Aqueous 2-Ethyl-4-methylimidazole Solution for Efficient CO2 Separation and Purification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Absorption Experiment
2.3. Desorption Experiment
2.4. Flue Gas Capture
2.5. Direct Air Capture
2.6. Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hofmann, D.J.; Butler, J.H.; Tans, P.P. A new look at atmospheric carbon dioxide. Atmos. Environ. 2009, 43, 2084–2086. [Google Scholar] [CrossRef]
- Sanz-Pérez, E.S.; Murdock, C.R.; Didas, S.A.; Jones, C.W. Direct Capture of CO2 from Ambient Air. Chem. Rev. 2016, 116, 11840–11876. [Google Scholar] [CrossRef] [PubMed]
- Kontos, G.; Soldatou, M.A.; Tzimpilis, E.; Tsivintzelis, I. Solubility of CO2 in 2-Amino-2-methyl-1-propanol (AMP) and 3-(Methylamino)propylamine (MAPA): Experimental Investigation and Modeling with the Cubic-Plus-Association and the Modified Kent-Eisenberg Models. Separations 2022, 9, 338–358. [Google Scholar] [CrossRef]
- Samset, B.H.; Fuglestvedt, J.S.; Lund, M.T. Delayed emergence of a global temperature response after emission mitigation. Nat. Commun. 2020, 11, 3261–3270. [Google Scholar] [CrossRef] [PubMed]
- Pauw, P.; Mbeva, K.; van Asselt, H. Subtle differentiation of countries’ responsibilities under the Paris Agreement. Palgrave Commun. 2019, 5, 86–92. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y.M.; Han, R.; Wang, C.; Yu, B.; Liang, Q.M.; Yuan, X.C.; Chang, J.; Zhao, Q.; Liao, H.; Tang, B.; et al. Self-preservation strategy for approaching global warming targets in the post-Paris Agreement era. Nat. Commun. 2020, 11, 1624–1636. [Google Scholar] [CrossRef] [Green Version]
- Bui, M.; Adjiman, C.S.; Bardow, A.; Anthony, E.J.; Boston, A.; Brown, S.; Fennell, P.S.; Fuss, S.; Galindo, A.; Hackett, L.A.; et al. Carbon capture and storage (CCS): The way forward. Energy Envrion. Sci. 2018, 11, 1062–1176. [Google Scholar] [CrossRef] [Green Version]
- Paltsev, S.; Morris, J.; Kheshgi, H.; Herzog, H. Hard-to-Abate Sectors: The role of industrial carbon capture and storage (CCS) in emission mitigation. Appl. Energy 2021, 300, 117322–117332. [Google Scholar] [CrossRef]
- Sebastiani, F.; Lucking, L.; Sarić, M.; James, J.; Boon, J.; van Dijk, H.J.A.E.; Cobden, P.; Pieterse, J.A.Z. Steam and Pressure Management for the Conversion of Steelworks Arising Gases to H2 with CO2 Capture by Stepwise Technology. Separations 2022, 9, 20–40. [Google Scholar] [CrossRef]
- Mac Dowell, N.; Fennell, P.S.; Shah, N.; Maitland, G.C. The role of CO2 capture and utilization in mitigating climate change. Nat. Clim. Chang. 2017, 7, 243–249. [Google Scholar] [CrossRef] [Green Version]
- Jones, W.D. Carbon Capture and Conversion. J. Am. Chem. Soc. 2020, 142, 4955–4957. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, I.; Goryachev, A.; Digdaya, I.A.; Li, X.; Atwater, H.A.; Vermaas, D.A.; Xiang, C. Coupling electrochemical CO2 conversion with CO2 capture. Nat. Catal. 2021, 4, 952–958. [Google Scholar] [CrossRef]
- Gao, W.; Liang, S.; Wang, R.; Jiang, Q.; Zhang, Y.; Zheng, Q.; Xie, B.; Toe, C.Y.; Zhu, X.; Wang, J.; et al. Industrial carbon dioxide capture and utilization: State of the art and future challenges. Chem. Soc. Rev. 2020, 49, 8584–8686. [Google Scholar] [CrossRef]
- Reynolds, A.J.; Verheyen, T.V.; Adeloju, S.B.; Meuleman, E.; Feron, P. Towards Commercial Scale Postcombustion Capture of CO2 with Monoethanolamine Solvent: Key Considerations for Solvent Management and Environmental Impacts. Environ. Sci. Technol. 2012, 46, 3643–3654. [Google Scholar] [CrossRef]
