Sewage Water Treatment Using Chlorella Vulgaris Microalgae for Simultaneous Nutrient Separation and Biomass Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microalgae Culture
2.2. Wastewater Sample Collection and Characterization
2.3. Wastewater Sample Preparation
2.4. Experimental Setup
2.5. Biomass Collection and Characterization
3. Results and Discussion
3.1. Sewage Water Treatment
3.2. Biomass Production
4. A Large-Scale Microalgae-Based Wastewater Treatment Plant
4.1. Environmental Conditions
4.2. Concentration of Wastewater Parameters
4.3. Harvesting
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mojiri, A.; Bashir, M.J. Wastewater treatment: Current and future techniques. Water 2022, 14, 448. [Google Scholar] [CrossRef]
- Chen, M.; Chang, L.; Zhang, J.; Guo, F.; Vymazal, J.; He, Q.; Chen, Y. Global Nitrogen Input on Wetland Ecosystem: The Driving Mechanism of Soil Labile Carbon and Nitrogen on Greenhouse Gas Emissions. Environ. Sci. Ecotechnology 2020, 4, 100063. [Google Scholar] [CrossRef]
- Wang, C.; Luo, D.; Zhang, X.; Huang, R.; Cao, Y.; Liu, G.; Zhang, Y.; Wang, H. Biochar-Based Slow-Release of Fertilizers for Sustainable Agriculture: A Mini Review. Environ. Sci. Ecotechnology 2022, 10, 100167. [Google Scholar] [CrossRef]
- Hena, S.; Gutierrez, L.; Croué, J.P. Removal of Pharmaceutical and Personal Care Products (PPCPs) from Wastewater Using Microalgae: A Review. J. Hazard. Mater. 2021, 403, 124041. [Google Scholar] [CrossRef]
- Mo, Z.; Tai, D.Z.; Zhang, H.; Shahab, A. A Comprehensive Review on the Adsorption of Heavy Metals by Zeolite Imidazole Framework (ZIF-8) Based Nanocomposite in Water. Chem. Eng. J. 2022, 443, 136320. [Google Scholar] [CrossRef]
- Abunada, Z.; Alazaiza, M.Y.; Bashir, M.J. An overview of per-and polyfluoroalkyl substances (PFAS) in the environment: Source, fate, risk and regulations. Water 2020, 12, 3590. [Google Scholar] [CrossRef]
- Bashir, M.J.; Mojiri, A. Recent Developments in Emerging Contaminants Determination and Treatment Technologies. Separations 2022, 9, 434. [Google Scholar] [CrossRef]
- Chin, Y.T.; Bashir, M.J.; Amr, S.S.A.; Alazaiza, M.Y. Factorial design and optimization of thermal activation of persulfate for stabilized leachate treatment. Desalination Water Treat. 2022, 250, 211–220. [Google Scholar] [CrossRef]
- Onn, S.; Bashir, M.J.; Sethupathi, S.; Amr, S.; Nguyen, T. Colour and COD removal from mature landfill leachate using electro-persulphate oxidation process. Mater. Today Proc. 2020, 31, 69–74. [Google Scholar] [CrossRef]
- Basu, S.; Dutta, A.; Mukherjee, S.K.; Hossain, S.T. Exploration of Green Technology for Arsenic Removal from Groundwater by Oxidation and Adsorption Using Arsenic-Oxidizing Bacteria and Metal Nanoparticles. In New Trends in Removal of Heavy Metals from Industrial Wastewater; Elsevier: Amsterdam, The Netherlands, 2021; pp. 177–211. [Google Scholar] [CrossRef]
- Al-Tohamy, R.; Ali, S.S.; Li, F.; Okasha, K.M.; Mahmoud, Y.A.G.; Elsamahy, T.; Jiao, H.; Fu, Y.; Sun, J. A Critical Review on the Treatment of Dye-Containing Wastewater: Ecotoxicological and Health Concerns of Textile Dyes and Possible Remediation Approaches for Environmental Safety. Ecotoxicol. Environ. Saf. 2022, 231, 113160. [Google Scholar] [CrossRef]
