CO2 Adsorption on Natural Zeolites from Puebla, México, by Inverse Gas Chromatography
Abstract
:1. Introduction
2. Results
2.1. XRD
2.2. EDS
- SiO2:
- ATH1 > ATH3 > ATH2 > ATH4 > ATZN; Al2O3: ATH3 > ATH1 > ATH2 > ATH4 > ATZN;
- F2O3:
- ATH4 > ATH2 > ATH3 > ATH1 > ATZN; CaO: ATZN > ATH3 > ATH2 > ATH4 > ATH1;
- MgO:
- ATH2 > ATZN > ATH4 > ATH3 > ATH1; K2O: ATH3 > ATH1 > ATH2 > ATH4 > ATZN;
- TiO2:
- ATH4 = ATH1 > ATH2 > ATH3 < ATZN; FeO: ATH4 > ATH2 > ATZN > ATH3 > ATH1 and
- Si/Al:
- ATH4 > ATH2 > ATZN > ATH3 > ATH1.
2.3. SEM
2.4. N2 Adsorption
2.4.1. Pore Size Distribution (PSD), DA and BJH Approaches
D-A Approach
BJH Equation
2.5. Adsorption of CO2
3. Discussion
3.1. XRD
3.2. EDS
3.3. SEM
3.4. N2 Adsorption
D-A Approach
3.5. CO2 Adsorption
4. Materials and Methods
4.1. Materials
4.2. Methodology of Dealumination of Clinoptilolite
4.3. Experimental Measurement Techniques
4.3.1. XRD
4.3.2. SEM
4.3.3. EDS
4.3.4. N2 Adsorption
4.4. Adsorption of CO2
4.5. Calculation Methods
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hernandez, M.A.; Pestryakov, A.; Portillo, R.; Salgado, M.A.; Rojas, F.; Rubio, E.; Ruiz, S.; Petranovskii, V. CO2 Sequestration by Natural Zeolite for Greenhouse Effect Control. Procedia Chem. 2015, 15, 33–41. [Google Scholar] [CrossRef] [Green Version]
- Maurin, G.; Belmabkhout, Y.; Pirngruber, G.; Gaberova, L.; Llewellyn, P. CO2 adsorption in LiY and NaY at high temperature: Molecular simulations compared to experiments. Adsorption 2007, 13, 453–460. [Google Scholar] [CrossRef]
- Belmabkhout, Y.; Sayari, A. Effect of pore expansion and amine functionalization of mesoporous silica on CO2 adsorption over a wide range of conditions. Adsorption 2009, 15, 318–328. [Google Scholar] [CrossRef]
- Database of Zeolite Structures. Available online: http://www.iza-structure.org/databases/ (accessed on 4 November 2022).
- Tsitsihvili, G.V.; Andronikashvili, T.G.; Kirov, G.N.; Filizova, L.D. Natural Zeolites; Ellis Horwood Ltd.: Brighton, UK, 1992; pp. 100–120. [Google Scholar]
- Rouquerol, F.; Rouquerol, J. Adsorption by Powders and Porous Solids: Principles, Methodology and Applications, 2nd ed.; Academic Press: Amsterdam, The Netherlands, 2014; pp. 626–632. [Google Scholar] [CrossRef]
- Hutson, N.D.; Yang, R.T. Theoretical Basis for the Dubinin-Radushkevitch (D-R) Adsorption Isotherm Equation. Adsorption 1997, 3, 189–195. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Diaz, E.; Ordoñez, S.; Vega, A.; Coca, J. Adsorption characterisation of different volatile organic over alumina, zeolites and activated carbon using inverse gas chromatography. J. Chromatogr. A 2004, 1049, 139–146. [Google Scholar] [CrossRef]
