Separation of Oil from an Oil/Water Mixed Drop under a Lamb Wave Field: A Review
Abstract
:1. Introduction
2. Theoretical Analysis
3. Experimental Requirements
3.1. Experimental Devices
3.2. Experimental Approach
3.3. Experimental Procedure
4. Experimental Results and Discussions
4.1. Effect of Input Power
4.2. Effect of Inclination Angle
4.3. Effect of Oil and Water Volume Ratio
4.4. Separation Experiment of Other Non-Piezoelectric Substrates
5. Conclusions and Perspective
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nordvik, A.; Simmons, J.; Bitting, K.; Lewis, A.; Strøm-Kristiansen, T. Oil and Water Separation in Marine Oil Spill Clean-up Operations. Spill Sci. Technol. Bull. 1996, 3, 107–122. [Google Scholar] [CrossRef]
- Kang, L.; Wang, B.; Zeng, J.S.; Cheng, Z.; Li, J.P.; Xu, J.; Gao, W.H.; Chen, K.F. Degradable dual superlyophobic lignocellulosic fibers for high-efficiency oil/water separation. Green Chem. 2020, 22, 504–512. [Google Scholar] [CrossRef]
- Shannon, M.; Bohn, P.; Elimelech, M.; Georgiadis, J.; Marinas, B.; Mayes, A. Science and technology for water purification in the coming decades. Nature 2008, 452, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.Y.; Wang, X.; Feng, S.Y. Nonflammable and magnetic sponge decorated with polydimethylsiloxane brush for multitasking and highly efficient oil/water separation. Adv. Funct. Mater. 2019, 29, 1902488. [Google Scholar] [CrossRef]
- Wu, R.H.; Yu, B.W.; Liu, X.Y.; Li, H.L.; Wang, W.X.; Chen, L.Y.; Bai, Y.T.; Ming, Z.; Yang, S.T. One-pot hydrothermal preparation of graphene sponge for the removal of oils and organic solvents. Appl. Surf. Sci. 2016, 362, 56–62. [Google Scholar] [CrossRef]
- Tumba, K.; Mohammadi, A.; Naidoo, P.; Ramjugernath, D. Assessing hydrate formation as a separation process for mixtures of close-boiling point compounds: A modelling study. J. Nat. Gas Sci. Eng. 2016, 35, 1405–1415. [Google Scholar] [CrossRef]
- Chen, Q.; Liu, S.; Chen, L.; Wu, T.; Tian, X. Nontraditional oil sorbents: Hydrophilic sponges with hydrophobic skin layer for efficient oil spill remediation. Sci. China Mater. 2022, 65, 1929–1936. [Google Scholar] [CrossRef]
- Mehmet, O.; Sedat, Y. Experimental investigation of oil-in water separation using corrugated plates and optimization of separation system. Sep. Sci. Technol. 2022, 57, 788–800. [Google Scholar]
- Frising, T.; Noïk, C.; Dalmazzone, C. The liquid/liquid sedimentation process: From droplet coalescence to technologically enhanced water/oil emulsion gravity separators: A Review. J. Dispers. Sci. Technol. 2006, 27, 1035–1057. [Google Scholar] [CrossRef]
- Dunderdale, G.J.; Urata, C.; Sato, T.; England, M.W.; Hozumi, A. Continuous, high-speed, and efficient oil/water separation using meshes with antagonistic wetting properties. ACS Appl. Mater Interfaces 2015, 7, 18915–18919. [Google Scholar] [CrossRef]
- Yang, S.D.; Shen, C.M.; Chen, L.; Wang, C.C.; Rana, M.; Lv, P. Vapor-liquid deposition strategy to prepare superhydrophobic and superoleophilic graphene aerogel for oil/water separation. ACS Appl. Nano Mater. 2018, 1, 531. [Google Scholar] [CrossRef]
