Box–Behenken-Supported Development and Validation of UPLC Method for the Estimation of Eugenol in Syzygium aromaticum, Cinnamomum tamala, and Myristica fragrance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. UPLC Condition
2.3. Calibration Curve (CC) of EUG
2.4. Ultrasound-Assisted Extraction of Spices
2.5. Method Validation
2.6. Antioxidant Activity
3. Results and Discussion
3.1. Optimization of UPLC Condition
3.2. Method Validation
3.2.1. Specificity
3.2.2. Linearity
3.2.3. Precision
3.2.4. Accuracy
3.2.5. Robustness
3.2.6. Comparison with Reported Analytical Techniques
3.2.7. Antioxidant Potential
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tai, K.W.; Huang, F.M.; Huang, M.S.; Chang, Y.C. Assessment of the genotoxicity of resin and zinc-oxide eugenol-based root canal sealers using an in vitro mammalian test system. J. Biomed. Mat. Res. 2002, 59, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.C.; Uang, B.J.; Wu, H.L.; Lee, J.J.; Hahn, L.J.; Jeng, J.H. Inducing the cell cycle arrest and apoptosis of oral KB carcinoma cells by hydoroxychavicol: Roles of glutathione and reactive oxygen species. Br. J. Pharmacol. 2002, 135, 619–630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francis, L.E.; Wood, D.R. Dental Pharmacology and Therapeutics; W.B. Saunders: Philadelphia, PA, USA, 1961. [Google Scholar]
- Frisch, J.; Bhaskar, S.N. Tissue Response to Eugenol-containing Periodontal Dressings. J. Periodontol. 1967, 38, 402–408. [Google Scholar] [CrossRef]
- Kong, X.; Liu, X.; Li, J.Y.; Yang, Y.J. Advances in pharmacological research of eugenol. Curr. Opin. Complement. Altern. Med. 2014, 1, 8–11. [Google Scholar]
- Mahapatra, S.K.; Roy, S. Phytopharmacological approach of free radical scavenging and anti-oxidative potential of eugenol and Ocimum gratissimum Linn. Asian Pac. J. Trop. Med. 2014, 7, S391–S397. [Google Scholar] [CrossRef] [Green Version]
- Dallmeier, K.; Carlini, E.A. Anesthetic, Hypothermic, Myorelaxant and Anticonvulsant Effects of Synthetic Eugenol Derivatives and Natural Analogues. Pharmacology 1981, 22, 113–127. [Google Scholar] [CrossRef]
- Walsh, S.E.; Maillard, J.Y.; Russell, A.D.; Catrenich, C.E.; Charbonneau, D.L.; Bartolo, R.G. Activity and mechanisms of action of selected biocidal agents on Gram-positive and -negative bacteria. J. Appl. Microbiol. 2003, 94, 240–247. [Google Scholar] [CrossRef]
- Lee, S.-J.; Han, J.-I.; Lee, G.-S.; Park, M.-J.; Choi, I.-G.; Na, K.-J.; Jeung, E.-B. Antifungal Effect of Eugenol and Nerolidol against Microsporum gypseum in a Guinea Pig Model. Biol. Pharm. Bull. 2007, 30, 184–188. [Google Scholar] [CrossRef] [Green Version]
- Ozeki, M. The effects of eugenol on the nerve and muscle in crayfish. Comp. Biochem. Physiol. Part C Comp. Pharmacol. 1975, 50, 183–191. [Google Scholar]
- Wie, M.-B.; Won, M.-H.; Lee, K.-H.; Shin, J.-H.; Lee, J.-C.; Suh, H.-W.; Song, D.-K.; Kim, Y.-H. Eugenol protects neuronal cells from excitotoxic and oxidative injury in primary cortical cultures. Neurosci. Lett. 1997, 225, 93–96. [Google Scholar] [CrossRef]
