Identification and Quantification of Polyphenolic Secondary Metabolites in Stem Bark of Ficus religiosa (Moraceae) Using UPLC-HRMS and RP-HPLC-PDA
Abstract
:1. Introduction
2. Material and Methods
2.1. Plant Material
2.2. Chemicals and Reagents
2.3. Extraction of Samples
2.4. General Instrumentation
2.5. UPLC-HRMS Conditions and Identification of Secondary Metabolites
2.6. RP-HPLC-PDA Conditions and Quantification of Polyphenolics
2.7. Determination of Total Flavonoid Content
2.8. Determination of Total Polyphenolic Content
2.9. Free-Radical Scavenging Assay
2.10. Statistical Analysis
3. Results and Discussion
3.1. Quantification with RP-HPLC-PDA
3.2. Total Phenolic Content and Total Flavonoid Content of the Bark Extract
3.3. DPPH Radical Scavenging Capacity of the Bark Extract
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EGCG | Epigallocatechin gallate |
RP-HPLC-PDA | Reverse-phase–high-performance liquid chromatography–photodiode array |
UPLC-HRMS | Ultraperformance liquid chromatography–high-resolution mass spectrometry |
LCMS | Liquid chromatography mass spectrometry |
TPC | Total phenolic content |
TFC | Total flavonoid content |
RSD | Relative standard deviation |
LOD | Limit of detection |
LOQ | Limit of quantification |
DPPH | 2,2-diphenyl-1-picrylhydrazyl |
IC50 | Half-maximal inhibitory concentration |
References
- Silambarasan, R.; Sureshkumar, J.; Krupa, J.; Amalraj, S.; Ayyanar, M. Traditional herbal medicines practiced by the ethnic people in Sathyamangalam forests of Western Ghats. Indian Eur. J. Integr. Med. 2017, 16, 61–72. [Google Scholar] [CrossRef]
- Joshi, A.R.; Joshi, K. Indigenous knowledge and uses of medicinal plants by local communities of the Kali Gandaki Watershed Area, Nepal. J. Ethnopharmacol. 2000, 73, 175–183. [Google Scholar] [CrossRef]
- Kirana, H.; Agrawal, S.S.; Srinivasan, B.P. Aqueous extract of Ficus religiosa Linn. reduces oxidative stress in experimentally induced type 2 diabetic rats. Indian J. Exp. Biol. 2009, 47, 822–826. [Google Scholar]
- Uma, B.; Prabhakar, K.; Rajendran, S. Invitro antimicrobial activity and phytochemical analysis of Ficus religiosa L. and Ficus bengalensis L. against Diarrhoeal Enterotoxigenic E. coli. Ethnobot. Leafl. 2009, 13, 472–474. [Google Scholar]
- Zaidi, S.F.H.; Yamada, K.; Kadowaki, M.; Usmanghani, K.; Sugiyama, T. Bactericidal activity of medicinal plants, employed for the treatment of gastrointestinal ailments, against Helicobacter pylori. J. Ethnopharmacol. 2009, 121, 286–291. [Google Scholar] [CrossRef]
- Sharma, H.K.; Chhangte, L.; Dolui, A.K. Traditional medicinal plants in Mizoram, India. Fitoterapia 2001, 72, 146–161. [Google Scholar] [CrossRef] [PubMed]
- Lansky, E.P.; Paavilainen, H.M.; Pawlus, A.D.; Newman, R.A. Ficus spp.(fig): Ethnobotany and potential as anticancer and anti-inflammatory agents. J. Ethnopharmacol. 2008, 119, 195–213. [Google Scholar] [CrossRef]
- Kotoky, J.; Das, P.N. Medicinal plants used for liver diseases in some parts of Kamrup district of Assam, a North Eastern State of India. Fitoterapia 2008, 79, 384–387. [Google Scholar] [CrossRef]
- Ministry of Health and Family Welfare. The Ayurvedic Formulary of India, Part 1; Ministry of Health and Family Welfare, Department of Indian Systems of Medicine and Homoeopathy, Government of India: New Delhi, India, 2003; Volume 1, pp. 99–332.