- Lu, J.W.; Li, F.C.; Miao, G.; Miao, X.; Ren, G.N.; Wang, B.; Song, Y.M.; Li, X.M.; Zhu, X.T. Superhydrophilic/superoleophobic shell powder coating as a versatile platform for both oil/water and oil/oil separation. J. Membr. Sci. 2021, 637, 119624. [Google Scholar] [CrossRef]
- Latthe, S.S.; Sutar, R.S.; Shinde, T.B.; Pawar, S.B.; Khot, T.M.; Bhosale, A.K.; Sadasivuni, K.K.; Xing, R.M.; Mao, L.Q.; Liu, S.H. Superhydrophobic leaf mesh decorated with SiO2 nanoparticle-polystyrene nanocomposite for oil/water separation. ACS Appl. Nano Mater. 2019, 2, 799–805. [Google Scholar] [CrossRef]
- Yang, J.B.; Wang, H.C.; Tao, Z.A.; Liu, X.P.; Wang, Z.W.; Yue, R.R.; Cui, Z.F. 3D superhydrophobic sponge with a novel compression strategy for effective water-in-oil emulsion separation and its separation mechanism. Chem. Eng. J. 2019, 359, 149–158. [Google Scholar] [CrossRef]
- Lu, Z.; Huang, X.; Wang, L. Superhydrophobic hierarchical structure carbon mesh films for oil/water separation application. Appl. Phys. Lett. 2017, 538, 2–5. [Google Scholar] [CrossRef]
- Zhang, N.; Qi, Y.; Zhang, Y.; Luo, J.; Cui, P.; Jiang, W. A review on oil/water mixture separation material. Ind. Eng. Chem. Res. 2020, 59, 14546–14568. [Google Scholar] [CrossRef]
- Liu, Y.; Xia, M.; Wu, L.L.; Pan, S.X.; Zhang, Y.H.; He, B.Q.; He, P.X. Physically cross-linked double-network hydrogel for high-performance oil/water separation mesh. Ind. Eng. Chem. Res. 2019, 58, 21649–21658. [Google Scholar] [CrossRef]
- Zhang, W.; Lu, X.; Xin, Z.; Zhou, C. A self-cleaning polybenzoxazine/TiO2 surface with superhydrophobicity and superoleophilicity for oil/water separation. Nanoscale 2015, 46, 19476–19483. [Google Scholar] [CrossRef]
- Yu, L.H.; Hao, G.Z.; Liang, Q.Q.; Zhou, S.; Zhang, N.; Jiang, W. Facile preparation and characterization of modified magnetic silica nanocomposite particles for oil absorption. Appl. Surf. Sci. 2015, 357, 2297–2305. [Google Scholar] [CrossRef]
- Song, Q.Q.; Zhu, J.Y.; Niu, X.P.; Wang, J.; Dong, G.; Shan, M.X.; Zhang, B.; Matsuyama, H.; Zhang, Y.T. Interfacial assembly of micro/nanoscale nanotube/silica achieves superhydrophobic melamine sponge for water/oil separation. Sep. Purif. Technol. 2022, 280, 119920. [Google Scholar] [CrossRef]
- Lv, X.S.; Tian, D.H.; Peng, Y.Y.; Li, J.X.; Jiang, G.M. Superhydrophobic magnetic reduced graphene oxide-decorated foam for efficient and repeatable oil/water separation. Appl. Surf. Sci. 2019, 466, 937–945. [Google Scholar] [CrossRef]
- He, Y.L.; Li, J.H.; Luo, K.; Li, L.F.; Chen, J.B.; Li, J.Y. Engineering reduced graphene oxide aerogel produced by effective γ-ray radiation-induced self-assembly and its application for continuous oil/water separation. Ind. Eng. Chem. Res. 2016, 55, 3775–3781. [Google Scholar] [CrossRef]
- Zhao, Y.; Sun, T.B.; Liao, W.D.; Wang, Y.Q.; Yu, J.L.; Zhang, M.; Yu, Z.Q.; Yang, B.; Gui, D.Y.; Zhu, C.Z.; et al. Amphiphilic graphene aerogel with high oil and water adsorption capacity and high contact area for interface reaction. ACS Appl. Mater. Interfaces 2019, 11, 22794–22800. [Google Scholar] [CrossRef]
- Liu, H.Z.; Geng, B.Y.; Chen, Y.F.; Wang, H.Y. Review on the aerogel-type oil sorbents derived from nanocellulose. ACS Sustain. Chem. Eng. 2017, 5, 49–66. [Google Scholar] [CrossRef]