- Hwang, G.S.; Stowe, H.M.; Paek, E.; Manogaran, D. Reaction mechanisms of aqueous monoethanolamine with carbon dioxide: A combined quantum chemical and molecular dynamics study. Phys. Chem. Chem. Phys. 2015, 17, 831–839. [Google Scholar] [CrossRef]
- Corrêa, L.F.F.; Thomsen, K.; Jayaweera, I.; Jayaweera, P.; Fosbøl, P.L. Vapor−Liquid Equilibrium Measurements for Aqueous Mixtures of NH3 + MDEA + CO2 and KOH + MDEA. J. Chem. Eng. Data 2022, 67, 3443–3456. [Google Scholar] [CrossRef]
- Dashti, A.; Raji, M.; Razmi, A.; Rezaei, N.; Zendehboudi, S.; Asghari, M. Efficient hybrid modeling of CO2 absorption in aqueous solution of piperazine: Applications to energy and environment. Chem. Eng. Res. Des. 2019, 144, 405–417. [Google Scholar] [CrossRef]
- Wei, K.; Guan, H.; Luo, Q.; He, J.; Sun, S. Recent advances in CO2 capture and reduction. Nanoscale 2022, 14, 11869–11891. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Gao, H.; He, C.; Liang, Z. Experimental evaluation of highly efficient primary and secondary amines with lower energy by a novel method for post-combustion CO2 capture. Appl. Energy 2019, 233–234, 443–452. [Google Scholar] [CrossRef]
- Singto, S.; Supap, T.; Idem, R.; Tontiwachwuthikul, P.; Tantayanon, S.; Al-Marri, M.J.; Benamor, A. Synthesis of new amines for enhanced carbon dioxide (CO2) capture performance: The effect of chemical structure on equilibrium solubility, cyclic capacity, kinetics of absorption and regeneration, and heats of absorption and regeneration. Sep. Purif. Technol. 2016, 167, 97–107. [Google Scholar] [CrossRef]
- Luo, X.; Liu, S.; Gao, H.; Liao, H.; Tontiwachwuthikul, P.; Liang, Z. An improved fast screening method for single and blended amine-based solvents for post-combustion CO2 capture. Sep. Purif. Technol. 2016, 169, 279–288. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, X.; Liu, H.; Li, W.; Xiao, M.; Gao, H.; Liang, Z. Reduction of energy requirement of CO2 desorption from a rich CO2-loaded MEA solution by using solid acid catalysts. Appl. Energy 2017, 202, 673–684. [Google Scholar] [CrossRef]
- Alivand, M.S.; Mazaheri, O.; Wu, Y.; Zavabeti, A.; Stevens, G.W.; Scholes, C.A.; Mumford, K.A. Water-Dispersible Nanocatalysts with Engineered Structures: The New Generation of Nanomaterials for Energy-Efficient CO2 Capture. ACS Appl. Mater. Interfaces 2021, 13, 57294–57305. [Google Scholar] [CrossRef]
- Alivand, M.S.; Mazaheri, O.; Wu, Y.; Zavabeti, A.; Christofferson, A.J.; Meftahi, N.; Russo, S.P.; Stevens, G.W.; Scholes, C.A.; Mumford, K.A. Engineered assembly of water-dispersible nanocatalysts enables low-cost and green CO2 capture. Nat. Commun. 2022, 13, 1249–1259. [Google Scholar] [CrossRef]
- Srikanth, C.S.; Chuang, S.S.C. Infrared Study of Strongly and Weakly Adsorbed CO2 on Fresh and Oxidatively Degraded Amine Sorbents. J. Phys. Chem. C 2013, 117, 9196–9205. [Google Scholar] [CrossRef]
- Pang, S.H.; Lee, L.C.; Sakwa-Novak, M.A.; Lively, R.P.; Jones, C.W. Design of Aminopolymer Structure to Enhance Performance and Stability of CO2 Sorbents: Poly(propylenimine) vs Poly(ethylenimine). J. Am. Chem. Soc. 2017, 139, 3627–3630. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Bollini, P.; Didas, S.A.; Choi, S.; Drese, J.H.; Jones, C.W. Structural changes of silica mesocellular foam supported amine-functionalized CO2 adsorbents upon exposure to steam. ACS Appl. Mater. Interfaces 2010, 2, 3363–3372. [Google Scholar] [CrossRef] [PubMed]