- Simha, K.R.; Laxminarayana, V. Standardization of Ayurvedic polyherbal formulation, Nyagrodhadi churna. Indian J. Tradit. Knowl. 2007, 6, 648–652. [Google Scholar]
- Singh, D.; Singh, B.; Goel, R.K. Traditional uses, phytochemistry and pharmacology of Ficus religiosa: A review. J. Ethnopharmacol. 2011, 134, 565–583. [Google Scholar] [CrossRef]
- Swami, K.D.; Malik, G.S.; Bisht, N.P.S. Chemical investigation of stem bark of Ficus-religiosa and Prosopis-spicigera. J. Indian Chem. Soc. 1989, 66, 288–289. [Google Scholar]
- Swami, K.D.; Bisht, N.P.S. Constituents of Ficus religiosa and Ficus infectoria and their biological activity. J. Indian Chem. Soc. 1996, 73, 631. [Google Scholar]
- Taskeen, A.; Naeem, I.; Mubeen, H.; Mehmood, T. Reverse phase high performance liquid chromatographic analysis of flavonoids in two Ficus species. N. Y. Sci. J. 2009, 2, 32–35. [Google Scholar]
- Husain, A.; Virmani, O.P.; Popli, S.P.; Misra, L.N.; Gupta, M.M.; Srivastava, G.N.; Abraham, Z.; Singh, A.K. Dictionary of Indian Medicinal Plants; CIMAP: Lucknow, India, 1992; p. 546. [Google Scholar]
- Elhawary, S.S.; Younis, I.Y.; El Bishbishy, M.H.; Khattab, A.R. LC–MS/MS-Based chemometric analysis of phytochemical diversity in 13 Ficus spp. (Moraceae): Correlation to their in vitro antimicrobial and in silico quorum sensing inhibitory activities. Ind. Crop. Prod. 2018, 126, 261–271. [Google Scholar] [CrossRef]
- Ramakrishna, V.; Mallepalli, S.K.R. Bioactive compounds and their antioxidant activity of F. religiosa extracts. Adv. Biores. 2021, 12, 10–18. [Google Scholar]
- Prakash, O.; Baskaran, R.; Kudachikar, V.B. Characterization, quantification of free, esterified and bound phenolics in Kainth (Pyrus pashia Buch.-Ham. Ex D. Don) fruit pulp by UPLC-ESI-HRMS/MS and evaluation of their antioxidant activity. Food Chem. 2019, 299, 125114. [Google Scholar] [CrossRef]
- Touami, Y.; Marir, R.; Merouane, F. Improvement of ultrasound-assisted extraction of polyphenolic content of the plant Cytisus triflorus L’Her as a natural resource using artificial neural network modeling and multi-objective optimization. Sustain. Chem. Pharm. 2023, 32, 101032. [Google Scholar] [CrossRef]
- Lucci, P.; Saurina, J.; Núñez, O. Trends in LC-MS and LC-HRMS analysis and characterization of polyphenols in food. TrAC Trends Anal. Chem. 2017, 88, 1–24. [Google Scholar] [CrossRef]
- Matou, M.; Merciris, P.; Sanchez-Villavicencio, M.L.; Herbette, G.; Neviere, R.; Haddad, P.; Marianne-Pepin, T.; Bercion, S. Polyphenolic compounds of Phyllanthus amarus Schum & Thonn. (1827) and diabetes-related activity of an aqueous extract as affected by in vitro gastrointestinal digestion. J. Ethnopharm. 2023, 116619. [Google Scholar] [CrossRef]
