Determination of Pterostilbene in Pharmaceutical Products Using a New HPLC Method and Its Application to Solubility and Stability Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Instrumentation and Analytical Conditions
2.3. PTT Calibration Curve
2.4. Analytical Method Development
2.5. Validation Parameters
2.6. Application of Developed HPLC Approach in the Assay of PTT in Commercial Capsules
2.7. Application of the Developed HPLC Approach in the Determination of PTT in Solutions
2.8. Application of the Developed HPLC Approach in the Determination of the Stability of PTT in Solutions
3. Results and Discussion
3.1. Analytical Method Development
3.2. Validation Studies
3.3. Assay of PTT in Marketed Capsules
3.4. Determination of PTT in Solubility Samples
3.5. Stability Studies of PTT in Solution
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Z.; Farag, M.A.; Zhong, Z.; Zhang, C.; Yang, Y.; Wang, S.; Wang, Y. Multifaceted role of phyto-derived polyphenols in nanodrug delivery systems. Adv. Drug Deliv. Rev. 2021, 176, E113870. [Google Scholar] [CrossRef]
- Di Lorenzo, C.; Colombo, F.; Biella, S.; Stockley, C.; Restani, P. Polyphenols and human health: The role of bioavailability. Nutrients 2021, 13, E273. [Google Scholar] [CrossRef] [PubMed]
- Nagarajan, S.; Mohandas, S.; Ganesan, K.; Xu, B.; Ramkumar, M. New insights into dietary pterostilbene: Sources, metabolism, and health promotion effects. Molecules 2022, 27, E6316. [Google Scholar] [CrossRef]
- Seshadri, T.R. Polyphenols of Pterocarpus and Dalbergia woods. Phytochemistry 1972, 11, 881–898. [Google Scholar] [CrossRef]
- Mathew, J.; Rao, A. Chemical examination of Pterocarpus marsupium. J. Indian Chem. Soc. 1984, 61, 728–729. [Google Scholar]
- Ammulu, M.A.; Viswanath, K.V.; Giduturi, A.K.; Vemuri, P.K.; Mangamuri, U.; Poda, S. Phytoassisted synthesis of magnesium oxide nanoparticles from Pterocarpus marsupium rox.b heartwood extract and its biomedical applications. J. Genet. Eng. Biotechnol. 2021, 19, E21. [Google Scholar] [CrossRef]
- Paul, B.; Masih, I.; Deopujari, J.; Charpentier, C. Occurrence of resveratrol and pterostilbene in age-old darakchasava, an ayurvedic medicine from India. J. Ethnopharmacol. 1999, 68, 71–76. [Google Scholar] [CrossRef]
- Waffo Teguo, P.; Fauconneau, B.; Deffieux, G.; Huguet, F.; Vercauteren, J.; Merillon, J.M. Isolation, identification, and antioxidant activity of three stilbene glucosides newly extracted from Vitis vinifera cell cultures. J. Nat. Prod. 1998, 61, 655–657. [Google Scholar] [CrossRef]
- Remsberg, C.M.; Yáñez, J.A.; Ohgami, Y.; Vega-Villa, K.R.; Rimando, A.M.; Davies, N.M. Pharmacometrics of pterostilbene: Preclinical pharmacokinetics and metabolism, anticancer, antiinflammatory, antioxidant and analgesic activity. Phytother. Res. 2008, 22, 169–179. [Google Scholar] [CrossRef]
