LC-MS/MS and GC-MS Analysis for the Identification of Bioactive Metabolites Responsible for the Antioxidant and Antibacterial Activities of Lygodium microphyllum (Cav.) R. Br.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Collection and Extraction
2.2. LC-MS/MS Analysis
2.3. GC-MS Analysis
2.4. Disc Diffusion Assay for Antibacterial Activity
2.5. Determination of Minimum Inhibitory Concentration (MIC)
2.6. Statistical Analysis
3. Results and Discussion
3.1. LM Extraction Yield and Antioxidant Properties
3.2. Identified Bioactive Compounds in LC-MS/MS
3.3. Identification of Metabolites in GC-MS
3.4. Antibacterial Effect of LM
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tang, J.; Dunshea, F.R.; Suleria, H.A. LC-ESI-QTOF/MS characterization of phenolic compounds from medicinal plants (hops and juniper berries) and their antioxidant activity. Foods 2019, 9, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Gnanaraj, C.; Arulselvan, P.; El-Seedi, H.; Teng, H. A review on advanced microencapsulation technology to enhance bioavailability of phenolic compounds: Based on its activity in the treatment of type 2 diabetes. Trends Food Sci. Technol. 2019, 85, 149–162. [Google Scholar] [CrossRef]
- Alsarhan, A.; Sultana, M.; Khatib, A.A.; Kadir, M.R.A. Review on some Malaysian traditional medicinal plants with therapeutic properties. J. Basic Appl. Sci. 2014, 10, 149–159. [Google Scholar] [CrossRef] [Green Version]
- Amoateng, P.; Koffuor, G.A.; Sarpong, K.; Agyapong, K.O. Free radical scavenging and anti-lipid peroxidative effects of a hydro-ethanolic extract of the whole plant of Synedrella nodiflora (L.) Gaertn (asteraceae). Free Rad. Antiox. 2011, 1, 70–78. [Google Scholar] [CrossRef] [Green Version]
- Gnanaraj, C.; Shah, M.D.; Makki, J.S.; Iqbal, M. Hepatoprotective and immunosuppressive effect of Synedrella nodiflora L. in carbon tetrachloride (CCl4)-intoxicated rats. J. Environ. Pathol. Toxicol. Oncol. 2016, 35, 29–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Androutsopoulos, V.P.; Papakyriakou, A.; Vourloumis, D.; Tsatsakis, A.M.; Spandidos, D.A. Dietary flavonoids in cancer therapy and prevention: Substrates and inhibitors of cytochrome P450 CYP1 enzymes. Pharmacol. Ther. 2010, 126, 9–20. [Google Scholar] [CrossRef]
- Gnanaraj, C.; Shah, M.D.; Song, T.T.; Iqbal, M. Hepatoprotective mechanism of Lygodium microphyllum (Cav.) R.Br. through ultrastructural signaling prevention against carbon tetrachloride (CCl4)-mediated oxidative stress. Biomed. Pharmacother. 2017, 92, 1010–1022. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.M.; Emon, N.U.; Alam, S.; Rudra, S.; Akhter, N.; Mamun, M.M.; Ganguly, A. Assessment of pharmacological activities of Lygodium Microphyllum Cav. leaves in the management of pain, inflammation, pyrexia, diarrhea, and helminths: In vivo, in vitro and in silico approaches. Biomed. Pharmacother. 2021, 139, 111644. [Google Scholar] [CrossRef]
- Haron, F.K.; Shah, M.D.; Yong, Y.S.; Tan, J.K.; Lal, M.T.M.; Venmathi Maran, B.A. Antiparasitic potential of methanol extract of brown alga Sargassum polycystum (Phaeophyceae) and its LC-MS/MS metabolite profiling. Diversity 2022, 14, 796. [Google Scholar] [CrossRef]
- Shah, M.D.; Venmathi Maran, B.A.; Tan, J.K.; Yong, Y.S.; Fui Fui, C.; Shaleh, S.R.M.; Shapawi, R. The anti-leech potential of the solvent extract of Bornean neem leaves and ultra-high performance liquid chromatography-high-resolution mass spectrometry profiling. J. King Saud Univ. Sci. 2021, 33, 101541. [Google Scholar] [CrossRef]
