Chemical Characterization, Antioxidant, Insecticidal and Anti-Cholinesterase Activity of Essential Oils Extracted from Cinnamomum verum L.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Preparation of Essential Oils
2.3. GC-MS Analysis
2.4. Insecticidal Activity of EOCV
2.4.1. Test Insects
2.4.2. Effect of EOCV on C. maculatus Adults Using Contact Test
2.4.3. Effect of EOCV on the Survival of C. maculatus Adults by Inhalation Test for 96 h
2.4.4. Repellent Potential of EOCV against C. maculatus
2.5. Antioxidant Activity
2.5.1. DPPH Test
2.5.2. FRAP Test
2.5.3. TAC Test
2.6. In Silico Human Acetylcholinesterase Inhibition Studies
2.7. Statistical Analysis
3. Results
3.1. Chromatographic Analysis of EOCV by GC-MS
3.2. Insecticidal Activity of EOCV
3.3. Antioxidant Activity of EOCV
3.4. In Silico Human Acetylcholinesterase Inhibition Studies
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Omoboyede, V.; Onile, O.S.; Oyeyemi, B.F.; Aruleba, R.T.; Fadahunsi, A.I.; Oke, G.A.; Onile, T.A.; Ibrahim, O.; Adekiya, T.A. Unravelling the anti-inflammatory mechanism of Allium cepa: An integration of network pharmacology and molecular docking approaches. Mol. Divers. 2023, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Rao, A.S.; Nandal, A.; Kumar, S.; Yadav, S.S.; Ganaie, S.A.; Narasimhan, B. Phytochemical and pharmacological review of Cinnamomum verum J. Presl-a versatile spice used in food and nutrition. Food Chem. 2020, 338, 127773. [Google Scholar] [CrossRef] [PubMed]
- Gulcin, I.; Kaya, R.; Goren, A.C.; Akincioglu, H.; Topal, M.; Bingol, Z.; Çakmak, K.C.; Sarikaya, S.B.O.; Durmaz, L.; Alwasel, S. Anticholinergic, antidiabetic and antioxidant activities of cinnamon (Cinnamomum verum) bark extracts: Polyphenol contents analysis by LC-MS/MS. Int. J. Food Prop. 2019, 22, 1511–1526. [Google Scholar] [CrossRef] [Green Version]
- Zhao, R.-Z.; Jiang, S.; Zhang, L.; Yu, Z.-B. Mitochondrial electron transport chain, ROS generation and uncoupling (Review). Int. J. Mol. Med. 2019, 44, 3–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and Benefits for Human Health. Oxid. Med. Cell. Longev. 2017, 2017, 8416763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talaz, O.; Gülçin, I.; Göksu, S.; Saracoglu, N. Antioxidant activity of 5,10-dihydroindeno[1,2-b]indoles containing substituents on dihydroindeno part. Bioorganic Med. Chem. 2009, 17, 6583–6589. [Google Scholar] [CrossRef]
- Carreiras, M.; Mendes, E.; Perry, M.; Francisco, A.; Marco-Contelles, J. The Multifactorial Nature of Alzheimer’s Disease for Developing Potential Therapeutics. Curr. Top. Med. Chem. 2013, 13, 1745–1770. [Google Scholar] [CrossRef]
- Shahzad, N.; Khan, W.; Md, S.; Ali, A.; Saluja, S.S.; Sharma, S.; Al-Allaf, F.A.; Abduljaleel, Z.; Ibrahim, I.A.A.; Abdel-Wahab, A.F.; et al. Phytosterols as a natural anticancer agent: Current status and future perspective. Biomed. Pharmacother. 2017, 88, 786–794. [Google Scholar] [CrossRef]
- Rodrigues, T.; Campos, P.; Robledo, A. Natural bioactives in perspective: The future of active packaging based on essential oils and plant extracts themselves and those complexed by cyclodextrins. Food Res. Int. 2022, 156, 111160. [Google Scholar] [CrossRef]
- Carpena, M.; Nuñez-Estevez, B.; Soria-Lopez, A.; Garcia-Oliveira, P.; Prieto, M.A. Essential Oils and Their Application on Active Packaging Systems: A Review. Resources 2021, 10, 7. [Google Scholar] [CrossRef]
- Fernández-López, J.; Viuda-Martos, M. Introduction to the Special Issue: Application of Essential Oils in Food Systems. Foods 2018, 7, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boxall, R. Damage and Loss Caused by the Larger Grain Borer Prostephanus truncatus. Integr. Pest Manag. Rev. 2002, 7, 105–121. [Google Scholar] [CrossRef]