- Chiou, Y.; Tsai, M.; Nagabhushanam, K.; Wang, Y.J.; Wu, C.H.; Ho, C.T.; Pan, M.H. Pterostilbene is more potent than resveratrol in preventing azoxymethane (AOM)-induced colon tumorigenesis via activation of the NF-E2-related factor 2 (Nrf2)-mediated antioxidant signaling pathway. J. Agric. Food Chem. 2011, 59, 2725–2733. [Google Scholar] [CrossRef]
- Pari, L.; Satheesh, A.M. Effect of pterostilbene on hepatic key enzymes of glucose metabolism in streptozotocin- and nicotinamide induced diabetic rats. Life Sci. 2006, 79, 641–645. [Google Scholar] [CrossRef] [PubMed]
- Kosuru, R.; Cai, Y.; Kandula, V.; Yan, D.; Wang, C.; Zheng, H.; Li, Y.; Irwin, M.G.; Singh, S.; Xia, Z. AMPK contributes to cardioprotective effects of pterostilbene against myocardial ischemia-reperfusion injury in diabetic rats by suppressing cardiac oxidative stress and apoptosis. Cell. Physiol. Biochem. 2018, 46, 1381–1397. [Google Scholar] [CrossRef]
- Wang, B.; Liu, H.; Yue, L.; Li, X.; Zhao, L.; Yang, X.; Wang, X.; Yang, Y.; Qu, Y. Neuroprotective effects of pterostilbene against oxidative stress injury: Involvement of nuclear factor erythroid 2-related factor 2 pathway. Brain Res. 2016, 1643, 70–79. [Google Scholar] [CrossRef]
- Mukthinuthalapati, M.A.; Kumar, J.S.P. New derivative and differential spectrophotometric methods for the determination of pterostilbene-an antioxidant. Pharm. Methods 2015, 6, 143–147. [Google Scholar]
- Majeed, M.; Majeed, S.; Jain, R.; Mundkur, L.; Rajalakshmi, H.R.; Lad, P.; Neupane, P. A randomized study to determine the sun protection factor of natural pterostilbene from Pterocarpus marsupium. Cosmetics 2020, 7, E16. [Google Scholar] [CrossRef] [Green Version]
- Pezet, R.; Pont, V.; Cuenat, P. Method to determine resveratrol and pterostilbene in grape berries and wines using high performance liquid chromatography and highly sensitive fluorimetric detection. J. Chromatogr. A 1994, 663, 191–197. [Google Scholar] [CrossRef]
- Annapurna, M.M.; Venkatesh, B.; Teja, G.R. Development of a validated stability indicating liquid chromatographic method for the determination of pterostilbene. Indian J. Pharm. Educ. Res. 2018, 52, S63–S70. [Google Scholar] [CrossRef] [Green Version]
- Waszczuk, M.; Bianchi, S.E.; Martiny, S.; Pittol, V.; Lacerda, D.S.; Araujo, A.S.D.S.; Bassani, V.L. Development and validation of a specific-stability indicating liquid chromatography method for quantitative analysis of pterostilbene: Application in food and pharmaceutical products. Anal. Methods 2020, 12, 4310–4318. [Google Scholar] [CrossRef]
- Nikam, K.; Bhusari, S.; Wakte, P. High performance liquid chromatography method validation and forced degradation studies of pterostilbene. Res. J. Pharm. Technol. 2022, 15, 2969–2975. [Google Scholar] [CrossRef]
- Bindu, G.H.; Annapurna, M.M. New stability indicating liquid chromatographic method for the determination of pterostilbene in capsules. Res. J. Pharm. Technol. 2018, 11, 3851–3856. [Google Scholar] [CrossRef]