- Lahlou, S.; Interaminense, L.F.L.; Magalhães, P.J.C.; Leal-Cardoso, J.H.; Duarte, G.P. Cardiovascular Effects of Eugenol, a Phenolic Compound Present in Many Plant Essential Oils, in Normotensive Rats. J. Cardiovasc. Pharmacol. 2004, 43, 250–257. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, R.; Mishra, K.P.; Subramanyam, C. Prevention of isoproterenol-induced cardiac hypertrophy by eugenol, an antioxidant. Indian J. Clin. Biochem. 2006, 21, 107–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anuj, G.; Sanjay, S. Eugenol: A potential phytochemical with multifaceted therapeutic activities. Pharmacology 2010, 2, 108–120. [Google Scholar]
- Feng, J.; Lipton, J. Eugenol: Antipyretic activity in rabbits. Neuropharmacology 1987, 26, 1775–1778. [Google Scholar] [CrossRef] [PubMed]
- Hume, W. Effect of Eugenol on Constrictor Responses in Blood Vessels of the Rabbit Ear. J. Dent. Res. 1983, 62, 1013–1015. [Google Scholar] [CrossRef]
- Silbernagel, C.; Yochem, P. Effectiveness of the anesthetic aqui-S(R) 20e in marine finfish and elasmobranchs. J. Wildl. Dis. 2016, 52, S96–S103. [Google Scholar] [CrossRef]
- Li, S.J.; Adams, M.B.; Nowak, B.F.; Crosbie, P.B.B. Effects of anaesthetics containing eugenol on Neoparamoeba perurans. Aquaculture 2016, 463, 159–162. [Google Scholar] [CrossRef]
- Barbas, L.A.L.; Torres, M.F.; da Costa, B.M.P.; Feitosa, M.J.M.; Maltez, L.C.; Amado, L.L.; Toda, Y.P.S.; Batista, P.D.S.; Cabral, D.A.C.; Hamoy, M. Eugenol induces body immobilization yet evoking an increased neuronal excitability in fish during short-term baths. Aquat. Toxicol. 2020, 231, 105734. [Google Scholar] [CrossRef]
- FAO. Evaluation of Certain Food Additives and Contaminants; Technical Report Series No. 20; FAO/WHO Expert Committee on Food Additives: Geneva, Switzerland, 1982. [Google Scholar]
- World Health Organization (WHO). Evaluation of certain food additives and contaminants. In Twenty-Sixth Report of the Joint FAO/WHO Expert Committee on Food Additives; WHO Technical Report Series, No. 683; World Health Organization: Geneva, Switzerland, 1982. [Google Scholar]
- Bhowmik, D.; Kumar, K.S.; Yadav, A.; Srivastava, S.; Paswan, S.; Dutta, A.S. Recent trends in Indian traditional herbs Syzygium aromaticum and its health benefits. J. Pharmaco. Phytochem. 2012, 1, 13–23. [Google Scholar]
- Fernandes, I.M.; Bastos, Y.F.; Barreto, D.S.; Lourenço, L.S.; Penha, J.M. The efficacy of clove oil as an anaesthetic and in euthanasia procedure for small-sized tropical fishes. Braz. J. Biol. 2016, 77, 444–450. [Google Scholar] [CrossRef] [Green Version]
- Sindhu, M.C.; Ramachandran, A. Acute toxicity and optimal dose of clove oil as anaesthetic for blue hill trout Barilius bakeri (Day). Fish. Technol. 2013, 50, 280–283. [Google Scholar]