- Venmathi Maran, B.A.; Josmeh, D.; Tan, J.K.; Yong, Y.S.; Shah, M.D. Efficacy of the aqueous extract of Azadirachta indica against the marine parasitic leech and its phytochemical profiling. Molecules 2021, 26, 1908. [Google Scholar] [CrossRef]
- Pence, H.E.; Williams, A. ChemSpider: An Online Chemical Information Resource. J. Chem. Educ. 2021, 87, 1123–1124. [Google Scholar] [CrossRef]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gnanaraj, C.; Iqbal, M. Total phenolic contents and free radical scavenging activity in various extracts of Lygodium microphyllum. Short Communic. Biotech. 2017, 4, 35–42. [Google Scholar]
- Jarocka-Karpowicz, I.; Markowska, A. Therapeutic potential of jasmonic acid and its derivatives. Int. J. Mol. Sci. 2021, 22, 8437. [Google Scholar] [CrossRef]
- Zhu, D.; Wang, Y.; Lin, J.; Miao, Z.; Xu, J.; Wu, Y. Maltol inhibits the progression of osteoarthritis via the nuclear factor-erythroid 2–related factor-2/heme oxygenase-1 signal pathway in vitro and in vivo. Food Func. 2021, 12, 1327–1337. [Google Scholar] [CrossRef]
- Han, Y.; Xu, Q.; Hu, J.; Han, X.; Li, W.; Zhao, L. Maltol, a food flavoring agent, attenuates acute alcohol-induced oxidative damage in mice. Nutrients 2015, 7, 682–696. [Google Scholar] [CrossRef] [Green Version]
- Zang, Y.; Zhang, D.; Yu, C.; Jin, C.; Igarashi, K. Antioxidant and hepatoprotective activity of kaempferol 3-O-β-D-(2,6-di-O-α-L-rhamnopyranosyl)galactopyronoside against carbon tetrachloride-induced liver injury in mice. Food Sci. Biotechnol. 2017, 26, 1071–1076. [Google Scholar] [CrossRef] [PubMed]
- Alam, W.; Khan, H.; Shah, M.A.; Cauli, O.; Saso, L. Kaempferol as a dietary anti-inflammatory agent: Current therapeutic standing. Molecules 2020, 25, 4073. [Google Scholar] [CrossRef] [PubMed]
- Park, C.M.; Song, Y. Luteolin and luteolin-7-o-glucoside protect against acute liver injury through regulation of inflammatory mediators and antioxidative enzymes in Galn/LPS-induced hepatitic ICR MICE. Nutr. Res. Pract. 2019, 13, 473–479. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Guo, Q.; Jia, T.; Zhang, X.; Guo, D.; Jia, Y.; Li, J.; Sun, J. Mechanism of action of nicotiflorin from Tricyrtis maculata in the treatment of acute myocardial infarction: From Network Pharmacology to Experimental Pharmacology. Drug Des. Devel. Ther. 2021, 15, 2179–2191. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Zhang, S.; You, S.; Liu, T.; Xu, F.; Ji, T.; Gu, Z. Hepatoprotective effects of Nicotiflorin from Nymphaea candida against concanavalin a-induced and D-galactosamine-induced liver injury in mice. Int. J. Mol. Sci. 2017, 8, 587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Yao, J.; Han, C.; Yang, J.; Chaudhry, M.; Wang, S.; Liu, H.; Yin, Y. Quercetin, inflammation and immunity. Nutrients 2016, 8, 167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miltonprabu, S.; Tomczyk, M.; Skalicka-Woźniak, K.; Rastrelli, L.; Daglia, M.; Nabavi, S.F.; Alavian, S.M.; Nabavi, S.M. Hepatoprotective effect of quercetin: From chemistry to medicine. Food Chem. Toxicol. 2017, 108, 365–374. [Google Scholar] [CrossRef] [PubMed]
- Tsiklauri, L.; Švík, K.; Chrastina, M.; Poništ, S.; Dráfi, F.; Slovák, L.; Alania, M.; Kemertelidze, E.; Bauerova, K. Bioflavonoid Robinin from Astragalus falcatus lam. mildly improves the effect of Metothrexate in rats with adjuvant arthritis. Nutrients 2021, 13, 1268. [Google Scholar] [CrossRef]