- Ahmadalinezhad, A.; Sayari, A. Oxidative degradation of silica-supported polyethylenimine for CO2 adsorption: Insights into the nature of deactivated species. Phys. Chem. Chem. Phys. 2014, 16, 1529–1535. [Google Scholar] [CrossRef]
- Longeras, O.; Gautier, A.; Ballerat-Busserolles, K.; Andanson, J.M. Tuning critical solution temperature for CO2 capture by aqueous solution of amine. J. Mol. Liq. 2021, 343, 117628–117635. [Google Scholar] [CrossRef]
- Zhang, L.; Peng, X.M.; Damu, G.L.; Geng, R.X.; Zhou, C.H. Comprehensive review in current developments of imidazole-based medicinal chemistry. Med. Res. Rev. 2014, 34, 340–437. [Google Scholar] [CrossRef] [PubMed]
- Tomizaki, K.; Shimizu, S.; Onoda, M.; Fujioka, Y. Heats of Reaction and Vapor-Liquid Equilibria of Novel Chemical Absorbents for Absorption/Recovery of Pressurized Carbon Dioxide in Integrated Coal Gasification Combined Cycle-Carbon Capture and Storage Process. Ind. Eng. Chem. Res. 2010, 49, 1214–1221. [Google Scholar] [CrossRef]
- Evjen, S.; Fiksdahl, A.; Pinto, D.D.D.; Knuutila, H.K. New polyalkylated imidazoles tailored for carbon dioxide capture. Int. J. Greenh. Gas Control. 2018, 76, 167–174. [Google Scholar] [CrossRef]
- Shannon, M.S.; Bara, J.E. Properties of Alkylimidazoles as Solvents for CO2 Capture and Comparisons to Imidazolium-Based Ionic Liquids. Ind. Eng. Chem. Res. 2011, 50, 8665–8677. [Google Scholar] [CrossRef]
- Chen, W.; Huang, Z.; Liang, X.; Kontogeorgis, G.M.; Liu, B.; Chen, G. Experimental data and modeling of the CO2 solubility in 2-methylimidazole aqueous solution. Fuel 2023, 331, 125694–125704. [Google Scholar] [CrossRef]
- Lin, C.; Stedronsky, E.R.; Regen, S.L. pKa-Dependent Facilitated Transport of CO2 across Hyperthin Polyelectrolyte Multilayers. ACS Appl. Mater. Interfaces 2017, 9, 19525–19528. [Google Scholar] [CrossRef]
- Yan, H.; Zhang, G.; Liu, J.; Li, G.; Wang, Y. Highly efficient CO2 adsorption by imidazole and tetraethylenepentamine functional sorbents: Optimization and analysis using response surface methodology. J. Environ. Chem. Eng. 2021, 9, 105639–105648. [Google Scholar] [CrossRef]
- Li, Q.; Gao, G.; Wang, R.; Zhang, S.; An, S.; Wang, L. Role of 1-methylimidazole in regulating the CO2 capture performance of triethylenetetramine-based biphasic solvents. Int. J. Greenh. Gas Control. 2021, 108, 103330–103339. [Google Scholar] [CrossRef]
- Foorginezhad, S.; Yu, G.; Ji, X. Reviewing and screening ionic liquids and deep eutectic solvents for effective CO2 capture. Front. Chem. 2022, 10, 951951–951974. [Google Scholar] [CrossRef]
- Cheng, J.; Wu, C.; Gao, W.; Li, H.; Ma, Y.; Liu, S.; Yang, D. CO2 Absorption Mechanism by the Deep Eutectic Solvents Formed by Monoethanolamine-Based Protic Ionic Liquid and Ethylene Glycol. Int. J. Mol. Sci. 2022, 23, 1893–1899. [Google Scholar] [CrossRef]
- Emel’yanenko, V.N.; Portnova, S.V.; Verevkin, S.P.; Skrzypczak, A.; Schubert, T. Building blocks for ionic liquids: Vapor pressures and vaporization enthalpies of 1-(n-alkyl)-imidazoles. J. Chem. Thermodyn. 2011, 43, 1500–1505. [Google Scholar] [CrossRef]
- Shannon, M.S.; Tedstone, J.M.; Danielsen, S.P.O.; Bara, J.E. Evaluation of Alkylimidazoles as Physical Solvents for CO2/CH4 Separation. Ind. Eng. Chem. Res. 2011, 51, 515–522. [Google Scholar] [CrossRef]