- El-Saber Batiha, G.; Alkazmi, L.M.; Wasef, L.G.; Beshbishy, A.M.; Nadwa, E.H.; Rashwan, E.K. Syzygium aromaticum L. (Myrtaceae): Traditional Uses, Bioactive Chemical Constituents, Pharmacological and Toxicological Activities. Biomolecules 2020, 10, 202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiwari, S.; Talreja, S. Importance of Cinnamomum Tamala in the Treatment of Various Diseases. Pharmacogn. J. 2020, 12, 1792–1796. [Google Scholar] [CrossRef]
- Chakraborty, A.; Sankaran, V.; Murugan, R.; Chellappan, D.R. Comparative spasmolytic effect between Cinnamomum tamala and Cinnamomum verum leaf essential oils and eugenol through in vitro and in silico approaches. Z. Nat. C 2021, 76, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Lal, M.; Chandraker, S.K.; Shukla, R. 4- Antimicrobial properties of selected plants used in traditional chinese medicine. In Functional and Preservatiove Properties of Phytochemicals; Academic Press: Cambridge, MA, USA, 2020; pp. 119–143. [Google Scholar]
- Mal, D.; Gharde, S.; Chatterjee, R. Chemical Constituent of Cinnamom umtamala: An Important Tree Spices. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 648–651. [Google Scholar] [CrossRef]
- Francis, S.K.; James, B.; Varughese, S.; Nair, M.S. Phytochemical investigation on Myristica fragrans stems, bark. Nat. Prod. Rese. 2019, 33, 1204–1208. [Google Scholar] [CrossRef]
- Chung, J.Y.; Choo, J.H.; Lee, M.H.; Hwang, J.K. Anticariogenic activity of macelignan isolated from Myristica fragrans (nutmeg) against Streptococcus mutans. Phytomedicine 2006, 13, 261–266. [Google Scholar] [CrossRef]
- Naeem, N.; Rehman, R.; Mushtaq, A.; Ghania, J.B. Nutmeg: A Review on Uses and Biological Properties. Int. J. Chem. Biochem. Sci. 2016, 9, 107–110. [Google Scholar]
- Matulyte, I.; Jekabsone, A.; Jankauskaite, L.; Zavistanaviciute, P.; Sakiene, V.; Bartkiene, E.; Ruzauskas, M.; Kopustinskiene, D.M.; Santini, A.; Bernatoniene, J. The Essential Oil and Hydrolats from Myristica fragrans Seeds with Magnesium Aluminometasilicate as Excipient: Antioxidant, Antibacterial, and Anti-inflammatory Activity. Foods 2020, 9, 37. [Google Scholar] [CrossRef] [Green Version]
- Ashokkumar, K.; Simal-Gandara, J.; Murugan, M.; Dhanya, M.K.; Pandian, A. Nutmeg (Myristica fragrans Houtt.) essential oil: A review on its composition, biological, and pharmacological activities. Phytother. Res. 2022, 36, 2839–2851. [Google Scholar] [CrossRef]
- Malik, K.; Ahmad, M.; Bussmann, R.W.; Tariq, A.; Ullah, R.; Alqahtani, A.S.; Shahat, A.A.; Rashid, N.; Zafar, M.; Sultana, S.; et al. Ethnobotany of Anti-hypertensive Plants Used in Northern Pakistan. Front. Pharmacol. 2018, 9, 789. [Google Scholar] [CrossRef] [PubMed]
- Al Niaeem, K.S.; Mohammad, F.A.; Al Hamdany, Q.H. The Anaesthetic Effect of Nutmeg Powder, Myrisitca fragrans on Young Common Carp, Cyprinus carpio. Biol. Appl. Environ. Res. 2017, 1, 279–286. [Google Scholar]
- Aydın, B.; Barbas, L.A. Sedative and anesthetic properties of essential oils and their active compounds in fish: A review. Aquaculture 2020, 520, 734999. [Google Scholar] [CrossRef]