- Kim, S.M.; Kang, K.; Jho, E.H.; Jung, Y.; Nho, C.W.; Um, B.; Pan, C. Hepatoprotective effect of flavonoid glycosides from Lespedeza cuneata against oxidative stress induced by tert-butyl hyperoxide. Phytother. Res. 2011, 25, 1011–1017. [Google Scholar] [CrossRef]
- Chen, Y.; Chu, Y.; Tsuang, Y.; Wu, Y.; Kuo, C.; Kuo, Y. Anti-inflammatory effects of adenine enhance osteogenesis in the osteoblast-like MG-63 cells. Life 2020, 10, 116. [Google Scholar] [CrossRef]
- Tanaka, Y.; Ohashi, S.; Ohtsuki, A.; Kiyono, T.; Park, E.Y.; Nakamura, Y.; Sato, K.; Oishi, M.; Miki, H.; Tokuhara, K.; et al. Adenosine, a Hepato-protective component in active hexose correlated compound: Its identification and inos suppression mechanism. Nitric Oxide 2014, 40, 75–86. [Google Scholar] [CrossRef] [PubMed]
- Haskó, G.; Cronstein, B. Regulation of inflammation by adenosine. Front. Immunol. 2013, 4, 75–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arihan, O.; Boz, M.; Iskit, A.B.; Ilhan, M. Antinociceptive activity of coniine in mice. J. Ethnopharm. 2009, 125, 274–278. [Google Scholar] [CrossRef]
- Tasca, C.I.; Lanznaster, D.; Oliveira, K.A.; Fernández-Dueñas, V.; Ciruela, F. Neuromodulatory effects of guanine-based purines in health and disease. Front. Cell. Neurosci. 2018, 12, 376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barros, M.E.; Freitas, J.C.; Oliveira, J.M.; Da Cruz, C.H.; Da Silva, P.B.; De Araújo, L.C.; Militão, G.C.; da Silva, T.G.; Oliveira, R.A.; Menezes, P.H. Synthesis and evaluation of (−)-massoialactone and analogues as potential anticancer and anti-inflammatory agents. Eur. J. Med. Chem. 2014, 76, 291–300. [Google Scholar] [CrossRef]
- Choi, H.G.; Tran, P.T.; Lee, J.; Min, B.S.; Kim, J.A. Anti-inflammatory activity of caffeic acid derivatives isolated from the roots of Salvia Miltiorrhiza Bunge. Arch. Pharm. Res. 2018, 41, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Hong, C.; Lee, G.P.; Kim, C.; Lee, K. The hepatoprotection of caffeic acid and rosmarinic acid, major compounds of perilla frutescens, against T-bhp-induced oxidative liver damage. Food Chem. Toxicol. 2013, 55, 92–99. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, Y.; Li, X.; Sun, X.; Wang, Z.; Wang, H.; Nie, R.; Yu, W.; Zhou, Y. Coniferyl aldehyde inhibits the inflammatory effects of leptomeningeal cells by suppressing the JAK2 signaling. BioMed Res. Int. 2020, 2020, 4616308. [Google Scholar] [CrossRef] [PubMed]
- Hatamipour, M.; Ramezani, M.; Tabassi, S.A.; Johnston, T.P.; Sahebkar, A. Demethoxycurcumin: A naturally occurring curcumin analogue for treating non-cancerous diseases. J. Cell. Physiol. 2019, 234, 19320–19330. [Google Scholar] [CrossRef]
- Yang, X.; Chen, Z.; Ye, L.; Chen, J.; Jang, Y. Esculin protects against methionine choline-deficient diet-induced non-alcoholic steatohepatitis by regulating the SIRT1/NF-ΚB P65 pathway. Pharm. Biol. 2021, 59, 920–930. [Google Scholar] [CrossRef]
- Niu, X.; Wang, Y.; Li, W.; Zhang, H.; Wang, X.; Mu, Q.; He, Z.; Yao, H. Esculin exhibited anti-inflammatory activities in vivo and regulated TNF-α and IL-6 production in LPS-stimulated mouse peritoneal macrophages in vitro through MAPK pathway. Int. Immunopharmacol. 2015, 29, 779–786. [Google Scholar] [CrossRef]
