Study on Separation of Rhenium, a Surrogate Element of Fissiogenic Technetium, from Aqueous Matrices Using Ion-Selective Extraction Chromatographic Resins
Abstract
:1. Introduction
2. Experimental
2.1. Instrumentation
2.2. Materials
2.3. Laboratory Wares
2.4. Separation Process
2.5. Effect of Interfering Ions
2.6. Adsorption Capacity and Breakthrough Volume
3. Results and Discussion
3.1. Effect of Solution pH
3.2. Choice of Eluent and Eluent Concentration
3.3. Effects of Interfering Ions
3.4. Retention Capacity and Breakthrough Volume
3.5. Reusability of the ECRs
3.6. Analytical Characteristics
3.7. Optimized Separation Protocol
3.8. Application of the Separation Method
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shi, K.; Hou, X.; Roos, P.; Wu, W. Determination of technetium-99 in environmental samples: A review. Anal. Chim. Acta 2012, 709, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Uchida, S.; Tagami, K. Improvement of Tc separation procedure using a chromatographic resin for direct measurement by ICP-MS. Anal. Chim. Acta 1997, 357, 1–3. [Google Scholar] [CrossRef]
- Bartošová, A.; Rajec, P.; Klimeková, A. Determination of technetium-99 in soils and radioactive wastes using ICP-MS. Chem. Pap. 2006, 60, 125–131. [Google Scholar] [CrossRef]
- Butterworth, J.C.; Livens, F.R.; Makinson, P.R. Development of a method for the determination of low levels of technetium-99. Sci. Total Environ. 1995, 173–174, 293–300. [Google Scholar] [CrossRef]
- Icenhower, J.P.; Qafoku, N.P.; Zachara, J.M.; Martin, W.J. The biogeochemistry of technetium: A review of the behavior of an artificial element in the natural environment. Am. J. Sci. 2010, 310, 721–752. [Google Scholar] [CrossRef]
- Ballestra, S.; Barci, G.; Holm, E.; Lopez, J.; Gastaud, J. Low-level measurements of actinides and long-lived radionuclides in biological and environmental samples. J. Radioanal. Nucl. Chem. 1987, 115, 51–58. [Google Scholar] [CrossRef]
- Hou, X.; Jensen, M.; Nielsen, S.P. Use of 99mTc from a commercial 99Mo/99mTc generator as yield tracer for the determination of 99Tc at low levels. Appl. Radiat. Isot. 2007, 65, 610–618. [Google Scholar] [CrossRef]
- Chen, Q.; Dahlgaard, H.; Nielsen, S.P. Determination of 99Tc in sea water at ultra low levels. Anal. Chim. Acta 1994, 285, 177–180. [Google Scholar] [CrossRef]
- Dixon, P.; Curtis, D.B.; Musgrave, J.; Roensch, F.; Roach, J.; Rokop, D. Analysis of naturally produced technetium and plutonium in geologic materials. Anal. Chem. 1997, 69, 1692–1699. [Google Scholar] [CrossRef]
- Mas, J.L.; García-León, M.; Bolívar, J.P. 99Tc detection in water samples by ICP-MS. Radiochim. Acta 2004, 92, 39–46. [Google Scholar] [CrossRef]
- Paučová, V.; Drábová, V.; Strišovská, J.; Balogh, S. A comparison of extraction chromatography TEVA® resin and MRT AnaLig® Tc-02 methods for 99Tc determination. J. Radioanal. Nucl. Chem. 2012, 293, 309–312. [Google Scholar] [CrossRef]
- Wacker, L.; Fifield, L.K.; Tims, S. Developments in AMS of 99Tc. Nucl. Instrum. Methods B 2004, 223, 185–189. [Google Scholar] [CrossRef]
- Tang, L.; Bu, W.; Liu, X.; Hu, S. More than ten percent ionization efficiency for Tc measurement by negative thermal ionization mass spectrometry. J. Anal. Atom. Spectrom. 2019, 34, 2229–2235. [Google Scholar] [CrossRef]
- Rokop, D.J.; Schroeder, N.C.; Wolfsberg, K. Mass spectrometry of technetium at the subpicogram level. Anal. Chem. 1990, 62, 1271–1274. [Google Scholar] [CrossRef]
- Fifield, L.K.; Carling, R.S.; Cresswell, R.G.; Hausladen, P.A.; di Tada, M.L.; Day, J.P. Accelerator mass spectrometry of 99Tc. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2000, 168, 427–436. [Google Scholar] [CrossRef]
- Quinto, F.; Busser, C.; Faestermann, T.; Hain, K.; Koll, D.; Korschinek, G.; Kraft, S.; Ludwig, P.; Plaschke, M.; Schäfer, T.; et al. Ultratrace determination of 99Tc in small natural water samples by accelerator mass spectrometry with the gas-filled analyzing magnet system. Anal. Chem. 2019, 91, 4585–4591. [Google Scholar] [CrossRef]