- Li, Z.D.; Zhong, L.; Zhang, T.; Qiu, F.X.; Yue, X.J.; Yang, D.Y. Sustainable, flexible, and superhydrophobic functionalized cellulose aerogel for selective and versatile oil/water separation. ACS Sustain. Chem. Eng. 2019, 7, 9984–9994. [Google Scholar] [CrossRef]
- Zhou, S.K.; Liu, P.P.; Wang, M.; Zhao, H.; Yang, J.; Xu, F. Sustainable, reusable, and superhydrophobic aerogels from microfibrillated cellulose for highly effective oil/water separation. ACS Sustain. Chem. Eng. 2016, 4, 6409–6416. [Google Scholar] [CrossRef]
- Yang, W.; Yuen, A.C.Y.; Ping, P.; Wei, R.-C.; Hua, L.; Zhu, Z.; Li, A.; Zhu, S.-E.; Wang, L.-L.; Liang, J.; et al. Pectin-assisted dispersion of exfoliated boron nitride nanosheets for assembled bio-composite aerogels. Compos. Part A Appl. Sci. Manuf. 2019, 119, 196–205. [Google Scholar] [CrossRef]
- Yang, W.J.; Yuen, A.C.Y.; Li, A. Recent progress in bio-based aerogel absorbents for oil/water separation. Cellulose 2019, 26, 6449–6476. [Google Scholar] [CrossRef]
- Li, Y.; Shang, X.Z.; Zhang, B.Q. One-step fabrication of the pure-silica zeolite beta coating on stainless steel mesh for efficient oil/water separation. Ind. Eng. Chem. Res. 2018, 57, 17409–17416. [Google Scholar] [CrossRef]
- Guo, H.S.; Yang, J.; Xu, T.; Zhao, W.Q.; Zhang, J.M.; Zhu, Y.N.; Wen, C.Y.; Li, Q.S.; Sui, X.J.; Zhang, L. A robust cotton textile-based material for high-flux oil/water separation. ACS Appl. Mater. Interfaces 2019, 11, 13704–13713. [Google Scholar] [CrossRef]
- Zhu, Y.Z.; Xie, W.; Zhang, F.; Xing, T.L.; Jin, J. Superhydrophilic in-situ-cross-linked zwitterionic polyelectrolyte/PVDF-blend membrane for highly efficient oil/water emulsion separation. ACS Appl. Mater. Interfaces 2017, 9, 9603–9613. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.F.; Liu, Z.L.; Wei, X.C.; Liu, K.L.; Wang, J.H.; Hu, J.T.; Lin, J. An integrated strategy for achieving oil-in-water separation, removal, and anti-oil/dye/bacteria-fouling. Chem. Eng. J. 2021, 413, 127493. [Google Scholar] [CrossRef]
- Zeng, G.Y.; He, Y.; Ye, Z.B.; Yang, X.; Chen, X.; Ma, J.; Li, F. Novel halloysite nanotubes intercalated graphene oxide based composite membranes for multifunctional applications: Oil/water separation and dyes removal. Ind. Eng. Chem. Res. 2017, 56, 10472–10481. [Google Scholar] [CrossRef]
- Kollarigowda, R.H.; Abraham, S.; Montemagno, C.D. Antifouling cellulose hybrid biomembrane for effective oil/water separation. ACS Appl. Mater. Interfaces 2017, 9, 29812–29819. [Google Scholar] [CrossRef]
- Yan, X.H.; Xiao, X.; Au, C.; Mathur, S.; Huang, L.J.; Wang, Y.X.; Zhang, Z.J.; Zhu, Z.J.; Kipper, M.J.; Tang, J.G.; et al. Electrospinning nanofibers and nanomembranes for oil/water separation. J. Mater. Chem. A 2021, 9, 21659–21684. [Google Scholar] [CrossRef]
- Liu, F.; Ma, M.L.; Zang, D.L.; Gao, Z.X.; Wang, C.Y. Fabrication of superhydrophobic/superoleophilic cotton for application in the field of water/oil separation. Carbohydr. Polym. 2014, 103, 480–487. [Google Scholar] [CrossRef] [PubMed]
- Qing, W.H.; Shi, X.N.; Deng, Y.J.; Zhang, W.D.; Wang, J.Q.; Tang, C.Y.Y. Robust superhydrophobic-superoleophilic polytetrafluoroethylene nanofibrous membrane for oil/water separation. J. Membr. Sci. 2017, 540, 354–361. [Google Scholar] [CrossRef]