- Rafeeq, M.; Murad, H.A.; Abdallah, H.M.; El-Halawany, A.M. Protective effect of 6-paradol in acetic acid-induced ulcerative colitis in rats. BMC Complement. Med. Ther. 2021, 21, 60. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Q.; Sun, C.; Zhu, Y.; Yang, Q.; Wei, Q.; Chen, J.; Deng, W.; Adu-Frimpong, M.; Yu, J.; et al. Enhanced oral bioavailability, anti-tumor activity and hepatoprotective effect of 6-shogaol loaded in a type of novel micelles of polyethylene glycol and linoleic acid conjugate. Pharmaceutics 2019, 11, 107. [Google Scholar] [CrossRef] [Green Version]
- Shim, S.; Kim, S.; Choi, D.; Kwon, Y.; Kwon, J. Anti-inflammatory effects of [6]-shogaol: Potential roles of HDAC inhibition and hsp70 induction. Food Chem. Toxicol. 2011, 49, 2734–2740. [Google Scholar] [CrossRef] [PubMed]
- Aloum, L.; Alefishat, E.; Adem, A.; Petroianu, G. Ionone is more than a Violet’s fragrance: A Review. Molecules 2020, 25, 5822. [Google Scholar] [CrossRef] [PubMed]
- Chavan, M.; Wakte, P.; Shinde, D. Analgesic and anti-inflammatory activity of caryophyllene oxide from Annona squamosa L. Bark. Phytomedicine 2010, 17, 149–151. [Google Scholar] [CrossRef]
- Francomano, F.; Caruso, A.; Barbarossa, A.; Fazio, A.; La Torre, C.; Ceramella, J.; Mallamaci, R.; Saturnino, C.; Iacopetta, D.; Sinicropi, M.S. B-caryophyllene: A sesquiterpene with countless biological properties. Appl. Sci. 2019, 9, 5420. [Google Scholar] [CrossRef] [Green Version]
- Mao, J.; Yi, M.; Wang, R.; Huang, Y.; Chen, M. Protective effects of costunolide against D-galactosamine and lipopolysaccharide-induced acute liver injury in mice. Front. Pharmacol. 2018, 9, 1469. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.Y.; Choi, B.Y. Costunolide—A bioactive sesquiterpene lactone with diverse therapeutic potential. Int. J. Mol. Sci. 2019, 20, 2926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.; Park, J.; Leem, Y.; Kim, D.; Kim, H. NQO1 mediates the anti-inflammatory effects of Nootkatone in lipopolysaccharide-induced neuroinflammation by modulating the AMPK Signaling pathway. Free Radic. Biol. Med. 2021, 164, 354–368. [Google Scholar] [CrossRef] [PubMed]
- Kurdi, A.; Hassan, K.; Venkataraman, B.; Rajesh, M. Nootkatone confers hepatoprotective and anti-fibrotic actions in a murine model of liver fibrosis by suppressing oxidative stress, inflammation, and apoptosis. J. Biochem. Mol. Toxicol. 2017, 32, e22017. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, L.; Jiang, R.; Hu, K.; Hu, D.; Liao, C.; Jiang, S.; Yang, Y.; Huang, J.; Tang, L.; et al. Nicotinamide improves NAD+ levels to protect against acetaminophen-induced acute liver injury in mice. Hum. Exp. Toxicol. 2021, 40, 1938–1946. [Google Scholar] [CrossRef]
- Lappas, M.; Permezel, M. The anti-inflammatory and antioxidative effects of nicotinamide, a vitamin B3 derivative, are elicited by FoxO3 in human gestational tissues: Implications for preterm birth. J. Nutr. Biochem. 2011, 22, 1195–1201. [Google Scholar] [CrossRef]
- Eidi, A.; Mortazavi, P.; Tehrani, M.E.; Rohani, A.H.; Safi, S. Hepatoprotective effects of pantothenic acid on carbon tetrachloride-induced toxicity in rats. EXCLI J. 2012, 11, 748–759. [Google Scholar] [PubMed]
- Roh, T.; De, U.; Lim, S.K.; Kim, M.K.; Choi, S.M.; Lim, D.S. Detoxifying effect of pyridoxine on acetaminophen-induced hepatotoxicity via suppressing oxidative stress injury. Food Chem. Toxicol. 2018, 114, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Bird, R.P. The emerging role of vitamin B6 in inflammation and carcinogenesis. Adv. Food Nutr. Res. 2018, 83, 151–194. [Google Scholar] [CrossRef]
