://doi.org/10.3390/separations10020110
APA StyleWalbi, I. A., Alshabi, A. M., Alkahtani, S. A., Shaikh, I. A., Abdel-Wahab, B. A., Khateeb, M. M., Habeeb, M. S., Orabi, M. A. A., Shettar, A. K., & Hoskeri, J. H. (2023). A Preliminary Cytotoxicity Study of Fagonia arabica against Breast (MCF-7), Oral (KB-3-1), and Lung Cancer (A-549) Cell Lines: A Study Supported by Molecular Marker Analysis Using Dual Staining Dyes. Separations, 10(2), 110. https://doi.org/10.3390/separations10020110