- Remsberg, C.M.; Yanez, J.A.; Roupe, K.A.; Davies, N.M. High-performance liquid chromatographic analysis of pterostilbene in biological fluids using fluorescence detection. J. Pharm. Biomed. Anal. 2007, 43, 250–254. [Google Scholar] [CrossRef]
- Lin, H.S.; Yue, B.D.; Ho, P.C. Determination of pterostilbene in rat plasma by a simple HPLC-UV method and its application in pre-clinical pharmacokinetic study. Biomed. Chromatogr. 2009, 23, 1308–1315. [Google Scholar] [CrossRef]
- Li, J.; Li, D.; Pan, Y.; Hu, J.H.; Huang, W.; Wang, Z.Z.; Xiao, X.; Wang, Y. Simultaneous determination of ten bioactive constituents of Sanjie Zhentong capsule in rat plasma by ultra-high-performance liquid chromatography tandem mass spectrometry and its application to a pharmacokinetic study. J. Chromatogr. B 2017, 1054, 20–26. [Google Scholar] [CrossRef]
- Sun, J.; Huo, H.; Song, Y.; Zheng, J.; Zhao, Y.; Huang, W.; Wang, Y.; Zhu, J.; Tu, P.; Li, J. Method development and application for multi-component quantification in rats after oral administration of Longxuetongluo capsule by UHPLC-MS/MS. J. Pharm. Biomed. Anal. 2018, 156, 252–262. [Google Scholar] [CrossRef]
- Mallavadhani, U.V.; Sahu, G. Pterostilbene: A highly reliable quality-control marker for the Ayurvedic antidiabrtic plant ‘Bijasar’. Chromatographia 2003, 58, 307–312. [Google Scholar]
- Alam, P.; Shakeel, F.; Alqarni, M.H.; Foudah, A.I.; Faiyazuddin, M.; Alshehri, S. Rapid, sensitive, and sustainable reversed-phase HPTLC method in comparison to the normal-phase HPTLC for the determination of pterostilbene in capsule dosage form. Processes 2021, 9, E1305. [Google Scholar] [CrossRef]
- International Conference on Harmonization (ICH). Q2 (R1): Validation of Analytical Procedures–Text and Methodology; International Conference on Harmonization: Geneva, Switzerland, 2005. [Google Scholar]
- Haq, N.; Alshehri, S.; Alam, P.; Ghoneim, M.M.; Hasan, Z.; Shakeel, F. Green analytical chemistry approach for the determination of emtricitabine in human plasma, formulations, and solubility study samples. Sus. Chem. Pharm. 2022, 26, E100648. [Google Scholar] [CrossRef]
- Haq, N.; Alanazi, F.K.; Samem-Bekhit, M.M.; Rabea, S.; Alam, P.; Alsarra, I.A.; Shakeel, F. Greenness estimation of chromatographic assay for the determination of anthracycline-based antitumor drug in bacterial ghost matrix of Salmonella typhimurium. Sus. Chem. Pharm. 2022, 26, E100642. [Google Scholar] [CrossRef]
- Higuchi, T.; Connors, K.A. Phase-solubility techniques. Adv. Anal. Chem. Instr. 1965, 4, 117–122. [Google Scholar]
- Alqarni, M.H.; Haq, N.; Alam, P.; Abdel-Kader, M.S.; Foudah, A.I.; Shakeel, F. Solubility data, Hansen solubility parameters and thermodynamic behavior of pterostilbene in some pure solvents and different (PEG-400 + water) cosolvent compositions. J. Mol. Liq. 2021, 331, E115700. [Google Scholar] [CrossRef]