- Manousaki, A.; Jancheva, M.; Grigorakis, S.; Makris, D.P. Extraction of antioxidant phenolics from agri-food waste biomass using a newly designed glycerol-based natural low-transition temperature mixture: A comparison with conventional eco-friendly solvents. Recycling 2016, 1, 194–204. [Google Scholar] [CrossRef]
- Fattahi, S.; Zabihi, E.; Abedian, Z.; Pourbagher, R.; Ardekani, A.M.; Mostafazadeh, A.; Akhavan-Niaki, H. Total phenolic and flavonoid contents of aqueous extract of stinging nettle and in vitro antiproliferative effect on hela and BT-474 Cell lines. Int. J. Mol. Cell Med. 2014, 3, 102. [Google Scholar]
- Guleria, S.; Tiku, A.K.; Koul, A.; Gupta, S.; Singh, G.; Razdan, V.K. Antioxidant and antimicrobial properties of the essential oil and extracts of Zanthoxylum alatum grown in North-Western Himalaya. Sci. World J. 2013, 2013, 790580. [Google Scholar] [CrossRef]
- Mukhija, M.; Kalia, A.N. Antioxidant potential and total phenolic content of Zanthoxylum alatum stem bark. J. Appl. Pharm. 2014, 6, 388–397. [Google Scholar] [CrossRef]
- Lavilla, I.; Bendicho, C. Fundamentals of ultrasound-assisted extraction. In Water Extraction of Bioactive Compounds; Elsevier: Amsterdam, The Netherlands, 2017; pp. 291–316. [Google Scholar]
- Agarwal, C.; Hofmann, T.; Visi-Rajczi, E.; Pásztory, Z. Low-frequency, green sonoextraction of antioxidants from tree barks of Hungarian woodlands for potential food applications. Chem. Eng. Process. Process Intensif. 2021, 159, 108221. [Google Scholar] [CrossRef]
- De, B.; Maiti, R.N.; Joshi, V.K.; Agrawal, V.K.; Goel, R.K. Effect of some Sitavirya drugs on gastric secretion and ulceration. Indian J. Exp. Biol. 1997, 35, 1084–1087. [Google Scholar]
- Rajakumar, N.; Shivanna, M.B. Ethno-medicinal application of plants in the eastern region of Shimoga district, Karnataka, India. J. Ethnopharmacol. 2009, 126, 64–73. [Google Scholar] [CrossRef]
- Tsimogiannis, D.; Samiotaki, M.; Panayotou, G.; Oreopoulou, V. Characterization of flavonoid subgroups and hydroxy substitution by HPLC-MS/MS. Molecules 2007, 12, 593–606. [Google Scholar] [CrossRef]
- Tóth, G.; Alberti, Á.; Sólyomváry, A.; Barabás, C.; Boldizsár, I.; Noszál, B. Phenolic profiling of various olive bark-types and leaves: HPLC–ESI/MS study. Ind. Crops. Prod. 2015, 67, 432–438. [Google Scholar] [CrossRef]
- Ramakrishnan, P.; Kalakandan, S.; Pakkirisamy, M. Studies on Positive and Negative ionization mode of ESI-LC-MS/MS for screening of Phytochemicals on Cassia auriculata (Aavaram Poo). Pharmacogn. J. 2018, 10, 457–462. [Google Scholar] [CrossRef]
- Benavides, A.; Montoro, P.; Bassarello, C.; Piacente, S.; Pizza, C. Catechin derivatives in Jatropha macrantha stems: Characterisation and LC/ESI/MS/MS quali–quantitative analysis. J. Pharm. Biomed. Anal. 2006, 40, 639–647. [Google Scholar] [CrossRef] [PubMed]