- Guérin, N.; Riopel, R.; Kramer-Tremblay, S.; de Silva, N.; Cornett, J.; Dai, X. Determination of 99Tc in fresh water using TRU resin by ICP-MS. Anal. Chim. Acta 2017, 988, 114–120. [Google Scholar] [CrossRef]
- Guérin, N.; Riopel, R.; Kramer-Tremblay, S.; Silva, N.d.; Cornett, J.; Dai, X. Extraction of Tc(VII) and Re(VII) on TRU resin. Radiochim. Acta 2017, 105, 197–204. [Google Scholar] [CrossRef]
- Tagami, K.; Uchida, S.; García-León, M. Comparison of a radiation counting method and ICP-MS for the determination of 99Tc in environmental samples. J. Radioanal. Nucl. Chem. 1998, 234, 147–151. [Google Scholar] [CrossRef]
- Ikäheimonen, T.K.; Vartti, V.P.; Ilus, E.; Mattila, J. Technetium-99 in Fucusand seawater samples in the Finnish coastal area of the Baltic Sea, 1999. J. Radioanal. Nucl. Chem. 2002, 252, 309–313. [Google Scholar] [CrossRef]
- McCartney, M.; Rajendran, K.; Olive, V.; Busby, R.G.; McDonald, P. Development of a novel method for the determination of 99Tc in environmental samples by ICP-MS. J. Anal. Atom. Spectrom. 1999, 14, 1849–1852. [Google Scholar] [CrossRef]
- Qing-Jiang, C.; Aarkrog, A.; Dahlgaard, H.; Nielsen, S.P.; Holm, E.; Dick, H.; Mandrup, K. Determination of technetium-99 in environmental samples by solvent extraction at controlled valence. J. Radioanal. Nucl. Chem. 1989, 131, 171–187. [Google Scholar] [CrossRef] [Green Version]
- Gomez, M.B.; Gutierrez, A.M.; Camara, C.; Gomez, V. Determination of 99Tc in drinking waters by radiochemical techniques and inductively coupled plasma mass spectrometry (ICP-MS). Radioact. Radiochem. 2001, 12, 21–35. [Google Scholar]
- Fiskum, S.K.; Riley, R.G.; Thompson, C.J. Preconcentration and analysis of strontium-90 and technetium-99 from hanford groundwater using solid phase extraction. J. Radioanal. Nucl. Chem. 2000, 245, 261–272. [Google Scholar] [CrossRef]
- Remenec, B.; Dulanská, S.; Paučová, V.; Mátel, L.u. Determination of 99Tc in evaporator concentrates using solid phase extraction techniques. J. Radioanal. Nucl. Chem. 2011, 290, 403–407. [Google Scholar] [CrossRef]
- Kołacińska, K.; Samczyński, Z.; Dudek, J.; Bojanowska-Czajka, A.; Trojanowicz, M. A comparison study on the use of Dowex 1 and TEVA-resin in determination of (99)Tc in environmental and nuclear coolant samples in a SIA system with ICP-MS detection. Talanta 2018, 184, 527–536. [Google Scholar] [CrossRef]
- Ihsanullah. Methods for the separation of technetium from ruthenium for inductively coupled plasma-mass spectrometry. Sep. Sci. Technol. 1994, 29, 781–797. [Google Scholar] [CrossRef]
- Eroglu, A.E.; Mcleod, C.W.; Leonard, K.S.; McCubbin, D. Determination of technetium in sea-water using ion exchange and inductively coupled plasma mass spectrometry with ultrasonic nebulisation. J. Anal. At. Spectrom. 1998, 13, 875–878. [Google Scholar] [CrossRef] [Green Version]
- Keith-Roach, M.J.; Sturup, S.; Oughton, D.H.; Dahlgaard, H. Comparison of two ICP-MS set-ups for measuring 99Tc in large volume water samples. Analyst 2002, 127, 70–75. [Google Scholar] [CrossRef]
- Horwitz, E.P.; Dietz, M.L.; Chiarizia, R.; Diamond, H.; Maxwell III, S.L.; Nelson, M.R. Separation and preconcentration of actinides by extraction chromatography using a supported liquid anion exchanger: Application to the characterization of high-level nuclear waste solutions. Anal. Chim. Acta 1995, 310, 63–78. [Google Scholar] [CrossRef]
- Sarri, S.; Misaelides, P.; Zamboulis, D.; Gaona, X.; Altmaier, M.; Geckeis, H. Rhenium(VII) and technetium(VII) separation from aqueous solutions using a polyethylenimine–epichlorohydrin resin. J. Radioanal. Nucl. Chem. 2016, 307, 681–689. [Google Scholar] [CrossRef]
- Kim, E.; Boulègue, J. Chemistry of rhenium as an analogue of technetium: Experimental studies of the dissolution of rhenium oxides in aqueous solutions. Radiochim. Acta 2003, 91, 211–216. [Google Scholar] [CrossRef]
- Brookins, D.G. Rhenium as analog for fissiogenic technetium: Eh-pH diagram (25 °C, 1 bar) constraints. Appl. Geochem. 1986, 1, 513–517. [Google Scholar] [CrossRef]