- Hu, X.; Wang, M.; Pan, Y.; Xie, Y.; Han, J.; Zhang, X.; Niayale, R.; He, H.; Li, Q.; Zhao, T.; et al. Anti-inflammatory effect of Astragalin and chlorogenic acid on Escherichia coli-induced inflammation of sheep endometrial epithelium cells. Front. Vet. Sci. 2020, 7, 201. [Google Scholar] [CrossRef]
- Riaz, A.; Rasul, A.; Hussain, G.; Zahoor, M.K.; Jabeen, F.; Subhani, Z.; Younis, T.; Ali, M.; Sarfraz, I.; Selamoglu, Z. Astragalin: A bioactive phytochemical with potential therapeutic activities. Adv. Pharmacol. Sci. 2018, 2018, 9794625. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Pan, R.; Ding, L.; Zhang, F.; Hu, L.; Ding, B.; Zhu, L.; Xia, Y.; Dou, X. Rutin exhibits hepatoprotective effects in a mouse model of non-alcoholic fatty liver disease by reducing hepatic lipid levels and mitigating lipid-induced oxidative injuries. Int. Immunopharmacol. 2017, 49, 132–141. [Google Scholar] [CrossRef]
- Yoo, H.; Ku, S.; Baek, Y.; Bae, J. Anti-inflammatory effects of Rutin on HMGB1-induced inflammatory responses in vitro and in vivo. Inflamm. Res. 2013, 63, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Murphy, R.C. Tandem Mass Spectrometry of Lipids: Molecular Analysis of Complex Lipids, 1st ed.; Royal Society of Chemistry: Cambridge, UK, 2015. [Google Scholar]
- Kuncoro, H.; Farabi, K.; Rijai, L. Steroids and isoquercetin from Lygodium microphyllum. J. Appl. Pharm. Sci. 2017, 7, 136–141. [Google Scholar] [CrossRef] [Green Version]
- Kowalski, S. Changes of antioxidant activity and formation of 5-hydroxymethylfurfural in honey during thermal and microwave processing. Food Chem. 2013, 141, 1378–1382. [Google Scholar] [CrossRef]
- Ghaderi, S.; Gholipour, P.; Komaki, A.; Salehi, I.; Rashidi, K.; Esmaeil Khoshnam, S.; Rashno, M. P-coumaric acid ameliorates cognitive and non-cognitive disturbances in a rat model of Alzheimer’s disease: The role of oxidative stress and inflammation. Int. Immunopharmacol. 2022, 112, 109295. [Google Scholar] [CrossRef]
- Aparna, V.; Dileep, K.V.; Mandal, P.K.; Karthe, P.; Sadasivan, C.; Haridas, M. Anti-inflammatory property of n-hexadecanoic acid: Structural evidence and kinetic assessment. Chem. Biol. Drug Des. 2012, 80, 434–439. [Google Scholar] [CrossRef] [PubMed]
- Yogeswari, S.; Ramalakshmy, S.; Neelavathy, R.; Muthumary, J. Identification and comparative studies of different volatile fractions from Monochaetia kansensis by GCMS. Glob. J. Pharmacol. 2012, 6, 65–71. [Google Scholar]
- Breijyeh, Z.; Jubeh, B.; Karaman, R. Resistance of Gram-negative bacteria to current antibacterial agents and approaches to resolve it. Molecules 2020, 16, 1340. [Google Scholar] [CrossRef] [Green Version]
- Urbanek, A.; Szadziewski, R.; Stepnowski, P.; Boros-Majewska, J.; Gabriel, I.; Dawgul, M.; Kamysz, W.; Sosnowska, D.; Gołębiowski, M. Composition and antimicrobial activity of fatty acids detected in the hygroscopic secretion collected from the secretory setae of larvae of the biting midge Forcipomyia nigra (Diptera: Ceratopogonidae). J. Insect Physiol. 2012, 58, 1265–1276. [Google Scholar] [CrossRef] [PubMed]
- Azam, F.; Chaudhry, B.A.; Ijaz, H.; Qadir, M.I. Caffeoyl-β-D-glucopyranoside and 1,3-dihydroxy-2-tetracosanoylamino-4-(e)-nonadecene isolated from ranunculus muricatus exhibit antioxidant activity. Sci. Rep. 2019, 9, 15613. [Google Scholar] [CrossRef] [Green Version]