- Wang, H.; Wang, M.K.; Wang, Y.L.; Wang, J.; Xue, M.H.; Zhang, Z.H.; Singh, V. Synergistic effects of COF and GO on high flux oil/water separation performance of superhydrophobic composites. Sep. Purif. Technol. 2021, 276, 119268. [Google Scholar] [CrossRef]
- Navarathna, C.M.; Dewage, N.B.; Keeton, C.; Pennisson, J.; Henderson, R.; Lashley, B.; Zhang, X.F.; Hassan, E.; Perez, F.; Mohan, D.; et al. Biochar adsorbents with enhanced hydrophobicity for oil spill removal. ACS Appl. Mater. Interfaces 2020, 12, 9248–9260. [Google Scholar] [CrossRef]
- Long, M.Y.; Peng, S.; Deng, W.S.; Wen, N.; Zhou, Q.N.; Deng, W.L. Oil/water separations from nanosized superhydrophobic to microsized under-oil superhydrophilic dust. ACS Applied. Nano Mater. 2018, 1, 3398–3406. [Google Scholar] [CrossRef]
- Deng, Y.Y.; Peng, C.S.; Dai, M.; Lin, D.C.; Ali, I.; Alhewairini, S.S.; Zheng, X.L.; Chen, G.Q.; Li, J.Y.; Naz, I. Recent development of super-wettable materials and their applications in oil-water separation. J. Clean. Prod. 2020, 266, 121624. [Google Scholar] [CrossRef]
- Ding, F.; Gao, M.L. Pore wettability for enhanced oil recovery, contaminant adsorption and oil/water separation: A review. Adv. Colloid Interface Sci. 2021, 289, 102377. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Peng, X.; Xu, W.; Wang, H. Preparation and characterization of biomimetic superhydrophilic surface based on polysuccinimide derivatives. Acta Polym. Sin. 2022, 53, 279–288. [Google Scholar]
- Wu, W.; Zhang, H.; Jia, Q. Progress in hydrophobic-oleophilic materials. Rare Met. Mater. Eng. 2021, 50, 1471–1481. [Google Scholar]
- Zhu, Z.; Wu, J.; Wu, Z.; Wu, T.; He, Y.; Yin, K. Femtosecond laser micro/nano fabrication for bioinspired superhydrophobic or underwater superoleophobic surfaces. J. Cent. South Univ. 2021, 28, 3882–3906. [Google Scholar] [CrossRef]
- Xiao, Z.; Zhang, M.; Fan, W.; Qian, Y.; Yang, Z.; Xu, B.; Kang, Z.; Wang, R.; Sun, D. Highly efficient oil/water separation and trace organic contaminants removal based on superhydrophobic conjugated microporous polymer coated devices. Chem. Eng. J. 2017, 326, 640–646. [Google Scholar] [CrossRef]
- Guo, W.W.; Wang, X.; Huang, J.L.; Zhou, Y.F.; Cai, W.; Wang, J.L.; Song, L.; Yuan, H. Construction of durable flame-retardant and robust superhydrophobic coatings on cotton fabrics for water-oil separation application. Chem. Eng. J. 2020, 398, 125661. [Google Scholar] [CrossRef]
- Zhou, X.F.; Wu, Y. Electrospinning superhydrophobic–superoleophilic fibrous PVDF membranes for high-efficiency water–oil separation. Mater. Lett. 2015, 160, 423–427. [Google Scholar] [CrossRef] [Green Version]
- Nuraje, N.; Khan, W.S.; Lei, Y.; Ceylan, M.; Asmatulu, R.; Ma, M. Superhydrophobic electrospun nanofibers. J. Mater. Chem. A 2013, 1, 1929–1946. [Google Scholar] [CrossRef]
- Tao, M.; Xue, L.; Liu, F.; Jiang, L. An intelligent superwetting PVDF membrane showing switchable transport performance for oil/water separation. Adv. Mater. 2014, 26, 2943–2948. [Google Scholar] [CrossRef]