- Gürkan, R.; Ceylan, H.; Şahan, T.; Savran, A.; Kubilay, Ş. Evaluation of the Thermodynamic Parameters for the Adsorption of Some Hydrocarbons on Chemically Treated-Bentonites by Inverse Gas Chromatography. Adsorption 2005, 11, 603–612. [Google Scholar] [CrossRef]
- Balard, H.; Papirer, E. Characterization and modificatio of fillers for paints and coatings. Prog. Org. Coat. 1993, 22, 1–17. [Google Scholar] [CrossRef]
- Bilgic, C.; Aşkınc, A. Evaluation of the thermodynamic parameters for the adsorption of some hydrocarbons on alumina and molecular sieves 3A and 5A by inverse gas chromatography. J. Chromatogr. A 2003, 1006, 281–286. [Google Scholar] [CrossRef]
- Jagiello, J.; Bandosz, T.J.; Schwarz, J.A. Application of inversa gas chromatography at infinite dilution to study the effects of oxidation of activated carbons. Carbon 2002, 30, 63–69. [Google Scholar] [CrossRef]
- Chen, S.G.; Yang, R.T. Theoretical basis for the potential theory adsorption isotherms. The Dubinin-Radushkevich and Dubinin-Astakhov equations. Langmuir 1994, 10, 4244–4249. [Google Scholar] [CrossRef]
- Quiroz, K.; Hernandez, M.A.; Portillo, R.; Rojas, F.; Rubio, E.; Petranovskii, V. Comparación de la capacidad de secuestro de CO2 en Clinoptilolita, Epistilbita, Erionita, Mordenita y Caolinita como constituyentes del suelo. Superf. Vacío 2016, 29, 55–61. [Google Scholar]
- Hernandez, M.A.; Portillo, R.; Salgado, M.A.; Rojas, F.; Petranovskii, V.; Pérez, G.; Salas, R. Comparación de la capacidad de adsorción de CO2 en clinoptilolitas naturales y tratadas químicamente. Superf. Vacío 2010, 23, 67–72. [Google Scholar]
- Garcia, R.; Hernández, M.A.; Portillo, R.; Petranovskii, V.; Rubio, E. Adsorción irreversible de CO2, H2 y CH4 en zeolitas naturales de poro angosto. Rev. Int. Contam. Ambient. 2017, 34, 685–696. [Google Scholar] [CrossRef]
- Reddy, M.S.B.; Ponnamma, D.; Sadasivuni, K.K.; Kumar, B.; Abdullah, A.M. Carbon dioxide adsorption based on porous materials. RSC Adv. 2021, 11, 12658. [Google Scholar] [CrossRef] [PubMed]
- Wong-Ng, W.; Kaduk, J.; Huang, Q.; Espinal, L.; Li, L.; Burress, J. Investigation of NaY Zeolite with adsorbed CO2 by neutron powder diffraction. Microporous Mesoporous Mater. 2013, 172, 95–104. [Google Scholar] [CrossRef]
- Park, H.J.; Suh, M.P. Enhanced isosteric heat, selectivity, and uptake capacity of CO2adsorption in a metal-organic framework by impregnated metal ions. Chem. Sci. 2012, 4, 685–690. [Google Scholar] [CrossRef]
- Treacy, M.M.J.; Higgins, J.B. Collection of Simulated XRD Powder Patterns for Zeolites, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2001; pp. 49–50. [Google Scholar] [CrossRef]
- Dávalos, O.G.; Nieto, Á.F.; Alaniz, S.A.; Martinez, E.; Ramirez, E. Cenozoic stratigraphy of the Tehuacan region and its relationship with the northern sector of the Oaxaca fault, Cenozoic stratigraphy of the Tehuacan region and its relationship with the northern sector of the Oaxaca fault. Rev. Mex. Cienc. Geol. 2007, 24, 197–215. [Google Scholar]