- Rahman, I.M.M.; Ye, Y.; Alam, M.F.; Sawai, H.; Begum, Z.A.; Furusho, Y.; Ohta, A.; Hasegawa, H. Selective separation of radiocesium from complex aqueous matrices using dual solid-phase extraction systems. J. Chromatogr. A 2021, 1654, 462476. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.F.; Furusho, Y.; Kavasi, N.; Sahoo, S.K.; Pirnach, L.; Begum, Z.A.; Nanba, K.; Rahman, I.M.M. Effect of operating variables on the separation of radiostrontium from aqueous matrices with ion-selective solid-phase extraction systems. J. Chromatogr. A 2021, 1658, 462625. [Google Scholar] [CrossRef] [PubMed]
- Camel, V. Solid phase extraction of trace elements. Spectrochim. Acta Part B 2003, 58, 1177–1233. [Google Scholar] [CrossRef]
- Cieszynska, A.; Wieczorek, D. Extraction and separation of palladium(II), platinum(IV), gold(III) and rhodium(III) using piperidine-based extractants. Hydrometallurgy 2018, 175, 359–366. [Google Scholar] [CrossRef]
- Schurhammer, R.; Wipff, G. Liquid-liquid extraction of pertechnetic acid (TcVII) by tri-n-butyl phosphate: Where is the proton? a molecular dynamics investigation. J. Phys. Chem. B 2011, 115, 2338–2348. [Google Scholar] [CrossRef]
- Chen, D.; Huang, C.; He, M.; Hu, B. Separation and preconcentration of inorganic arsenic species in natural water samples with 3-(2-aminoethylamino) propyltrimethoxysilane modified ordered mesoporous silica micro-column and their determination by inductively coupled plasma optical emission spectrometry. J. Hazard. Mater. 2009, 164, 1146–1151. [Google Scholar] [CrossRef]
- Yamini, Y.; Hassan, J.; Mohandesi, R.; Bahramifar, N. Preconcentration of trace amounts of beryllium in water samples on octadecyl silica cartridges modified by quinalizarine and its determination with atomic absorption spectrometry. Talanta 2002, 56, 375–381. [Google Scholar] [CrossRef]
- Yu, C.; Cai, Q.; Guo, Z.-X.; Yang, Z.; Khoo, S.B. Inductively coupled plasma mass spectrometry study of the retention behavior of arsenic species on various solid phase extraction cartridges and its application in arsenic speciation. Spectrochim. Acta B 2003, 58, 1335–1349. [Google Scholar] [CrossRef]
ECRs | pH | SFRe/Mo | SFRe/Ru |
---|---|---|---|
Tc-01 | 1 | 32 | * |
2 | 0 | * | |
4 | 0.83 | * | |
7 | 0.95 | * | |
9 | 1.15 | * | |
Tc-02 | 1 | 4.94 | 19.90 |
2 | 7.89 | 61.24 | |
4 | 16.51 | 3.25 | |
7 | 20.21 | 1.25 | |
9 | 7.41 | 0.10 | |
TRU | 1 | 9461 | * |
(mol L−1) | 2 | * | 5437 |
Sample | Element | Spiked Content (µg L−1) | Extraction Rates (%) | ||
---|---|---|---|---|---|
Tc-01 | Tc-02 | TRU | |||
Suzuuchi | 89.02 ± 7.80 | 97.81 ± 0.38 | 91.24 ± 0.25 | ||
Inkyozaka | Re | 100 | 98.91 ± 0.79 | 99.05 ± 1.55 | 99.54 ± 0.41 |
Tap water | 93.28 ± 3.54 | 99.68 ± 0.60 | 93.90 ± 0.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alam, M.F.; Begum, Z.A.; Furusho, Y.; Takata, H.; Rahman, I.M.M. Study on Separation of Rhenium, a Surrogate Element of Fissiogenic Technetium, from Aqueous Matrices Using Ion-Selective Extraction Chromatographic Resins. Separations 2023, 10, 216. https://doi.org/10.3390/separations10030216
Alam MF, Begum ZA, Furusho Y, Takata H, Rahman IMM. Study on Separation of Rhenium, a Surrogate Element of Fissiogenic Technetium, from Aqueous Matrices Using Ion-Selective Extraction Chromatographic Resins. Separations. 2023; 10(3):216. https://doi.org/10.3390/separations10030216
Chicago/Turabian StyleAlam, M. Ferdous, Zinnat A. Begum, Yoshiaki Furusho, Hyoe Takata, and Ismail M. M. Rahman. 2023. "Study on Separation of Rhenium, a Surrogate Element of Fissiogenic Technetium, from Aqueous Matrices Using Ion-Selective Extraction Chromatographic Resins" Separations 10, no. 3: 216. https://doi.org/10.3390/separations10030216
APA StyleAlam, M. F., Begum, Z. A., Furusho, Y., Takata, H., & Rahman, I. M. M. (2023). Study on Separation of Rhenium, a Surrogate Element of Fissiogenic Technetium, from Aqueous Matrices Using Ion-Selective Extraction Chromatographic Resins. Separations, 10(3), 216. https://doi.org/10.3390/separations10030216