- Martin, S.; Lepaumier, H.; Picq, D.; Kittel, J.; de Bruin, T.; Faraj, A.; Carrette, P.-L. New Amines for CO2 Capture. IV. Degradation, Corrosion, and Quantitative Structure Property Relationship Model. Ind. Eng. Chem. Res. 2012, 51, 6283–6289. [Google Scholar] [CrossRef]
- Evjen, S.; Wanderley, R.; Fiksdahl, A.; Knuutila, H.K. Viscosity, Density, and Volatility of Binary Mixtures of Imidazole, 2-Methylimidazole, 2,4,5-Trimethylimidazole, and 1,2,4,5-Tetramethylimidazole with Water. J. Chem. Eng. Data 2019, 64, 507–516. [Google Scholar] [CrossRef]
- Song, C.; Kitamura, Y.; Li, S. Optimization of a novel cryogenic CO2 capture process by response surface methodology (RSM). J. Taiwan Inst. of Chem. Eng. 2014, 45, 1666–1676. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Gao, J.; Li, J.; Li, Y.; Bernards, M.T.; Tao, M.; He, Y.; Shi, Y. Screening and Performance Evaluation of Triethylenetetramine Nonaqueous Solutions for CO2 Capture with Microwave Regeneration. Energy Fuels 2020, 34, 11270–11281. [Google Scholar] [CrossRef]
- Qian, W.; Hao, J.; Zhu, M.; Sun, P.; Zhang, K.; Wang, X.; Xu, X. Development of green solvents for efficient post-combustion CO2 capture with good regeneration performance. J. CO2 Util. 2022, 59, 101955–101962. [Google Scholar] [CrossRef]
- Shohrat, A.; Zhang, M.; Hu, H.; Yang, X.; Liu, L.; Huang, H. Mechanism study on CO2 capture by ionic liquids made from TFA blended with MEA and MDEA. Int. J. Greenh. Gas Control. 2022, 119, 101955–101964. [Google Scholar] [CrossRef]
- Hou, H.; Jiao, B.; Li, Q.; Lin, X.; Liu, M.; Shi, H.; Wang, L.; Liu, S. Physicochemical properties, NMR, Ab initio calculations and the molecular interactions in a binary mixture of N-methylimidazole and water. J. Mol. Liq. 2018, 257, 100–111. [Google Scholar] [CrossRef]
- Wang, L.; Liu, S.; Wang, R.; Li, Q.; Zhang, S. Regulating Phase Separation Behavior of a DEEA-TETA Biphasic Solvent Using Sulfolane for Energy-Saving CO2 Capture. Environ. Sci. Technol. 2019, 53, 12873–12881. [Google Scholar] [CrossRef]
- Kariznovi, M.; Nourozieh, H.; Abedi, J. Experimental measurements and predictions of density, viscosity, and carbon dioxide solubility in methanol, ethanol, and 1-propanol. J. Chem. Thermodyn. 2013, 57, 408–415. [Google Scholar] [CrossRef]
- Jing, G.; Liu, F.; Lv, B.; Zhou, X.; Zhou, Z. Novel Ternary Absorbent: Dibutylamine Aqueous–Organic Solution for CO2 Capture. Energy Fuels 2017, 31, 12530–12539. [Google Scholar] [CrossRef]
- Min, K.; Choi, W.; Kim, C.; Choi, M. Oxidation-stable amine-containing adsorbents for carbon dioxide capture. Nat. Commun. 2018, 9, 726–732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nwaoha, C.; Idem, R.; Supap, T.; Saiwan, C.; Tontiwachwuthikul, P.; Rongwong, W.; Al-Marri, M.J.; Benamor, A. Heat duty, heat of absorption, sensible heat and heat of vaporization of 2–Amino–2–Methyl–1–Propanol (AMP), Piperazine (PZ) and Monoethanolamine (MEA) tri–solvent blend for carbon dioxide (CO2) capture. Chem. Eng. Sci. 2017, 170, 26–35. [Google Scholar] [CrossRef]
- Wang, R.; Liu, S.; Li, Q.; Zhang, S.; Wang, L.; An, S. CO2 capture performance and mechanism of blended amine solvents regulated by N-methylcyclohexyamine. Energy 2021, 215, 119209–119217. [Google Scholar] [CrossRef]
- Chen, Z.; Jing, G.; Lv, B.; Zhou, Z. An Efficient Solid–Liquid Biphasic Solvent for CO2 Capture: Crystalline Powder Product and Low Heat Duty. ACS Sustain. Chem. Eng. 2020, 8, 14493–14503. [Google Scholar] [CrossRef]