- El-Aswar, E.I.; Ramadan, H.; Elkik, H.; Taha, A.G. A Comprehensive Review on Preparation, Functionalization and Recent Applications of Nanofiber Membranes in Wastewater Treatment. J. Environ. Manag. 2022, 301, 113908. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, A.; Sodiq, A.; Giwa, A.; Eke, J.; Pikuda, O.; de Luca, G.; di Salvo, J.L.; Chakraborty, S. A Review of Emerging Trends in Membrane Science and Technology for Sustainable Water Treatment. J. Clean. Prod. 2020, 266, 121867. [Google Scholar] [CrossRef]
- Daud, N.M.; Abdullah, S.R.S.; Hasan, H.A.; Ismail, N.I.; Dhokhikah, Y. Integrated Physical-Biological Treatment System for Batik Industry Wastewater: A Review on Process Selection. Sci. Total Environ. 2022, 819, 152931. [Google Scholar] [CrossRef]
- Dalvi, V.; Naaz, F.; Nigam, H.; Jain, R.; Samuchiwal, S.; Kalia, S.; Kumar, R.; Mathur, M.; Bano, F.; Malik, A.; et al. Removal of Pollutants from Wastewater via Biological Methods and Shifts in Microbial Community Profile during Treatment Process. In Wastewater Treatment Reactors: Microbial Community Structure; Elsevier: Amsterdam, The Netherlands, 2021; pp. 19–38. [Google Scholar] [CrossRef]
- Ali, S.S.; Al-Tohamy, R.; Koutra, E.; El-Naggar, A.H.; Kornaros, M.; Sun, J. Valorizing Lignin-like Dyes and Textile Dyeing Wastewater by a Newly Constructed Lipid-Producing and Lignin Modifying Oleaginous Yeast Consortium Valued for Biodiesel and Bioremediation. J. Hazard. Mater. 2021, 403, 123575. [Google Scholar] [CrossRef] [PubMed]
- Samir Ali, S.; Al-Tohamy, R.; Sun, J.; Wu, J.; Huizi, L. Screening and Construction of a Novel Microbial Consortium SSA-6 Enriched from the Gut Symbionts of Wood-Feeding Termite, Coptotermes Formosanus and Its Biomass-Based Biorefineries. Fuel 2019, 236, 1128–1145. [Google Scholar] [CrossRef]
- Danso, B.; Ali, S.S.; Xie, R.; Sun, J. Valorisation of Wheat Straw and Bioethanol Production by a Novel Xylanase- and Cellulase-Producing Streptomyces Strain Isolated from the Wood-Feeding Termite, Microcerotermes Species. Fuel 2022, 310, 122333. [Google Scholar] [CrossRef]
- Roy, M.; Saha, R. Dyes and Their Removal Technologies from Wastewater: A Critical Review. In Intelligent Environmental Data Monitoring for Pollution Management; Elsevier: Amsterdam, The Netherlands, 2021; pp. 127–160. [Google Scholar] [CrossRef]
- Quijano, G.; Arcila, J.S.; Buitrón, G. Microalgal-Bacterial Aggregates: Applications and Perspectives for Wastewater Treatment. Biotechnol. Adv. 2017, 35, 772–781. [Google Scholar] [CrossRef]
- Alazaiza, M.Y.D.; Albahnasawi, A.; Al Maskari, T.; Abujazar, M.S.S.; Bashir, M.J.K.; Nassani, D.E.; Abu Amr, S.S. Biofuel Production Using Cultivated Algae: Technologies, Economics, and Its Environmental Impacts. Energies 2023, 16, 1316. [Google Scholar] [CrossRef]
- Beal, C.M.; Stillwell, A.S.; King, C.W.; Cohen, S.M.; Berberoglu, H.; Bhattarai, R.P.; Connelly, R.L.; Webber, M.E.; Hebner, R.E. Energy Return on Investment for Algal Biofuel Production Coupled with Wastewater Treatment. Water Environ. Res. 2012, 84, 692–710. [Google Scholar] [CrossRef]
- Ahmad, I.; Abdullah, N.; Koji, I.; Yuzir, A.; Mohamad, S.E. Potential of Microalgae in Bioremediation of Wastewater. Bull. Chem. React. Eng. Catal. 2021, 16, 413–429. [Google Scholar] [CrossRef]
- López-Sánchez, A.; Silva-Gálvez, A.L.; Aguilar-Juárez, Ó.; Senés-Guerrero, C.; Orozco-Nunnelly, D.A.; Carrillo-Nieves, D.; Gradilla-Hernández, M.S. Microalgae-Based Livestock Wastewater Treatment (MbWT) as a Circular Bioeconomy Approach: Enhancement of Biomass Productivity, Pollutant Removal and High-Value Compound Production. J. Environ. Manag. 2022, 308, 114612. [Google Scholar] [CrossRef]