- Wlodarska, M.; Luo, C.; Kolde, R.; d’Hennezel, E.; Annand, J.W.; Heim, C.E.; Krastel, P.; Schmitt, E.K.; Omar, A.S.; Creasey, E.A.; et al. Indoleacrylic acid produced by commensal peptostreptococcus species suppresses inflammation. Cell Host Microbe. 2017, 22, 25–37. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Zhang, Z.; Cain, A.; Wang, B.; Long, M.; Taylor, J. Antifungal activity of Camptothecin, trifolin, and hyperoside isolated from Camptotheca acuminata. J. Agric. Food. Chem. 2005, 53, 32–37. [Google Scholar] [CrossRef]
- Das, U.N. Arachidonic acid and other unsaturated fatty acids and some of their metabolites function as endogenous antimicrobial molecules: A Review. J. Adv. Res. 2018, 11, 57–66. [Google Scholar] [CrossRef]
Name | R. Time (min) | Formula | Mass Error (ppm) | Calc. Molecular Mass | Database | Matching Score (MzCloud)/ FISh Score (Chemspider) | Class |
---|---|---|---|---|---|---|---|
Pyroglutamic acid | 1.04 | C5H7NO3 | 0.56 | 129.0427 | mzCloud | 95.6 | Amino acid |
Succinylproline | 4.79 | C9H13NO5 | 0.45 | 215.0795 | ChemSpider | 50.0 | Amino acid |
3-Indoleacrylic acid | 6.35 | C11H9NO2 | 0.15 | 187.0634 | mzCloud | 94.3 | Aromatic |
Adicardin | 4.88 | C20H24O12 | 0.26 | 456.1269 | mzCloud | 91.7 | Aromatic |
Phenylpropiolic acid | 5.64 | C9H6O2 | −0.86 | 146.0367 | ChemSpider | 50.0 | Aromatic |
9S,13R-12-Oxophytodienoic acid | 8.13 | C18H28O3 | −0.84 | 292.2036 | mzCloud | 92.1 | Cyclic ketone |
Jasmonic acid | 8.51 | C12H18O3 | −0.28 | 210.1255 | ChemSpider | 66.3 | Cyclic ketone |
Maltol | 3.74 | C6H6O3 | 0.85 | 126.0318 | mzCloud | 99.3 | Cyclic ketone |
Vomifoliol | 4.97 | C13H20O3 | −0.44 | 224.1412 | ChemSpider | 69.9 | Cyclic ketone |
(12S)-12-Hydroxy-16-heptadecynoic acid | 10.81 | C17H30O3 | −0.10 | 282.2195 | ChemSpider | 53.9 | Fatty acyl |
(2E)-6-Hydroxy-2,6-dimethyl-2,7-octadienoic acid | 5.09 | C10H16O3 | 0.48 | 184.1100 | ChemSpider | 54.6 | Fatty acyl |
1-[(2-Hydroxyethyl)amino]-2-dodecanol | 21.44 | C14H31NO2 | −0.33 | 245.2354 | ChemSpider | 55.6 | Fatty acyl |
11-Methoxy-3,7,11-trimethyl-2,4-dodecadienoic acid | 8.43 | C16H28O3 | −0.12 | 268.2038 | ChemSpider | 65.9 | Fatty acyl |
13-Hydroxy-9,11,15-octadecatrienoic acid | 8.52 | C18H30O3 | −0.40 | 294.2194 | mzCloud | 85.4 | Fatty acyl |
4-Oxo-dodecanedioic acid | 6.44 | C12H20O5 | −0.52 | 244.1310 | mzCloud | 80.2 | Fatty acyl |
Arachidonic acid | 7.01 | C20H32O2 | −0.98 | 304.2399 | ChemSpider | 90.5 | Fatty acyl |
Levulinic acid | 1.10 | C5H8O3 | 1.96 | 116.0476 | ChemSpider | 62.5 | Fatty acyl |
Palmitoleyl oleate | 20.98 | C34H64O2 | −0.03 | 504.4906 | ChemSpider | 85.8 | Fatty acyl |
Parinaric acid | 11.45 | C18H28O2 | −0.74 | 276.2087 | ChemSpider | 85.6 | Fatty acyl |
Traumatin | 5.76 | C12H20O3 | −0.11 | 212.1412 | ChemSpider | 56.4 | Fatty acyl |
2-(3,4-Dihydroxyphenyl)-5,7-dihydroxy-4-oxo-4H-chromen-3-yl 6-O-(carboxyacetyl)-β-D-threo-hexopyranoside | 5.84 | C24H22O15 | 0.78 | 550.0963 | mzCloud | 99.0 | Flavonoid |
Kaempferol | 5.35 | C15H10O6 | −1.04 | 286.0474 | mzCloud | 98.2 | Flavonoid |
Luteolin 7-O-malonylglucoside | 6.22 | C24H22O14 | 0.31 | 534.1011 | ChemSpider | 62.5 | Flavonoid |
Nicotiflorin | 5.85 | C27H30O15 | 0.45 | 594.1587 | mzCloud | 99.4 | Flavonoid |
Quercetin | 5.07 | C15H10O7 | −1.22 | 302.0423 | mzCloud | 99.4 | Flavonoid |
Quercetin 3-O-rhamnoside-7-O-glucoside | 5.54 | C27H30O16 | −0.33 | 610.1532 | mzCloud | 98.2 | Flavonoid |
Quercetin-3β-D-glucoside | 5.67 | C21H20O12 | −0.33 | 464.0953 | mzCloud | 96.8 | Flavonoid |