- Liu, P.F.; Zhang, Y.P.; Liu, S.Q.; Zhang, Y.J.; Du, Z.L.; Qu, L.B. Bio-inspired fabrication of fire-retarding, magnetic-responsive, superhydrophobic sponges for oil and organics collection. Appl. Clay Sci. 2019, 172, 19–27. [Google Scholar] [CrossRef]
- Yang, Y.; Li, X.; Zheng, X.; Chen, Z.; Zhou, Q.; Chen, Y. 3D-Printed Biomimetic Super-Hydrophobic Structure for Microdroplet Manipulation and Oil/Water Separation. Adv. Mater. 2018, 30, 1704912. [Google Scholar] [CrossRef]
- Luo, C.; Heng, X. Separation of Oil from a Water/Oil Mixed Drop Using Two Nonparallel Plates. Langmuir 2014, 30, 10002–10010. [Google Scholar] [CrossRef] [PubMed]
- Bruus, H. Theoretical Microfluidics; Oxford University Press: Oxford, UK, 2008. [Google Scholar]
- Bruus, H. Acoustofluidics 1: Governing equations in microfluidics. Lab A Chip 2011, 11, 3742–3751. [Google Scholar] [CrossRef] [Green Version]
- Bruus, H. Acoustofluidics 2: Perturbation theory and ultrasound resonance modes. Lab A Chip 2012, 12, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Bruus, H. Acoustofluidics 7: The acoustic radiation force on small particles. Lab A Chip 2012, 12, 1014–1021. [Google Scholar] [CrossRef]
- Patel, M.V.; Nanayakkara, I.A.; Simon, M.G.; Lee, A.P. Cavity-induced microstreaming for simultaneous on-chip pumping and size-based separation of cells and particles. Lab A Chip 2014, 14, 3860–3872. [Google Scholar] [CrossRef] [PubMed]
- Nam, J.; Lim, H.; Kim, C.; YoonKang, J.; Shin, S. Density-dependent separation of encapsulated cells in a microfluidic channel by using a standing surface acoustic wave. Biomicrofluidics 2012, 6, 024120. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Mao, W.; Byler, R.; Patel, K.; Henegar, C.; Alexeev, A.; Sulchek, T. Stiffness dependent separation of cells in a microfluidic device. PLoS ONE 2013, 8, e75901. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Wu, M.; Lin, Y.; Xu, J. Acoustic microfluidic separation techniques and bio applications: A review. Micromachines 2020, 11, 921. [Google Scholar] [CrossRef]
- Rufo, J.; Cai, F.; Friend, J.; Wiklund, M.; Huang, T.J. Acoustofluidics for biomedical applications. Nat. Rev. Methods Prim. 2022, 2, 30. [Google Scholar] [CrossRef]
- Antfolk, M.; Magnusson, C.; Augustsson, P.; Lilja, H.; Laurell, T. Acoustofluidic, label-free separation and simultaneous concentration of rare tumor cells from white blood cells. Anal. Chem. 2015, 87, 9322–9328. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.; Wang, Z.; Zhang, P.; Naquin, T.D.; Mai, J.; Wu, Y.; Yang, S.; Gu, Y.; Bachman, H.; Liang, Y.; et al. Generating multifunctional acoustic tweezers in Petri dishes for contactless, precise manipulation of bioparticles. Sci. Adv. 2020, 6, eabb0494. [Google Scholar] [CrossRef]
- Wiklund, M. Acoustofluidics 12: Biocompatibility and cell viability in microfluidic acoustic resonators. Lab A Chip 2012, 12, 2018–2028. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.J.; Hua, H.; Stratton, Z.; Yi, P.H.; Tony, J.H. Continuous particle separation in a microfluidic channelvia standing surface acoustic waves (SSAW). Lab A Chip 2009, 9, 3354–3359. [Google Scholar]
- Zhu, G.P.; Wang, Q.Y.; Ma, Z.K.; Wu, S.H.; Guo, Y.P. Droplet Manipulation under a Magnetic Field: A Review. Biosensors 2022, 12, 156. [Google Scholar] [CrossRef]