- Alazaiza, M.Y.D.; Albahnasawi, A.; Ahmad, Z.; Bashir, M.J.K.; Al-Wahaibi, T.; Abujazar, M.S.S.; Abu Amr, S.S.; Nassani, D.E. Potential Use of Algae for the Bioremediation of Different Types of Wastewater and Contaminants: Production of Bioproducts and Biofuel for Green Circular Economy. J. Environ. Manag. 2022, 324, 116415. [Google Scholar] [CrossRef] [PubMed]
- Dayana Priyadharshini, S.; Suresh Babu, P.; Manikandan, S.; Subbaiya, R.; Govarthanan, M.; Karmegam, N. Phycoremediation of Wastewater for Pollutant Removal: A Green Approach to Environmental Protection and Long-Term Remediation. Environ. Pollut. 2021, 290, 117989. [Google Scholar] [CrossRef] [PubMed]
- Mastropetros, S.G.; Pispas, K.; Zagklis, D.; Ali, S.S.; Kornaros, M. Biopolymers Production from Microalgae and Cyanobacteria Cultivated in Wastewater: Recent Advances. Biotechnol. Adv. 2022, 60, 107999. [Google Scholar] [CrossRef]
- An, J.Y.; Sim, S.J.; Lee, J.S.; Kim, B.W. Hydrocarbon Production from Secondarily Treated Piggery Wastewater by the Green Alga Botryococcus Braunii. J. Appl. Phycol. 2003, 15, 185–191. [Google Scholar] [CrossRef]
- Kim, J.; Lingaraju, B.P.; Rheaume, R.; Lee, J.Y.; Siddiqui, K.F. Removal of Ammonia from Wastewater Effluent by Chlorella Vulgaris. Tsinghua Sci. Technol. 2010, 15, 391–396. [Google Scholar] [CrossRef]
- Kong, Q.X.; Li, L.; Martinez, B.; Chen, P.; Ruan, R. Culture of Microalgae Chlamydomonas Reinhardtii in Wastewater for Biomass Feedstock Production. Appl. Biochem. Biotechnol. 2010, 160, 9–18. [Google Scholar] [CrossRef]
- Aslan, S.; Kapdan, I.K. Batch Kinetics of Nitrogen and Phosphorus Removal from Synthetic Wastewater by Algae. Ecol. Eng. 2006, 28, 64–70. [Google Scholar] [CrossRef]
- Tarlan, E.; Dilek, F.B.; Yetis, U. Effectiveness of Algae in the Treatment of a Wood-Based Pulp and Paper Industry Wastewater. Bioresour. Technol. 2002, 84, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Silambarasan, S.; Logeswari, P.; Sivaramakrishnan, R.; Incharoensakdi, A.; Cornejo, P.; Kamaraj, B.; Chi, N.T.L. Removal of Nutrients from Domestic Wastewater by Microalgae Coupled to Lipid Augmentation for Biodiesel Production and Influence of Deoiled Algal Biomass as Biofertilizer for Solanum Lycopersicum Cultivation. Chemosphere 2021, 268, 129323. [Google Scholar] [CrossRef]
- Schwartz, W. Janet, R. Stein (Editor), Handbook of Phycological Methods, Culture Methods and Growth Measurements. XII, 448 S., 52 Abb., 44 Table Cambridge 1973: University Press, Ł 8.—. Z. Allg. Mikrobiol. 1975, 15, 216. [Google Scholar] [CrossRef]
- Reardon, J.; Foreman, J.; Searcy, R. New Reactants for the Colorimetric Determination of Ammonia. Clin. Chim. Acta 1966, 14, 403–405. [Google Scholar] [CrossRef]
- Brennan, L.; Owende, P. Biofuels from Microalgae—A Review of Technologies for Production, Processing, and Extractions of Biofuels and Co-Products. Renew. Sustain. Energy Rev. 2010, 14, 557–577. [Google Scholar] [CrossRef]
- Widjaja, A.; Chien, C.C.; Ju, Y.H. Study of Increasing Lipid Production from Fresh Water Microalgae Chlorella Vulgaris. J. Taiwan Inst.Chem. Eng. 2009, 40, 13–20. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A Rapid Method of Total Lipid Extraction and Purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Osundeko, O.; Davies, H.; Pittman, J.K. Oxidative Stress-Tolerant Microalgae Strains Are Highly Efficient for Biofuel Feedstock Production on Wastewater. Biomass Bioenergy 2013, 56, 284–294. [Google Scholar] [CrossRef]