Robinin | 5.48 | C33H40O19 | 0.40 | 740.2167 | mzCloud | 97.2 | Flavonoid |
Trifolin | 5.99 | C21H20O11 | −0.55 | 448.1003 | mzCloud | 98.2 | Flavonoid |
Adenine | 2.15 | C5H5N5 | 0.08 | 135.0545 | mzCloud | 89.3 | Heterocyclic |
Adenosine | 2.15 | C10H13N5O4 | −0.21 | 267.0967 | mzCloud | 99.8 | Heterocyclic |
Coniine | 21.44 | C8H17N | −0.04 | 127.1361 | ChemSpider | 52.9 | Heterocyclic |
Guanine | 21.56 | C5H5N5O | −0.30 | 151.0494 | mzCloud | 95.4 | Heterocyclic |
(3S,4R,5R,6R)-6-[(4R)-2,2-Dimethyl-1,3-dioxolan-4-yl]-3,4-dihydroxy-5-methyltetrahydro-2H-pyran-2-one | 2.94 | C11H18O6 | −1.05 | 246.1101 | ChemSpider | 52.4 | Lactone |
Massoilactone | 5.89 | C10H16O2 | −0.41 | 168.1150 | ChemSpider | 65.0 | Lactone |
Albocyclin | 6.53 | C18H28O4 | −0.53 | 308.1986 | ChemSpider | 61.1 | Macrolide |
Rustmicin | 6.48 | C21H32O6 | −1.59 | 380.2193 | ChemSpider | 52.2 | Macrolide |
1-(4-Hydroxy-3-methoxyphenyl)-5-methoxy-3-decanone | 6.77 | C18H28O4 | −1.03 | 308.1984 | ChemSpider | 69.1 | Phenolic |
1-(4-Hydroxyphenyl)-1-heptanone | 4.71 | C13H18O2 | 0.21 | 206.1307 | ChemSpider | 52.6 | Phenolic |
1-Caffeoyl-β-D-glucose | 2.22 | C15H18O9 | −1.26 | 342.0947 | ChemSpider | 76.2 | Phenolic |
3,4-Dihydroxybenzaldehyde | 3.98 | C7H6O3 | −0.44 | 138.0316 | mzCloud | 84.6 | Phenolic |
Caffeic acid | 4.10 | C9H8O4 | −0.62 | 180.0422 | mzCloud | 99.2 | Phenolic |
Coniferol | 5.08 | C10H12O3 | −0.16 | 180.0786 | ChemSpider | 53.8 | Phenolic |
Conocarpin | 4.90 | C15H16O8 | −1.03 | 324.0842 | ChemSpider | 75.0 | Phenolic |
Demethoxycurcumin | 6.55 | C20H18O5 | −1.50 | 338.1149 | ChemSpider | 62.9 | Phenolic |
Esculin | 3.56 | C15H16O9 | −0.83 | 340.0792 | mzCloud | 87.1 | Phenolic |
Paradol | 9.85 | C17H26O3 | −0.24 | 278.1881 | ChemSpider | 59.5 | Phenolic |
Shogaol | 9.59 | C17H24O3 | −1.81 | 276.1720 | ChemSpider | 64.8 | Phenolic |
Steroidal compound | 19.77 | C29H46O | −0.65 | 410.3546 | ChemSpider | 62.3 | Steroid |
Steroidal compound | 8.07 | C18H26O2 | −0.98 | 274.1930 | mzCloud | 93.8 | Steroid |
(3R)-Hydroxy-beta-ionone | 4.78 | C13H20O2 | −0.06 | 208.1463 | ChemSpider | 76.9 | Terpenoid |
Caryophyllene oxide | 6.69 | C15H24O | −0.85 | 220.1825 | mzCloud | 80.2 | Terpenoid |
Costunolide | 5.99 | C15H20O2 | −1.17 | 232.1461 | mzCloud | 85.3 | Terpenoid |
Fencibutirol | 8.12 | C16H22O3 | −0.76 | 262.1567 | ChemSpider | 70.9 | Terpenoid |
Nootkatone | 10.09 | C15H22O | 0.09 | 218.1671 | mzCloud | 81.3 | Terpenoid |
Perillic acid | 5.56 | C10H14O2 | −0.54 | 166.0993 | ChemSpider | 54.0 | Terpenoid |
Nicotinamide | 1.05 | C6H6N2O | 1.13 | 122.0482 | mzCloud | 97.4 | Vitamin B |
Pantothenic acid | 3.50 | C9H17NO5 | −0.06 | 219.1107 | ChemSpider | 95.2 | Vitamin B |
Pyridoxine | 1.01 | C8H11NO3 | −0.14 | 169.0739 | mzCloud | 96.2 | Vitamin B |
Name | R. Time (min) | Formula | Mass Error (ppm) | Calc. Molecular Mass | Database | Matching Score (MzCloud)/ FISh Score (Chemspider) | Class |
---|---|---|---|---|---|---|---|
Melilotoside | 4.71 | C15H18O8 | 0.65 | 326.1004 | ChemSpider | 65.4 | Aromatic |
N-Acetyl-L-phenylalanine | 5.20 | C11H13NO3 | −1.73 | 207.0892 | mzCloud | 87.4 | Aromatic |
(15Z)-9,12,13-Trihydroxy-15-octadecenoic acid | 8.53 | C18H34O5 | 0.53 | 330.2408 | mzCloud | 88.3 | Fatty acyl |
12,13-Dihydroxyoctadec-9-enoic acid | 10.75 | C18H34O4 | 0.20 | 314.2458 | mzCloud | 90.0 | Fatty acyl |
13-Hydroxy-9,11,15-octadecatrienoic acid | 11.46 | C18H30O3 | 0.83 | 294.2197 | mzCloud | 89.4 | Fatty acyl |