- Alanazi, A.; Alshehri, S.; Altamimi, M.; Shakeel, F. Solubility determination and three dimensional Hansen solubility parameters of gefitinib in different organic solvents: Experimental and computational approaches. J. Mol. Liq. 2020, 299, E112211. [Google Scholar] [CrossRef]
- Alshehri, S.; Shakeel, F. Solubility determination, various solubility parameters and solution thermodynamics of sunitinib malate in some cosolvents, water and various (Transcutol + water) mixtures. J. Mol. Liq. 2020, 307, E112970. [Google Scholar] [CrossRef]
- Shakeel, F.; Haq, N.; Alsarra, I.A. Equilibrium solubility determination, Hansen solubility parameters and solution thermodynamics of cabozantinib malate in different monosolvents of pharmaceutical importance. J. Mol. Liq. 2021, 324, E115146. [Google Scholar] [CrossRef]
Eluent System | As | N | Rt |
---|---|---|---|
Methanol: water (50:50 v/v) | 1.34 ± 0.02 | 2478 ± 3.21 | 2.78 ± 0.04 |
Methanol: water (90:10 v/v) | 1.30 ± 0.03 | 2771 ± 3.38 | 2.72 ± 0.05 |
Ethanol: water (50:50 v/v) | 1.47 ± 0.07 | 1856 ± 2.63 | 2.68 ± 0.06 |
Ethanol: water (90:10 v/v) | 1.59 ± 0.08 | 1715 ± 2.54 | 2.62 ± 0.07 |
Acetonitrile: water (50:50 v/v) | 1.18 ± 0.03 | 4163 ± 4.22 | 2.59 ± 0.04 |
Acetonitrile: water (90:10 v/v) | 1.07 ± 0.03 | 5125 ± 5.84 | 2.54 ± 0.02 |
Methanol: ethanol (50:50 v/v) | 1.41 ± 0.08 | 2364 ± 3.11 | 2.81 ± 0.06 |
Acetonitrile: methanol (50:50 v/v) | 1.37 ± 0.07 | 2814 ± 3.32 | 2.74 ± 0.07 |
Acetonitrile: ethanol (50:50 v/v) | 1.44 ± 0.06 | 2932 ± 3.39 | 2.71 ± 0.04 |
Methanol: formic acid (90:10 v/v) | 1.38 ± 0.05 | 1942 ± 2.26 | 2.86 ± 0.07 |
Ethanol: formic acid (90:10 v/v) | 1.62 ± 0.10 | 1564 ± 1.97 | 2.91 ± 0.08 |
Acetonitrile: formic acid (90:10 v/v) | 1.26 ± 0.05 | 3741 ± 4.51 | 2.61 ± 0.04 |
Parameters | Values |
---|---|
Linearity range (µg/g) | 1–75 |
Regression equation | y = 9207.2x–4565.5 |
R2 | 0.9995 |
R | 0.9997 |
Slope ± SD | 9207.2 ± 12.13 |
Intercept ± SD | 4565.5 ± 7.41 |
SE of slope | 7.00 |
SE of intercept | 4.27 |
95% CI of slope | 9177.0–9237.3 |
95% CI of intercept | 4547.0–4583.9 |
LOD (ng/g) | 2.65 ± 0.09 |
LOQ (ng/g) | 7.95 ± 0.27 |
Drug | Peak Symmetry | As | K | N |
---|---|---|---|---|
PTT | 1.684 ± 0.11 | 1.07 ± 0.03 | 2.78 ± 0.16 | 5125 ± 5.84 |
Conc. (µg/g) | Intra-Day Accuracy | Inter-Day Accuracy | ||||
---|---|---|---|---|---|---|
Conc. Found (µg/g) ± SD | Recovery (%) | CV (%) | Conc. Found (µg/g) ± SD | Recovery (%) | CV (%) | |
10 | 9.84 ± 0.11 | 98 | 1.11 | 10.13 ± 0.12 | 101 | 1.18 |
50 | 50.56 ± 0.44 | 101 | 0.87 | 49.05 ± 0.43 | 98 | 0.87 |
75 | 76.45 ± 0.51 | 102 | 0.66 | 74.44 ± 0.55 | 99 | 0.73 |
Conc. (µg/g) | Intra-Day Precision | Inter-Day Precision | ||||
---|---|---|---|---|---|---|
Conc. Found (µg/g) ± SD | SE | CV (%) | Conc. Found (µg/g) ± SD | SE | CV (%) | |
10 | 10.41 ± 0.12 | 0.06 | 1.15 | 10.32 ± 0.13 | 0.07 | 1.25 |
50 | 48.96 ± 0.38 | 0.21 | 0.77 | 49.65 ± 0.41 | 0.23 | 0.82 |