- Halfhide, T.; Åkerstrøm, A.; Lekang, O.I.; Gislerød, H.R.; Ergas, S.J. Production of Algal Biomass, Chlorophyll, Starch and Lipids Using Aquaculture Wastewater under Axenic and Non-Axenic Conditions. Algal Res. 2014, 6, 152–159. [Google Scholar] [CrossRef]
- Abdel-Raouf, N.; Al-Homaidan, A.A.; Ibraheem, I.B.M. Microalgae and Wastewater Treatment. Saudi J. Biol. Sci. 2012, 19, 257–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rani, S.; Chowdhury, R.; Tao, W.; Nedbalova, L. Microalga-Mediated Tertiary Treatment of Municipal Wastewater: Removal of Nutrients and Pathogens. Sustainability 2021, 13, 9554. [Google Scholar] [CrossRef]
- Bohutskyi, P.; Kligerman, D.C.; Byers, N.; Nasr, L.K.; Cua, C.; Chow, S.; Su, C.; Tang, Y.; Betenbaugh, M.J.; Bouwer, E.J. Effects of Inoculum Size, Light Intensity, and Dose of Anaerobic Digestion Centrate on Growth and Productivity of Chlorella and Scenedesmus Microalgae and Their Poly-Culture in Primary and Secondary Wastewater. Algal Res. 2016, 19, 278–290. [Google Scholar] [CrossRef]
- Gonçalves, A.L.; Simões, M.; Pires, J.C.M. The Effect of Light Supply on Microalgal Growth, CO2 Uptake and Nutrient Removal from Wastewater. Energy Convers. Manag. 2014, 85, 530–536. [Google Scholar] [CrossRef] [Green Version]
- Gojkovic, Z.; Lu, Y.; Ferro, L.; Toffolo, A.; Funk, C. Modeling Biomass Production during Progressive Nitrogen Starvation by North Swedish Green Microalgae. Algal Res. 2020, 47, 101835. [Google Scholar] [CrossRef]
- Bougaran, G.; Bernard, O.; Sciandra, A. Modeling Continuous Cultures of Microalgae Colimited by Nitrogen and Phosphorus. J. Theor. Biol. 2010, 265, 443–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Posadas, E.; Morales, M.d.M.; Gomez, C.; Acién, F.G.; Muñoz, R. Influence of PH and CO2 Source on the Performance of Microalgae-Based Secondary Domestic Wastewater Treatment in Outdoors Pilot Raceways. Chem. Eng. J. 2015, 265, 239–248. [Google Scholar] [CrossRef] [Green Version]
- Luo, L.Z.; Shao, Y.; Luo, S.; Zeng, F.J.; Tian, G.M. Nutrient Removal from Piggery Wastewater by Desmodesmus Sp.CHX1 and Its Cultivation Conditions Optimization. Environ. Technol. 2018, 40, 2739–2746. [Google Scholar] [CrossRef]
- Duan, P.G.; Yang, S.K.; Xu, Y.P.; Wang, F.; Zhao, D.; Weng, Y.J.; Shi, X.L. Integration of Hydrothermal Liquefaction and Supercritical Water Gasification for Improvement of Energy Recovery from Algal Biomass. Energy 2018, 155, 734–745. [Google Scholar] [CrossRef]
- Su, Y. Revisiting Carbon, Nitrogen, and Phosphorus Metabolisms in Microalgae for Wastewater Treatment. Sci. Total Environ. 2021, 762, 144590. [Google Scholar] [CrossRef] [PubMed]
- Plöhn, M.; Spain, O.; Sirin, S.; Silva, M.; Escudero-Oñate, C.; Ferrando-Climent, L.; Allahverdiyeva, Y.; Funk, C. Wastewater treatment by microalgae. Physiol. Plant. 2021, 173, 568–578. [Google Scholar] [CrossRef]
- Ferro, L.; Gentili, F.G.; Funk, C. Isolation and characterization of microalgal strains for biomass production and wastewater reclamation in northern Sweden. Algal Res. 2018, 32, 44–53. [Google Scholar] [CrossRef]
- Nu, M.M.A.; Buma, A.G.J. Opportunities and Challenges of Microalgal Cultivation on Wastewater, with Special Focus on Palm Oil Mill Effluent and the Production of High-Value Compounds. Waste Biomass Valorization 2019, 10, 2079–2097. [Google Scholar] [CrossRef] [Green Version]