- Wojakowska, A.; Perkowski, J.; Góral, T.; Stobiecki, M. Structural characterization of flavonoid glycosides from leaves of wheat (Triticum aestivum L.) using LC/MS/MS profiling of the target compounds. J. Mass. Spectrom. 2013, 48, 329–339. [Google Scholar] [CrossRef]
- Wu, Z.J.; Ma, X.L.; Fang, D.M.; Qi, H.Y.; Ren, W.J.; Zhang, G.L. Analysis of caffeic acid derivatives from Osmanthus yunnanensis using electrospray ionization quadrupole time-of-flight mass spectrometry. Eur. J. Mass Spectrom. 2009, 15, 415–429. [Google Scholar] [CrossRef]
- Jaiswal, R.; Müller, H.; Müller, A.; Karar, M.G.E.; Kuhnert, N. Identification and characterization of chlorogenic acids, chlorogenic acid glycosides and flavonoids from Lonicera henryi L. (Caprifoliaceae) leaves by LC–MSn. Phytochemistry 2014, 108, 252–263. [Google Scholar] [CrossRef] [PubMed]
- Kachlicki, P.; Piasecka, A.; Stobiecki, M.; Marczak, Ł. Structural characterization of flavonoid glycoconjugates and their derivatives with mass spectrometric techniques. Molecules 2016, 21, 1494. [Google Scholar] [CrossRef] [PubMed]
- Appeldoorn, M.M.; Sanders, M.; Vincken, J.P.; Cheynier, V.; Le Guernevé, C.; Hollman, P.C.; Gruppen, H. Efficient isolation of major procyanidin A-type dimers from peanut skins and B-type dimers from grape seeds. Food Chem. 2009, 117, 713–720. [Google Scholar] [CrossRef]
- Singh, A.; Kumar, S.; Kumar, B. LC-MS Identification of Proanthocyanidins in Bark and Fruit of six Terminalia species. Nat. Prod. Commun. 2018, 13, 1934578X1801300511. [Google Scholar] [CrossRef]
- Longo, E.; Rossetti, F.; Scampicchio, M.; Boselli, E. Isotopic exchange HPLC-HRMS/MS applied to cyclic proanthocyanidins in wine and cranberries. J. Am. Soc. Mass Spectrom. 2018, 29, 663–674. [Google Scholar] [CrossRef] [PubMed]
- Longo, E.; Rossetti, F.; Merkyte, V.; Boselli, E. Disambiguation of isomeric procyanidins with cyclic B-type and non-cyclic A-type structures from wine and peanut skin with HPLC-HDX-HRMS/MS. J. Am. Soc. Mass Spectrom. 2018, 29, 2268–2277. [Google Scholar] [CrossRef]
- Xian, D.; Guo, M.; Xu, J.; Yang, Y.; Zhao, Y.; Zhong, J. Current evidence to support the therapeutic potential of flavonoids in oxidative stress-related dermatoses. Redox Rep. 2021, 26, 134–146. [Google Scholar] [CrossRef] [PubMed]
- Lal, U.R.; Singh, I.P. Review and Implications of Traditional Indian Medicine for Inflammatory Bowel Disease. In Translational Studies on Inflammation; Nunes, A.C., Ed.; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Wan, C.C.; Hu, X.; Li, M.; Rengasamy, K.R.; Cai, Y.; Liu, Z. Potential protective function of green tea polyphenol EGCG against high glucose-induced cardiac injury and aging. J. Funct. Foods 2023, 104, 105506. [Google Scholar] [CrossRef]
- Wang, L.; Penghui, L.; Kun, F. EGCG adjuvant chemotherapy: Current status and future perspectives. Eur. J. Med. Chem. 2023, 250, 115197. [Google Scholar] [CrossRef] [PubMed]