- Wyatt Shields, L.C.; Reyes, C.D.; López, G.P. Microfluidic cell sorting: Areview of the advances in the separation of cells from debulking to rare cellisolation. Lab A Chip 2015, 15, 1230–1249. [Google Scholar] [CrossRef] [Green Version]
- Shi, D.X.; Bi, Q.C.; He, Y.Q.; Zhou, R.Q. Experimental investigation on falling ferrofluid droplets in vertical magnetic fields. Exp. Therm. Fluid Sci. 2014, 54, 313–320. [Google Scholar] [CrossRef]
- Shilton, R.; Tan, M.K.; Yeo, L.Y.; Friend, J.R. Particle concentration and mixing in microdrops driven by focused surface acoustic waves. J. Appl. Phys. 2008, 104, 014910. [Google Scholar] [CrossRef] [Green Version]
- Mohapatra, A.R.; Sepehrirahnama, S.; Lim, K.M. Experimental measurement of interparticle acoustic radiation force in the Rayleigh limit. Phys. Rev. E 2018, 97, 053105. [Google Scholar] [CrossRef]
- Fan, Y.; Wang, X.; Ren, J.; Lin, F.; Wu, J. Recent advances in acoustofluidic separation technology in biology. Microsyst. Nanoeng. 2022, 8, 94. [Google Scholar] [CrossRef] [PubMed]
- Kang, k.; Lim, H.; Lee, H.; Lee, S. Evaporation-induced saline Rayleigh convection inside a colloidal droplet. Phys. Rev. Fluids 2013, 25, 042001. [Google Scholar] [CrossRef] [Green Version]
- Agostini, M.; Grecoa, G.; Cecchini, M. A Rayleigh surface acoustic wave (R-SAW) resonator biosensor based on positive and negative reflectors with sub-nanomolar limit of detection. Sens. Actuators B Chem. 2018, 254, 1–7. [Google Scholar] [CrossRef]
- Schmitt, M.; Stich, S.; Fromm, S.; Fischer, F.; Lindner, G. Detection and Removal of Droplets on Non-piezoelectric Substrates via Mode Conversion of Lamb Waves. Br. J. Philos. Sci. 2010, 143, 304–308. [Google Scholar]
- Liang, W.; Tietze, S.; Schmitt, M.; Lindner, G. Droplet propulsion on non-piezoelectric substrates induced by Lamb waves. AIP Conf. Proc. 2012, 1474, 392–395. [Google Scholar]
- Liang, W.; Lindner, G. Investigations of droplet movement excited by Lamb waves on a non-piezoelectric substrate. J. Appl. Phys. Lett. 2013, 114, 044501. [Google Scholar] [CrossRef]
- Bhagat, A.A.S.; Bow, H.; Hou, H.W.; Tan, S.J.; Han, J.; Lim, C.T. Microfluidics for cell separation. Med. Biol. Eng. Comput. 2010, 48, 999–1014. [Google Scholar] [CrossRef]
- Dong, Z.; Yao, C.; Zhang, Y. Hydrodynamics and mass transfer of oscillating gas-liquid flow in ultrasonic microreactors. AIChE JOURNAL 2016, 62, 1294–1307. [Google Scholar] [CrossRef]
- Watanabe, S.; Matsumoto, S.; Higurashi, T. Almost Complete Separation of a Fluid Component from a Mixture Using Burgers Networks of Microseparators. J. Phys. Soc. Jpn. 2015, 84, 043401. [Google Scholar] [CrossRef]
- Khazaaleh, S.; Saeed, N.; Taha, I.; Madzik, M.; Viegas, J. Piezoelectric micromachined ultrasonic transducers and micropumps: From design to optomicrofluidic applications. Microfluidics, BioMEMS, and Medical Microsystems XV, San Francisco, CA, USA, 28 January–2 February 2017; 10061, pp. 133–139. [Google Scholar]
- Shiokawa, S.; Matsui, Y.; Ueda, T. Liquid streaming and droplet formation caused by leaky Rayleigh waves. Ultrason. Symp. 1989, 89, 643–646. [Google Scholar]
- Eckart, C. Vortices and streams caused by sound waves. Phys. Rev. 1989, 73, 68–76. [Google Scholar] [CrossRef]