- Sprynskyy, M.; Golembiewski, R.; Trykowski, G.; Buszewski, B. Heterogeneity and hierarchy of clinoptilolite porosity. J. Phys. Chem. Solids 2010, 71, 1269–1277. [Google Scholar] [CrossRef]
- Pour, A.A.; Sharifnia, S.; Salehi, R.N.; Ghodrati, M. Performance evaluation of clinoptilolite and 13X zeolites in CO2 separation from CO2/CH4 mixture. J. Nat. Gas Sci. Eng. 2015, 26, 1246–1253. [Google Scholar] [CrossRef]
- Hernández, M.A.; Corona, L.; González, A.I.; Rojas, F.; Lara, V.H.; Silva, F. Quantitative Study of the Adsorption of Aromatic Hydrocarbons (Benzene, Toluene, and p-Xylene) on Dealuminated Clinoptilolites. Ind. Eng. Chem. Res. 2005, 44, 2908–2916. [Google Scholar] [CrossRef]
- Degen, T.; Sadki, M.; Bron, E.; König, U.; Nénert, G. The High Score suite. Powder Diffr. 2014, 29, S13–S18. [Google Scholar] [CrossRef] [Green Version]
- Thang, H.V.; Grajciar, L.; Nachtigall, P.; Bludský, O.; Areán, C.O.; Frýdová, E.; Bulánek, R. Adsorption of CO2 in FAU zeolites: Effect of zeolite composition. Catal. Today 2014, 227, 50–56. [Google Scholar] [CrossRef]
Sample | Card Number | % | Name |
---|---|---|---|
(Na, Ca)0.3(Al, Mg)2Si4O10(OH)2 x H2O | 00-003-0015 | 11.110 | Montmorillonite (Bentonite) |
Ca3.16 Si36O72 (OH2)21.80 | 01-070-1859 | 88.761 | Ca-Clinoptilolite |
SiO2 | 01-085-0795 | 0.128 | Quarzt |
Sample | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | K2O | TiO2 | FeO | Si/Al |
---|---|---|---|---|---|---|---|---|---|
ATZN | 59.30 | 7.65 | 1.54 | 6.32 | 5.99 | 2.54 | 0.60 | 1.39 | 7.75 |
ATH1 | 63.596 | 9.107 | 2.716 | 2.238 | 4.364 | 5.83 | 0.867 | 1.222 | 6.983 |
ATH2 | 62.484 | 7.935 | 3.46 | 2.518 | 6.028 | 4.939 | 0.784 | 1.556 | 7.874 |
ATH3 | 63.425 | 9.862 | 3.088 | 2.952 | 4.397 | 6.167 | 0.617 | 1.389 | 6.431 |
ATH4 | 61.821 | 7.822 | 3.946 | 2.504 | 5.732 | 4.914 | 0.867 | 1.775 | 7.903 |
Sample | ASL m2/g | ASB m2/g | ASt m2/g | CB | Zone p/p0 BET | V∑ cm3/g | W0t cm3/g |
---|---|---|---|---|---|---|---|
ATN | 40.50 | 26.17 | 15.54 | 95 | 0.054–0.289 | 0.075 | 0.010 |
ATH1 | 12.39 | 9.19 | 5.912 | −367 | 0.010–0.210 | 0.0157 | 0.0058 |
ATH2 | 31.06 | 23.39 | 17.03 | 287 | 0.010–0.214 | 0.0156 | 0.0058 |
ATH3 | 15.88 | 10.34 | 6.682 | 610 | 0.01–0.314 | 0.0228 | 0.0016 |
ATH4 | 30.29 | 20.51 | 18.32 | −319 | 0.01–0.314 | 0.0356 | 0.0012 |
Sample | E Kj mol−1 | W0 cm3 g−1 | n | Dp nm | Al2O3 | M+ |
---|---|---|---|---|---|---|
ATN | 2.56 | 0.02 | 1 | 0.950 | 7.65 | 6.32 MgO |
ATH1 | 3.16 | 0.01 | 1 | 0.890 | 9.107 | 5.83 K2O |
ATH2 | 2.85 | 0.02 | 1 | 0.920 | 7.935 | 6.028 MgO |
ATH3 | 2.73 | 0.01 | 1 | 0.930 | 9.862 | 6.167 K2O |
ATH4 | 5.78 | 0.01 | 2.70 | 0.790 | 7.822 | 5.732 MgO |
T/K | Sample | KF 103 | n | RF | KH 103 | am | RL |