- Altahir, B.M.; Abdulazeez, O.; Dikran, S.B.; Taylor, K.E. Determination of eugenol in personal-care products by dispersive liquidliquid microextraction followed by spectrophotometry using p-amino-N,N-dimethylaniline as a derivatizing agent. Indones. J. Chem. 2021, 21, 192–200. [Google Scholar] [CrossRef]
- Yun, S.-M.; Lee, M.-H.; Lee, K.-J.; Ku, H.-O.; Son, S.-W.; Joo, Y.-S. Quantitative Analysis of Eugenol in Clove Extract by a Validated HPLC Method. J. AOAC Int. 2010, 93, 1806–1810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higashi, Y.; Fujii, Y. Hplc-Uv analysis of eugenol in clove and cinnamon oils after pre-column derivatization with 4-fluoro-7-nitro-2,1,3-benzoxadiazole. J. Liq. Chromatogr. Relat. Technol. 2010, 34, 18–25. [Google Scholar] [CrossRef]
- Aydoğmuş, Z.; Yıldız, G.; Yılmaz, E.M.; Aboul-Enein, H.Y. Determination of eugenol in plants and pharmaceutical form by HPLC with amperometric detection at graphene-modified carbon paste electrode. Graphene Technol. 2017, 3, 1–9. [Google Scholar] [CrossRef]
- Dighe, V.V.; Charegaonkar, G.A. HPTLC quantitation of eugenol from leaf and berry powder of Pimenta dioica (L.) merr. Anal. Chem. 2009, 8, 29–33. [Google Scholar]
- Patra, K.C.; Kumar, K.J. A validated HPTLC method for simultaneous analysis of eugenol and piperine in a Siddha formulation. JPC J. Planar Chromatogr. Mod. TLC 2010, 23, 293–297. [Google Scholar] [CrossRef]
- Taleuzzamana, M.; Jahangirb, A.; Gilania, S.J. Quantification and identification of bioactive eugenol in Myristica fragrans seeds using validated high performance thin layer chromatography technique. Pharm. Anal. Acta 2017, 8, E563. [Google Scholar]
- Myint, S.; Daud, W.R.W.; Mohamad, A.B.; Kadhum, A.A.H. Gas chromatographic determination of eugenol in ethanol extract of cloves. J. Chromatogr. B Biomed. Sci. Appl. 1996, 679, 193–195. [Google Scholar] [CrossRef] [PubMed]
- Sruthi, B.Y.K.; Gurupadaya, B.M.; Venkata, S.K.; Kumar, T.N. Development and validation of GC method for the estimation of eugenol in clove extract. Int. J. Pharm. Pharm. Sci. 2014, 6, 473–476. [Google Scholar]
- Prathap, M.U.A.; Wei, C.; Sun, S.; Xu, Z.J. A new insight into electrochemical detection of eugenol by sheaf-like mesoporous NiCO2O4. Nano Res. 2015, 8, 2636–2645. [Google Scholar] [CrossRef]
- Maciel, J.V.; Silva, T.A.; Dias, D.; Fatibello-Filho, O. Electroanalytical determination of eugenol in clove oil by voltammetry of immobilized microdroplets. J. Solid State Electrochem. 2018, 22, 2277–2285. [Google Scholar] [CrossRef]
- Lee, J.; Weon, J.B.; Lee, B.; Yun, B.R.; Eom, M.R.; Ma, C.J. Simultaneous determination of six components in the traditional herbal medicine ‘Oryeongsan’ HPLC-DAD and LC-MS/MS. Nat. Prod. Sci. 2013, 19, 20–27. [Google Scholar]
- ICH. Q2 (R1): Validation of Analytical Procedures–Text and Methodology. In Proceedings of the International Conference on Harmonization (ICH), Geneva, Switzerland, November 2005. Available online: https://database.ich.org/sites/default/files/Q2_R1__Guideline.pdf (accessed on 8 August 2022).