13-Hydroxy-9,11-octadecadienoic acid | 12.06 | C18H32O3 | 0.33 | 296.2352 | mzCloud | 85.5 | Fatty acyl |
16-Hydroxyhexadecanoic acid | 14.12 | C16H32O3 | 0.36 | 272.2352 | mzCloud | 87.5 | Fatty acyl |
9-Hydroperoxy-10,12-octadecadienoic acid | 10.22 | C18H32O4 | 0.67 | 312.2303 | mzCloud | 87.8 | Fatty acyl |
Corchorifatty acid F | 8.09 | C18H32O5 | 0.70 | 328.2252 | mzCloud | 97.9 | Fatty acyl |
Dodecanedioic acid | 6.60 | C12H22O4 | −0.67 | 230.1517 | mzCloud | 95.7 | Fatty acyl |
5,7-Dihydroxy-2-(4-hydroxyphenyl)-4-oxo-4H-chromen-3-yl 6-O-(6-deoxyhexopyranosyl)hexopyranoside | 5.86 | C27H30O15 | 0.70 | 594.1589 | mzCloud | 88.0 | Flavonoid |
Astragalin | 6.15 | C21H20O11 | 0.56 | 448.1008 | mzCloud | 96.4 | Flavonoid |
Rutin | 5.56 | C27H30O16 | 0.72 | 610.1538 | mzCloud | 83.4 | Flavonoid |
Trifolin | 6.00 | C21H20O11 | 0.90 | 448.1010 | mzCloud | 95.4 | Flavonoid |
1-Caffeoyl-β-D-glucose | 4.30 | C15H18O9 | 0.08 | 342.0951 | ChemSpider | 69.8 | Phenolic |
No. | Compound Name | Molecular Formula | Molecular Weight | Area (%) | RT |
---|---|---|---|---|---|
1. | Furfural | C5H4O2 | 96.08 | 0.72 | 7.4391 |
2. | 2-furanmethanol | C5H6O2 | 98.09 | 0.82 | 7.9820 |
3. | 2-furancarboxaldehyde, 5-methyl- | C6H6O2 | 110.11 | 0.16 | 11.4392 |
4. | Benzyl alcohol | C7H8O | 108.14 | 0.28 | 14.6725 |
5. | Acetic acid, phenylmethyl ester | C9H10O2 | 150.17 | 0.20 | 20.7917 |
6. | 5-hydroxymethylfurfural | C6H6O3 | 126.11 | 8.24 | 24.4822 |
7. | p-Coumaric acid | C9H8O3 | 164.16 | 0.34 | 46.3873 |
8. | E-15-heptadecenal | C17H32O | 252.44 | 0.08 | 50.2349 |
9. | n-Hexadecanoic acid | C16H32O2 | 256.42 | 0.18 | 51.7683 |
Inhibition Zone (mm) | |||||
---|---|---|---|---|---|
Samples | Concentration (mg/mL) | S. aureus | B. cereus | E. coli | Salmonella sp. |
LM | 500 | 15.0 ± 3.1 | - | - | - |
100 | 13.0 ± 1.7 | - | - | - | |
Gentamicin | 10 µg/disc | 23.0 ± 0.6 | 25.0 ± 1.5 | 24.0 ± 1.0 | 28.0 ± 0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teoh, W.Y.; Yong, Y.S.; Razali, F.N.; Stephenie, S.; Dawood Shah, M.; Tan, J.K.; Gnanaraj, C.; Mohd Esa, N. LC-MS/MS and GC-MS Analysis for the Identification of Bioactive Metabolites Responsible for the Antioxidant and Antibacterial Activities of Lygodium microphyllum (Cav.) R. Br. Separations 2023, 10, 215. https://doi.org/10.3390/separations10030215
Teoh WY, Yong YS, Razali FN, Stephenie S, Dawood Shah M, Tan JK, Gnanaraj C, Mohd Esa N. LC-MS/MS and GC-MS Analysis for the Identification of Bioactive Metabolites Responsible for the Antioxidant and Antibacterial Activities of Lygodium microphyllum (Cav.) R. Br. Separations. 2023; 10(3):215. https://doi.org/10.3390/separations10030215
Chicago/Turabian StyleTeoh, Wuen Yew, Yoong Soon Yong, Faizan Naeem Razali, Sarah Stephenie, Muhammad Dawood Shah, Jen Kit Tan, Charles Gnanaraj, and Norhaizan Mohd Esa. 2023. "LC-MS/MS and GC-MS Analysis for the Identification of Bioactive Metabolites Responsible for the Antioxidant and Antibacterial Activities of Lygodium microphyllum (Cav.) R. Br." Separations 10, no. 3: 215. https://doi.org/10.3390/separations10030215
APA StyleTeoh, W. Y., Yong, Y. S., Razali, F. N., Stephenie, S., Dawood Shah, M., Tan, J. K., Gnanaraj, C., & Mohd Esa, N. (2023). LC-MS/MS and GC-MS Analysis for the Identification of Bioactive Metabolites Responsible for the Antioxidant and Antibacterial Activities of Lygodium microphyllum (Cav.) R. Br. Separations, 10(3), 215. https://doi.org/10.3390/separations10030215