- Chen, S.; Chen, S.; Fei, X.; Zhang, Y.; Qin, L. Solubility and Characterization of CO2 in 40 mass % N-Ethylmonoethanolamine Solutions: Explorations for an Efficient Nonaqueous Solution. Ind. Eng. Chem. Res. 2015, 54, 7212–7218. [Google Scholar] [CrossRef]
- Liu, S.; Ling, H.; Lv, J.; Gao, H.; Na, Y.; Liang, Z. New Insights and Assessment of Primary Alkanolamine/Sulfolane Biphasic Solutions for Post-combustion CO2 Capture: Absorption, Desorption, Phase Separation, and Technological Process. Ind. Eng. Chem. Res. 2019, 58, 20461–20471. [Google Scholar] [CrossRef]
- Wang, M.; Wang, M.; Rao, N.; Li, J.; Li, J. Enhancement of CO2 capture performance of aqueous MEA by mixing with [NH2e-mim][BF4]. RSC Adv. 2018, 8, 1987–1992. [Google Scholar] [CrossRef] [Green Version]
- Nwaoha, C.; Saiwan, C.; Tontiwachwuthikul, P.; Supap, T.; Rongwong, W.; Idem, R.; Al-Marri, M.J.; Benamor, A. Carbon dioxide (CO2) capture: Absorption-desorption capabilities of 2-amino-2-methyl-1-propanol (AMP), piperazine (PZ) and monoethanolamine (MEA) tri-solvent blends. J. Nat. Gas Sci. Eng. 2016, 33, 742–750. [Google Scholar] [CrossRef]
- Liu, F.; Fang, M.; Dong, W.; Wang, T.; Xia, Z.; Wang, Q.; Luo, Z. Carbon dioxide absorption in aqueous alkanolamine blends for biphasic solvents screening and evaluation. Appl. Energy 2019, 233–234, 468–477. [Google Scholar] [CrossRef]
- Li, X.; Zhou, X.; Wei, J.; Fan, Y.; Liao, L.; Wang, H. Reducing the energy penalty and corrosion of carbon dioxide capture using a novel nonaqueous monoethanolamine-based biphasic solvent. Sep. Purif. Technol. 2021, 265, 118481–118488. [Google Scholar] [CrossRef]
- Bai, L.; Lu, S.; Zhao, Q.; Chen, L.; Jiang, Y.; Jia, C.; Chen, S. Low–energy–consuming CO2 capture by liquid–liquid biphasic absorbents of EMEA/DEEA/PX. Chem. Eng. J. 2022, 450, 138490–138500. [Google Scholar] [CrossRef]
- Gao, X.; Li, X.; Cheng, S.; Lv, B.; Jing, G.; Zhou, Z. A novel solid–liquid ‘phase controllable’ biphasic amine absorbent for CO2 capture. Chem. Eng. J. 2022, 430, 132932–132943. [Google Scholar] [CrossRef]
- Zhang, R.; Liang, Z.; Liu, H.; Rongwong, W.; Luo, X.; Idem, R.; Yang, Q. Study of Formation of Bicarbonate Ions in CO2-Loaded Aqueous Single 1DMA2P and MDEA Tertiary Amines and Blended MEA–1DMA2P and MEA–MDEA Amines for Low Heat of Regeneration. Ind. Eng. Chem. Res. 2016, 55, 3710–3717. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, R.; Liu, H.; Gao, H.; Liang, Z. Evaluating CO2 desorption performance in CO2-loaded aqueous tri-solvent blend amines with and without solid acid catalysts. Appl. Energy 2018, 218, 417–429. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Wu, J.; Lu, X.; Yang, Y.; Gu, L.; Cao, X. Aqueous 2-Ethyl-4-methylimidazole Solution for Efficient CO2 Separation and Purification. Separations 2023, 10, 236. https://doi.org/10.3390/separations10040236
Zhang X, Wu J, Lu X, Yang Y, Gu L, Cao X. Aqueous 2-Ethyl-4-methylimidazole Solution for Efficient CO2 Separation and Purification. Separations. 2023; 10(4):236. https://doi.org/10.3390/separations10040236
Chicago/Turabian StyleZhang, Xingtian, Jun Wu, Xiaoxiao Lu, Yefeng Yang, Li Gu, and Xuebo Cao. 2023. "Aqueous 2-Ethyl-4-methylimidazole Solution for Efficient CO2 Separation and Purification" Separations 10, no. 4: 236. https://doi.org/10.3390/separations10040236
APA StyleZhang, X., Wu, J., Lu, X., Yang, Y., Gu, L., & Cao, X. (2023). Aqueous 2-Ethyl-4-methylimidazole Solution for Efficient CO2 Separation and Purification. Separations, 10(4), 236. https://doi.org/10.3390/separations10040236