- Ahmad, W.; Zaidi, S.M.A.; Mujeeb, M.; Ansari, S.H.; Ahmad, S. HPLC and HPTLC Methods by Design for Quantitative Characterization and in vitro Antioxidant Activity of Polyherbal Formulation Containing Rheum emodi. J. Chromatogr. Sci. 2013, 52, 911–918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, W.; Husain, I.; Ahmad, N.; Amir, M.; Sarafroz, M.; Ansari, M.A.; Zafar, A.; Ali, A.; Zafar, R.; Ashraf, K. Box–Behnken supported development and validation of robust HPTLC method: An application in estimation of punarnavine in leaf, stem, and their callus of Boerhavia diffusa Linn. 3 Biotech. 2020, 10, 165. [Google Scholar] [CrossRef]
- Ahmad, W.; Amir, M.; Ahmad, A.; Ali, A.; Ali, A.; Wahab, S.; Barkat, H.A.; Ansari, M.A.; Sarafroz, M.; Ahmad, A. Aegle marmelos Leaf Extract Phytochemical Analysis, Cytotoxicity, In Vitro Antioxidant and Antidiabetic Activities. Plants 2021, 10, 2573. [Google Scholar] [CrossRef]
- Myers, R.H.; Montgomery, D.C. Response Surface Methodology: Product and Process Optimization Using Designed Experiments, 2nd ed.; John Wiley and Sons: New York, NY, USA, 2002. [Google Scholar]
- Yu, B.S.; Lai, S.G.; Tan, Q.L. Simultaneous determination of cinnamaldehyde, eugenol and paenol in traditional Chinese medicinal preparations by capillary GC-FID. Chem. Pharm. Bull. 2006, 54, 114–116. [Google Scholar] [CrossRef] [Green Version]
- Gursale, A.; Dighe, V.; Parekh, G. Simultaneous Quantitative Determination of Cinnamaldehyde and Methyl Eugenol from Stem Bark of Cinnamomum zeylanicum Blume Using RP-HPLC. J. Chromatogr. Sci. 2010, 48, 59–62. [Google Scholar] [CrossRef] [Green Version]
- Cao, C.; Liu, W.; Babajanian, S.; Zhang, Y.; Chang, P.; Swanson, G. Development and Validation of a UPLC-DAD Method for Quantitative Analysis of Coumarin, trans-Cinnamic Acid, trans-Cinnamaldehyde, and Eugenol in Encapsulated Cinnamon Flavoring Powder. J. AOAC Int. 2020, 103, 1394–1399. [Google Scholar] [CrossRef] [PubMed]
- Gopu, C.L.; Aher, S.; Mehta, H.; Paradkar, A.R.; Mahadik, K.R. Simultaneous determination of cinnamaldehyde, eugenol and piperine by HPTLC densitometric method. Phytochem. Anal. 2008, 19, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Dhalwal, k.; Shinde, M.V.; Mahadik, R.K.; Namdeo, G.A. Rapid densitometric method for simultaneous analysis of umbelliferone, psoralen, and eugenol in herbal raw materials using HPTLC. J. Sep. Sci. 2007, 30, 2053–2058. [Google Scholar] [CrossRef] [PubMed]
- Pathak, S.B.; Niranjan, K.; Padh, H.; Rajani, M. TLC Densitometric Method for the Quantification of Eugenol and Gallic Acid in Clove. Chromatographia 2004, 60, 241–244. [Google Scholar] [CrossRef]
- Sharopov, F.S.; Wink, M.; Setzer, W.N. Radical Scavenging and Antioxidant Activities of Essential Oil Components–An Experimental and Computational Investigation. Nat. Prod. Commun. 2015, 10, 153–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Rosés, R.; Risco, E.; Vila, R.; Peñalver, P.; Cañigueral, S. Biological and Nonbiological Antioxidant Activity of Some Essential Oils. J. Agric. Food Chem. 2016, 64, 4716–4724. [Google Scholar] [CrossRef]
- Lister, I.N.E.; Ginting, C.N.; Girsang, E.; Armansyah, A.; Marpaung, H.H.; Sinaga, A.P.F.; Handayani, R.A.S.; Rizal, R. Antioxidant Properties of Red Betel (Piper crocatum) Leaf Extract and Its Compound. J. Nat. Remedies 2019, 19, 198–205. [Google Scholar] [CrossRef]