- Ekundayo, B.E.; Obafemi, T.O.; Afolabi, B.A.; Adewale, O.B.; Onasanya, A.; Osukoya, O.A.; Falode, J.A.; Akintayo, C.; Adu, I.A. Gallic acid and hesperidin elevate neurotransmitters level and protect against oxidative stress, inflammation and apoptosis in aluminum chloride-induced Alzheimer’s disease in rats. Pharmacol. Res. Mod. Chin. Med. 2022, 5, 100193. [Google Scholar] [CrossRef]
- Rahaman, S.N.; Ayyadurai, N.; Anandasadagopan, S.K. Synergistic effect of vancomycin and gallic acid loaded MCM-41 mesoporous silica nanoparticles for septic arthritis management. J. Drug Deliv. Sci. Technol. 2023, 82, 104353. [Google Scholar] [CrossRef]
- Xue, P.; Zhang, G.; Zhang, J.; Ren, L. Synergism of ellagic acid in combination with radiotherapy and chemotherapy for cancer treatment. Phytomedicine 2022, 99, 153998. [Google Scholar] [CrossRef]
- Kumar, S.; Abbas, F.; Ali, I.; Gupta, M.K.; Kumar, S.; Garg, M.; Kumar, D. Integrated network pharmacology and in-silico approaches to decipher the pharmacological mechanism of Selaginella tamariscina in the treatment of non-small cell lung cancer. Phytomedicine Plus 2023, 3, 100419. [Google Scholar] [CrossRef]
- Rajesh, R.U.; Sangeetha, D. A Critical Review on Quercetin Bioflavonoid and its Derivatives: Scope, Synthesis, and Biological Applications with Future Prospects. Arab. J. Chem. 2023, 16, 104881. [Google Scholar] [CrossRef]
- Singh, D.; Gawande, D.Y.; Singh, T.; Poroikov, V.; Goel, R.K. Revealing pharmacodynamics of medicinal plants using in silico approach: A case study with wet lab validation. Comput. Biol. Med. 2014, 47, 1–6. [Google Scholar] [CrossRef]
- Lal, U.R.; Tripathi, S.M.; Jachak, S.M.; Bhutani, K.K.; Singh, I.P. HPLC analysis and standardization of Arjunarishta–an Ayurvedic Cardioprotective formulation. Sci. Pharm. 2009, 77, 605–616. [Google Scholar] [CrossRef]
- Singh, G.; Bisht, D.; Arya, R.K.K.; Kumar, S.; Kumar, D.; Dash, A.K. Identification and quantification of six natural compounds from Picrorhiza kurroa leaf extract and their antibacterial and antioxidant activity. Res. J. Pharm. Technol. 2022, 15, 5774–5778. [Google Scholar] [CrossRef]
S. no. | Compound Name | RT (min) | MW | MS Positive Ions (m/z) | |
---|---|---|---|---|---|
HRMS of Parent Ion (m/z) | Other Characteristic Ions (m/z) | ||||
1 | Ferulic acid | 2.65 | 194 | 194.1288 (M+) | 179[(M + H)-CH3], 178 (M+-CH3) |
2 | Gallic acid | 5.763 | 170 | 171.1494 (M + H)+ | 171 |
3 | Caffeic acid | 3.388 | 180 | 181.0496 (M + H)+ | 149, 139 |
4 | Quercetin | 20.527 | 302 | 302.1449 (M+) | 277, 231, 195, 171,149 |
5 | Kaempferol glycoside | 12.18 | 448 | 449.0270 (M + H)+ | 285, 263, 233, 149 |
6 | Quercetin glycoside (hyperoside) | 12.930 | 464 | 464.0913 (M+) | 301, 149, 195, 249 |
7 | Catechin glucoside | 5.43 | 452 | 453.2711 (M + H)+ | 149, 195, 251, 241 |
8 | Catechin gallate | 6.60 | 443 | 445.1485 (M + 23) | 359, 249, 123 |