- Ras, M.; Steyer, J.; Bernard, O. Temperature effect on microalgae: A crucial factor for outdoor production. Rev. Environ. Sci. Biotechnol. 2013, 12, 153–164. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; He, B.; Sun, Z.; Chen, Y.-F. Chemically enhanced lipid production from microalgae under low sub-optimal temperature. Algal Res. 2016, 16, 20–27. [Google Scholar] [CrossRef]
- AlMomani, F.; Örmeci, B. Assessment of algae-based wastewater treatment in hot climate region: Treatment performance and kinetics. Process Saf. Environ. Prot. 2020, 141, 140–149. [Google Scholar] [CrossRef]
- Posadas, E.; Alcantara, C.; García-Encina, P.A.; Gouveia, L.; Guieysse, B.; Norvill, Z.; Acién, F.G.; Markou, G.; Congestri, R.; Koreiviene, J.; et al. Microalgae cultivation in wastewater. In Microalgae-Based Biofuels and Bioproducts; Woodhead Publishing: Cambridge, UK, 2017; pp. 67–91. [Google Scholar]
- Marcilhac, C.; Sialve, B.; Pourcher, A.M.; Ziebal, C.; Bernet, N.; Béline, F. Digestate color and light intensity affect nutrient removal and competition phenomena in a microalgal-bacterial ecosystem. Water Res. 2014, 64, 278–287. [Google Scholar] [CrossRef]
- Amr, S.S.A.; Abujazar, M.S.; Alazaiza, M.Y.; Albahnasawi, A.; Bashire, M.J.; Nassani, D.E. The potential use of natural coagulants for microalgae harvesting: A review. Water Qual. Res. J. 2023, 58, 54–74. [Google Scholar] [CrossRef]
- Milledge, J.J.; Heaven, S. A review of the harvesting of micro-algae for biofuel production. Rev. Environ. Sci. Bio/Technol. 2013, 12, 165–178. [Google Scholar] [CrossRef] [Green Version]
- Amer, L.; Adhikari, B.; Pellegrino, J. Technoeconomic analysis of five microalgae-to-biofuels processes of varying complexity. Bioresour. Technol. 2011, 102, 9350–9359. [Google Scholar] [CrossRef]
Parameter | Unit | Value |
---|---|---|
COD | mg/L | 93 |
NH3-N | mg/L | 6.2 |
Color | Pt Co | 82 |
Orthophosphate | mg/L | 12.8 |
pH | mg/L | 7.45 |
Wastewater Concentration (%) | Wastewater Sample (mL) | Microalgae (mL) | Distilled Water (mL) | Total Volume (mL) |
---|---|---|---|---|
50 | 125 | 25 | 100 | 250 |
60 | 150 | 25 | 75 | 250 |
70 | 175 | 25 | 50 | 250 |
80 | 200 | 25 | 25 | 250 |
90 | 225 | 25 | 0 | 250 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alazaiza, M.Y.D.; He, S.; Su, D.; Abu Amr, S.S.; Toh, P.Y.; Bashir, M.J.K. Sewage Water Treatment Using Chlorella Vulgaris Microalgae for Simultaneous Nutrient Separation and Biomass Production. Separations 2023, 10, 229. https://doi.org/10.3390/separations10040229
Alazaiza MYD, He S, Su D, Abu Amr SS, Toh PY, Bashir MJK. Sewage Water Treatment Using Chlorella Vulgaris Microalgae for Simultaneous Nutrient Separation and Biomass Production. Separations. 2023; 10(4):229. https://doi.org/10.3390/separations10040229
Chicago/Turabian StyleAlazaiza, Motasem Y. D., Shan He, Dongxiao Su, Salem S. Abu Amr, Pey Yi Toh, and Mohammed J. K. Bashir. 2023. "Sewage Water Treatment Using Chlorella Vulgaris Microalgae for Simultaneous Nutrient Separation and Biomass Production" Separations 10, no. 4: 229. https://doi.org/10.3390/separations10040229
APA StyleAlazaiza, M. Y. D., He, S., Su, D., Abu Amr, S. S., Toh, P. Y., & Bashir, M. J. K. (2023). Sewage Water Treatment Using Chlorella Vulgaris Microalgae for Simultaneous Nutrient Separation and Biomass Production. Separations, 10(4), 229. https://doi.org/10.3390/separations10040229