Parameters | EUG |
---|---|
Linearity range ng/mL | 10–100 |
Correlation coefficient (R2) | 0.9999 |
LOD | 4.81 |
LOQ | 14.58 |
Amount | Inter-Day Precision | Intra-Day Precision | ||
---|---|---|---|---|
ng/mL | Mean Peak Area ± SD | %RSD | Mean Peak Area ± SD | %RSD |
40 | 171,870.4 ± 868.94 | 0.50 | 167,160.6 ± 639.60 | 0.38 |
80 | 362,695.2 ± 3125.71 | 0.86 | 359,949.5 ± 2927.16 | 0.81 |
100 | 453,913.3 ± 4432.41 | 0.97 | 464,925.2 ± 4553.41 | 1.00 |
Excess Spike Concentration | % Recovery of EUG |
---|---|
40% | 100.68 ± 0.39 |
80% | 98.93 ± 0.42 |
100% | 101.51 ± 0.55 |
Run | Factor 1 A: Flow Rate (mL) | Factor 2 B: Column Temperature (K) | Factor 3 C: Wavelength (nm) | Response R1 (Area) |
---|---|---|---|---|
1 | 0.1 | 308 | 283 | 163,458.925 |
2 | 0.2 | 313 | 279 | 165,345.223 |
3 | 0.3 | 308 | 283 | 167,062.413 |
4 | 0.2 | 313 | 283 | 168,742.113 |
5 | 0.3 | 303 | 281 | 167,061.771 |
6 | 0.2 | 308 | 281 | 171,422.988 |
7 | 0.2 | 308 | 281 | 171,422.988 |
8 | 0.2 | 303 | 283 | 168,953.194 |
9 | 0.3 | 308 | 279 | 165,327.116 |
10 | 0.2 | 303 | 279 | 166,116.307 |
11 | 0.2 | 308 | 281 | 171,387.46 |
12 | 0.2 | 308 | 281 | 171,396.543 |
13 | 0.1 | 303 | 281 | 164,883.025 |
14 | 0.3 | 313 | 281 | 168,031.302 |
15 | 0.2 | 308 | 281 | 171,408.863 |
16 | 0.1 | 313 | 281 | 165,517.714 |
17 | 0.1 | 308 | 279 | 166,562.316 |
S.N. | Analytical Method | Run Time | Linearity (µg/mL) | Accuracy (% Recovery) | Precision (% RSD) | Retention Time (Min) | Column | Ref. |
---|---|---|---|---|---|---|---|---|
1 | GC-FID | 13 | 0.31–625 µg/mL | 88–96 | 4.5–8.7 | 9.83 | DB17 | [55] |
2 | HPLC | 40 | 0.2–12 µg/mL | 99.20 | 0.41–125 | 16.67 | C18 | [56] |
3 | HPLC | 60 | 0.45–36 µg/mL | 99.47–101.85 | 0.51–153 | 25.43 | C18 | [49] |
4 | HPTLC | -- | 532.2–8531.2 ng/band | 98.25–99.32 | 0.34–1.09 | -- | [59] | |
5 | HPTLC | -- | 200–1000 ng/band | 99.33 | 1.35–1.71 | -- | [58] | |
6 | HPTLC | -- | 100–1000 ng/band | 99.3–99.8 | 1.71–1.85 | -- | [44] | |
7 | HPLC | 20 | 12.5–1000 ng/mL | 103.7 | 0.27–1.19 | 8.43 | C18 | [39] |
8 | UPLC-DAD | 6 | 1.58–315.61 µg/mL | 97–98 | 1.9–2.8 | 4.24 | C18 | [57] |
9 | HPTLC | -- | 200–1000 ng/band | 99.79 | 0.61–0.96 | -- | [60] | |
10 | UPLC-PDA | 3 | 10–100 ng/mL | 98.93–101.51 | 0.38–1.0 | 1.53 | C18 | CW |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, W. Box–Behenken-Supported Development and Validation of UPLC Method for the Estimation of Eugenol in Syzygium aromaticum, Cinnamomum tamala, and Myristica fragrance. Separations 2023, 10, 248. https://doi.org/10.3390/separations10040248
Ahmad W. Box–Behenken-Supported Development and Validation of UPLC Method for the Estimation of Eugenol in Syzygium aromaticum, Cinnamomum tamala, and Myristica fragrance. Separations. 2023; 10(4):248. https://doi.org/10.3390/separations10040248
Chicago/Turabian StyleAhmad, Wasim. 2023. "Box–Behenken-Supported Development and Validation of UPLC Method for the Estimation of Eugenol in Syzygium aromaticum, Cinnamomum tamala, and Myristica fragrance" Separations 10, no. 4: 248. https://doi.org/10.3390/separations10040248
APA StyleAhmad, W. (2023). Box–Behenken-Supported Development and Validation of UPLC Method for the Estimation of Eugenol in Syzygium aromaticum, Cinnamomum tamala, and Myristica fragrance. Separations, 10(4), 248. https://doi.org/10.3390/separations10040248