9 | Epicatechin gallate | 8.59 | 442 | 443.1899 (M + H)+ | 249, 149 |
10 | Epigallocatechin gallate | 14.327 | 458 | 458.1517 (M+) | 269, 247, 359 |
11 | Chlorogenic acid | 2.780 | 354 | 354.28 (M+) | 178, 195, 149, 212 |
12 | Procyanidin dimer | 9.659 | 575 | 576.2136 (M + H)+ | 473, 249, 149 |
13 | Procyanidin dimer | 9.991 | 575 | 576.2134 (M + H)+ | 473, 401, 287, 265, 249 |
14 | Procyanidin trimer | 9.284 | 865 | 865.3522 (M+) | 725, 476, 443, 249 |
15 | Ellagic acid | 13.843 | 301 | 302.1452 (M + H)+ | 218, 195, 171, 149 |
16 | Rutin | 11.371 | 610 | 611.2104 (M + H)+ | 447, 301, |
17 | Taxifolin | 36.839 | 304 | 305.0810 (M + H)+ | 149, 195, 287 |
18 | Oleuropein | 5.76 | 540 | 541.2260 (M + H)+ | 149, 279, 207 |
19 | Protocatechuic acid | 5.25 | 154 | 155.0720 (M + H)+ | 155 |
20 | Methyl ellagic acid | 29.24 | 316 | 317.0810 (M + H)+ | 301, 195, 160, 149 |
21 | Catechin | 5.763 | 290 | 291.0859 (M + H)+ | 171, 139 |
22 | Chicoric acid | 8.29 | 474 | 475.1942 (M + H)+ | 354, 195, 149 |
23 | Caffeoyl quinic acid | 3.388 | 678 | 679.1487 (M + H)+ | 515, 351, 263, 195, 178, 149 |
Marker | Linearity Range (µg/mL) | Area (%RSD) | LOD (µg/mL) | LOQ (µg/mL) | Intraday Precision (%RSD) | Accuracy (%) | Quantitative Results (% w/w Extract of Bark) |
---|---|---|---|---|---|---|---|
Gallic acid | 2.56–7.68 | 3.6 | 0.007 | 0.02 | 2.1 | 96.81 | 0.270 ± 0.020 |
Catechin | 9.20–27.60 | 1.9 | 0.028 | 0.084 | 1.8 | 97.47 | 0.110 ± 0.008 |
Epicatechin | 4.0–12.0 | 3.8 | 0.012 | 0.036 | 2.5 | 96.58 | 0.031 ± 0.009 |
ECGC | 3.52–10.56 | 3.8 | 0.009 | 0027 | 2.9 | 95.89 | 0.047 ± 0.007 |
Ellagic acid | 4.0–12.0 | 1.5 | 0.018 | 0.054 | 1.9 | 98.54 | 0.380 ± 0.012 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thakur, D.; Lal, U.R.; Kapoor, D.N.; Kumar, D. Identification and Quantification of Polyphenolic Secondary Metabolites in Stem Bark of Ficus religiosa (Moraceae) Using UPLC-HRMS and RP-HPLC-PDA. Separations 2023, 10, 338. https://doi.org/10.3390/separations10060338
Thakur D, Lal UR, Kapoor DN, Kumar D. Identification and Quantification of Polyphenolic Secondary Metabolites in Stem Bark of Ficus religiosa (Moraceae) Using UPLC-HRMS and RP-HPLC-PDA. Separations. 2023; 10(6):338. https://doi.org/10.3390/separations10060338
Chicago/Turabian StyleThakur, Deepak, Uma Ranjan Lal, Deepak N. Kapoor, and Deepak Kumar. 2023. "Identification and Quantification of Polyphenolic Secondary Metabolites in Stem Bark of Ficus religiosa (Moraceae) Using UPLC-HRMS and RP-HPLC-PDA" Separations 10, no. 6: 338. https://doi.org/10.3390/separations10060338
APA StyleThakur, D., Lal, U. R., Kapoor, D. N., & Kumar, D. (2023). Identification and Quantification of Polyphenolic Secondary Metabolites in Stem Bark of Ficus religiosa (Moraceae) Using UPLC-HRMS and RP-HPLC-PDA. Separations, 10(6), 338. https://doi.org/10.3390/separations10060338