---|---|---|---|---|---|---|---|
573 | ATN | 6.4 | 1.290 | 0.995 | 4.9 | 0.207 | 0.999 |
ATH1 | 11.9 | 1.450 | 0.991 | 8.8 | 0.210 | 0.999 | |
ATH2 | 11.7 | 1.380 | 0.995 | 9.2 | 0.223 | 0.999 | |
ATH3 | 9.4 | 1.343 | 0.997 | 7.3 | 0.218 | 0.998 | |
ATH4 | 11.9 | 1.395 | 0.996 | 9.5 | 0.205 | 0.998 | |
543 | ATN | 8.9 | 1.438 | 0.990 | 6.3 | 0.174 | 0.999 |
ATH1 | 8.4 | 1.349 | 0.996 | 5.9 | 0.247 | 0.999 | |
ATH2 | 12.8 | 1.411 | 0.994 | 10 | 0.223 | 0.999 | |
ATH3 | 8.4 | 1.349 | 0.996 | 7.9 | 0.205 | 0.999 | |
ATH4 | 10.7 | 1.425 | 0.993 | 10.2 | 0.209 | 0.999 | |
513 | ATN | 9.3 | 1.450 | 0.989 | 6.6 | 0.173 | 0.999 |
ATH1 | 12.6 | 1.408 | 0.994 | 9.8 | 0.223 | 0.999 | |
ATH2 | 14.9 | 1.481 | 0.993 | 11.4 | 0.212 | 0.998 | |
ATH3 | 13 | 1.514 | 0.989 | 9.2 | 0.197 | 0.999 | |
ATH4 | 11.7 | 1.383 | 0.993 | 9 | 0.230 | 0.999 | |
473 | ATN | 10.2 | 1.383 | 0.993 | 7.6 | 0.162 | 0.999 |
ATH1 | 15.8 | 1.507 | 0.991 | 11.7 | 0.220 | 0.999 | |
ATH2 | 19.2 | 1.593 | 0.996 | 15.8 | 0.185 | 0.995 | |
ATH3 | 14.5 | 1.526 | 0.989 | 11.8 | 0.168 | 0.999 | |
ATH4 | 15.8 | 1.462 | 0.987 | 13.5 | 0.193 | 0.999 | |
433 | ATN | 7.4 | 1.212 | 0.991 | 6.1 | 0.312 | 0.999 |
ATH1 | 17.2 | 1.507 | 0.994 | 14.7 | 0.189 | 0.996 | |
ATH2 | 17.9 | 1.521 | 0.985 | 14.6 | 0.200 | 0.999 | |
ATH3 | 20.1 | 1.638 | 0.989 | 17 | 0.168 | 0.999 | |
ATH4 | 17.7 | 1.469 | 0.993 | 15.5 | 0.198 | 0.998 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernandez, M.A.; Hernandez, G.I.; Portillo, R.; Rubio, E.; Petranovskii, V.; Alvarez, K.M.; Velasco, M.d.l.A.; Santamaría, J.D.; Tornero, M.; Paniagua, L.A. CO2 Adsorption on Natural Zeolites from Puebla, México, by Inverse Gas Chromatography. Separations 2023, 10, 238. https://doi.org/10.3390/separations10040238
Hernandez MA, Hernandez GI, Portillo R, Rubio E, Petranovskii V, Alvarez KM, Velasco MdlA, Santamaría JD, Tornero M, Paniagua LA. CO2 Adsorption on Natural Zeolites from Puebla, México, by Inverse Gas Chromatography. Separations. 2023; 10(4):238. https://doi.org/10.3390/separations10040238
Chicago/Turabian StyleHernandez, Miguel Angel, Gabriela Itzel Hernandez, Roberto Portillo, Efraín Rubio, Vitalii Petranovskii, Karin Montserrat Alvarez, Ma de los Angeles Velasco, Juana Deisy Santamaría, Mario Tornero, and Laura Alicia Paniagua. 2023. "CO2 Adsorption on Natural Zeolites from Puebla, México, by Inverse Gas Chromatography" Separations 10, no. 4: 238. https://doi.org/10.3390/separations10040238
APA StyleHernandez, M. A., Hernandez, G. I., Portillo, R., Rubio, E., Petranovskii, V., Alvarez, K. M., Velasco, M. d. l. A., Santamaría, J. D., Tornero, M., & Paniagua, L. A. (2023). CO2 Adsorption on Natural Zeolites from Puebla, México, by Inverse Gas Chromatography. Separations, 10(4), 238. https://doi.org/10.3390/separations10040238