75 | 74.54 ± 0.44 | 0.25 | 0.59 | 76.24 ± 0.46 | 0.26 | 0.60 |
Parameters | Conc. Found (µg/g) ± SD | CV (%) | Rt ± SD | CV (%) |
---|---|---|---|---|
Mobile phase composition | ||||
(92:8 % v/v) | 48.71 ± 0.51 | 1.04 | 2.53 ± 0.03 | 1.18 |
(88:12 % v/v) | 50.68 ± 0.55 | 1.08 | 2.55 ± 0.02 | 0.78 |
Mobile phase flow rate | ||||
(1.10 mL/min) | 50.81 ± 0.61 | 1.20 | 2.28 ± 0.01 | 0.43 |
(0.90 mL/min) | 48.42 ± 0.58 | 1.19 | 2.75 ± 0.04 | 1.45 |
Detection wavelength (nm) | ||||
252 | 48.71 ± 0.57 | 1.17 | 2.55 ± 0.03 | 1.17 |
256 | 51.11 ± 0.64 | 1.25 | 2.57 ± 0.04 | 1.55 |
Analytical Method | Nature of Sample | Linearity Range | Accuracy (% Recovery) | Precision (% CV) | LOD | LOQ | Ref. |
---|---|---|---|---|---|---|---|
HPLC | Solution | 0.02–250 (µg/mL) | 98.91–99.59 | 0.02–0.67 | 0.006 (µg/mL) | 0.019 (µg/mL) | [17] |
HPLC | Solution | 1–20 (µg/mL) | 96.88–100.77 | 0.20–1.65 | 0.290 (µg/mL) | 0.090 (µg/mL) | [18] |
HPTLC | Solution | 200–500 (ng/band) | 96.67–98.13 | 0.82–2.12 | 140 (ng/band) | 200 (ng/band) | [25] |
Routine HPTLC | Solution | 30–400 (ng/band) | 90.42–108.82 | 3.32–3.48 | 11.1 (ng/band) | 33.3 (ng/band) | [26] |
Sustainable HPTLC | Solution | 10–1600 (ng/band) | 98.79–100.94 | 0.18–0.64 | 3.51 (ng/band) | 10.5 (ng/band) | [26] |
HPLC | Solution | 1–75 (µg/g) | 98.10–101.93 | 0.59–1.25 | 2.65 (ng/g) | 7.95 (ng/g) | Present work |
Stability | Nominal Conc. (µg/g) | Conc. Found (µg/g) ± SD | Precision (% CV) | Recovery (%) |
---|---|---|---|---|
Refrigeration (4 °C) | 50 | 49.92 ± 0.52 | 1.04 | 99.84 |
Bench top (25 °C) | 50 | 50.21± 0.54 h | 1.07 | 100.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haq, N.; Shakeel, F.; Ghoneim, M.M.; Asdaq, S.M.B.; Alam, P.; Aloatibi, F.O.; Alshehri, S. Determination of Pterostilbene in Pharmaceutical Products Using a New HPLC Method and Its Application to Solubility and Stability Samples. Separations 2023, 10, 178. https://doi.org/10.3390/separations10030178
Haq N, Shakeel F, Ghoneim MM, Asdaq SMB, Alam P, Aloatibi FO, Alshehri S. Determination of Pterostilbene in Pharmaceutical Products Using a New HPLC Method and Its Application to Solubility and Stability Samples. Separations. 2023; 10(3):178. https://doi.org/10.3390/separations10030178
Chicago/Turabian StyleHaq, Nazrul, Faiyaz Shakeel, Mohammed M. Ghoneim, Syed Mohammed Basheeruddin Asdaq, Prawez Alam, Fahad Obaid Aloatibi, and Sultan Alshehri. 2023. "Determination of Pterostilbene in Pharmaceutical Products Using a New HPLC Method and Its Application to Solubility and Stability Samples" Separations 10, no. 3: 178. https://doi.org/10.3390/separations10030178
APA StyleHaq, N., Shakeel, F., Ghoneim, M. M., Asdaq, S. M. B., Alam, P., Aloatibi, F. O., & Alshehri, S. (2023). Determination of Pterostilbene in Pharmaceutical Products Using a New HPLC Method and Its Application to Solubility and Stability Samples. Separations, 10(3), 178. https://doi.org/10.3390/separations10030178