- Lighthill, M.J. Internal Waves in Fluids; Cambridge University Press: Cambridge, UK, 1978; pp. 284–430. [Google Scholar]
- Lighthill, M.J. Acoustic streaming. J. Sound Vib. 1978, 61, 391–418. [Google Scholar] [CrossRef]
- Westervelt, P.J. The theory of steady rotational flow generated by sound field. J. Acoust. Soc. Am. 1953, 25, 60–67. [Google Scholar] [CrossRef]
- Moroney, R.M.; White, R.M.; Howe, R.T. Fluid motion produced by ultrasonic Lamb waves. IEEE Symp. Ultrason. 1990, 1, 355–358. [Google Scholar]
- Moroney, R.M.; White, R.M.; Howe, R.T. Microtransport induced by ultrasonic Lamb waves. In Proceedings of the IEEE Ultrasonics Symposium, Orlando, FL, USA, 12 August 1991; pp. 774–776. [Google Scholar]
- Liang, W.; Zhang, F.; Yang, G.; Wang, Z. Separation of water from a microliter oil/water mixed drop using Lamb waves on an inclined glass plate. Microfluid. Nanofluidics 2017, 21, 2–5. [Google Scholar] [CrossRef]
- Rose, J.L. Ultrasonic Waves in Solid Media; University Press: Cambridge, UK, 2000; pp. 1807–1808. [Google Scholar]
- Lowe, M. Matrix techniques for modeling ultrasonic waves in multilayered media. IEEE Trans Ultrason. Ferroelectr Freq Control. 1995, 42, 525–542. [Google Scholar] [CrossRef]
- Jiao, Z.J.; Huang, X.Y.; Nguyen, N.-T. Scattering and attenuation of surface acoustic waves in droplet actuation. J. Phys. A Math. Theor. 2008, 41, 355502. [Google Scholar] [CrossRef]
- Zhu, J.; Liang, W.; Li, G. Experimental study on the motion of droplets excited by Lamb waves on an inclined non-piezoelectric substrate. Jpn. J. Appl. Phys. 2017, 56, 097301. [Google Scholar] [CrossRef]
- Shiokawa, S.; Matsui, Y. The dynamics of SAW streaming and its application to fluid devices. MRS Online Proc. Libr. 1994, 360, 53–64. [Google Scholar] [CrossRef]
- Ding, W.Z.; Liang, W.; Zhu, P.F.; Tian, Y.X. Application of Lamb waves in actuating water droplets on the surface of Inclined convex lens substrate. Automob. Technol. 2020, 538, 19–24. (In Chinese) [Google Scholar]
- Guan, Z.; Liang, W. Oil/water micro-separation experiment based on Lamb wave on inclined mirrorsubstrate. J. Appl. Acoust. 2019, 38, 208–216. (In Chinese) [Google Scholar]
- Jiang, H.; Liang, W. Application of Lamb waves in actuating oil/water mixed micro-droplets on the surface of inclined steel substrate. Technol. Water Treat. 2019, 45, 36–39. (In Chinese) [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, W.; Yang, Z. Separation of Oil from an Oil/Water Mixed Drop under a Lamb Wave Field: A Review. Separations 2023, 10, 187. https://doi.org/10.3390/separations10030187
Liang W, Yang Z. Separation of Oil from an Oil/Water Mixed Drop under a Lamb Wave Field: A Review. Separations. 2023; 10(3):187. https://doi.org/10.3390/separations10030187
Chicago/Turabian StyleLiang, Wei, and Zhaodong Yang. 2023. "Separation of Oil from an Oil/Water Mixed Drop under a Lamb Wave Field: A Review" Separations 10, no. 3: 187. https://doi.org/10.3390/separations10030187
APA StyleLiang, W., & Yang, Z. (2023). Separation of Oil from an Oil/Water Mixed Drop under a Lamb Wave Field: A Review. Separations, 10(3), 187. https://doi.org/10.3390/separations10030187