- Road, M. Evaluation of Protectants For Control of Acanthoscelides Ob7’ Ectus(Say)(Coleoptera: Bruchidae) In Navybeans (Phaseolus vulgaris (L.)). J. Stored Prod. Res. 1993, 29, 215–219. [Google Scholar]
- Credland, P.F.; Holloway, R. Bruchids and Legume Seeds: Adaptations and Bruchids and Legume Seeds; FAO: Rome, Italy, 2015. [Google Scholar]
- Keneni, G.; Bekele, E.; Getu, E.; Imtiaz, M.; Damte, T.; Mulatu, B.; Dagne, K. Breeding Food Legumes for Resistance to Storage Insect Pests: Potential and Limitations. Sustainability 2011, 3, 1399–1415. [Google Scholar] [CrossRef] [Green Version]
- Mishra, S.; Macedo, M.; Panda, S.; Panigrahi, J. Bruchid pest management in pulses: Past practices, present status and use of modern breeding tools for development of resistant varieties: Bruchid pest management in pulses. Ann. Appl. Biol. 2017, 172, 4–19. [Google Scholar] [CrossRef]
- Peter, F. Egg production and development of three strains of Callosobruchus maculatus (F.)(Coleoptera: Bruchidae). J. Stored Prod. Res. 1984, 20, 221–227. [Google Scholar]
- Walker, M. A Generalization of the Maximum Theorem. Int. Econ. Rev. 1963, 20, 267–272. [Google Scholar] [CrossRef]
- Ferreira, L.; Rafael, D.; Lima, C.; De Andrade, K.; Maria, D.; Navarro, F.; Lafaiete, J.; Alves, R.; Nelson, G. Industrial Crops & Products Chemical composition and insecticidal effect of essential oils from Illicium verum and Eugenia caryophyllus on Callosobruchus maculatus in cowpea. Ind. Crop. Prod. 2020, 145, 112088. [Google Scholar] [CrossRef]
- Iturralde-García, R.D.; Borboa-Flores, J.; Cinco-Moroyoqui, F.J.; Rueda-Puente, E.O.; Riudavets, J.; Del Toros, C.L.; Martínez-Cruz, O.; Wong-Corral, F.J. Effect of controlled atmospheres on the insect Callosobruchus maculatus Fab. in stored chickpea. J. Stored Prod. Res. 2016, 69, 78–85. [Google Scholar] [CrossRef]
- Lehman, L.; McDonald, R.H.; Guy, R.D. Speirs, Preliminary Evaluation of New Candidate Materials as Toxicants, Repellents, and Attractants against Stored-Product lnsects; US Agricultural Research Service: Washington, DC, USA, 1970.
- Zandi-Sohani, N.; Hojjati, M.; Carbonell-Barrachina, Á.A. Insecticidal and Repellent Activities of the Essential Oil of Callistemon citrinus (Myrtaceae) against Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). Neotrop. Èntomol. 2012, 42, 89–94. [Google Scholar] [CrossRef]
- Agil, R.; Hosseinian, F.S. Bioactivity of alkylresorcinols. Bioact. Mol. Plant Foods 2012, 72, 131–162. [Google Scholar]
- El Atki, Y.; Aouam, I.; El Kamari, F.; Taroq, A.; Lyoussi, B.; Oumokhtar, B.; Abdellaoui, A. Phytochemistry, antioxidant and antibacterial activities of two Moroccan Teucrium polium L. subspecies: Preventive approach against nosocomial infections. Arab. J. Chem. 2019, 13, 3866–3874. [Google Scholar] [CrossRef]
- Ouattar, H.; Zouirech, O.; Kara, M.; Assouguem, A.; Almutairi, S.M.; Al-hemaid, F.M.; Rasheed, R.A.; Ullah, R.; Abbasi, A.M.; Aouane, M.; et al. In Vitro Study of the Phytochemical Composition and Antioxidant, Immunostimulant, and Hemolytic Activities of Nigella sativa (Ranunculaceae) and Lepidium sativum Seeds. Mol. Artic. 2022, 27, 5946. [Google Scholar] [CrossRef] [PubMed]
- Cando, D.; Morcuende, D.; Utrera, M.; Estévez, M. Phenolic-rich extracts from Willowherb (Epilobium hirsutum L.) inhibit lipid oxidation but accelerate protein carbonylation and discoloration of beef patties. Eur. Food Res. Technol. 2014, 238, 741–751. [Google Scholar] [CrossRef]
- Zouirech, O.; Alyousef, A.A.; El Barnossi, A.; El Moussaoui, A.; Bourhia, M.; Salamatullah, A.M.; Ouahmane, L.; Giesy, J.P.; Aboul-soud, M.A.M.; Lyoussi, B.; et al. Phytochemical Analysis and Antioxidant, Antibacterial, and Antifungal Effects of Essential Oil of Black Caraway (Nigella sativa L.) Seeds against Drug-Resistant Clinically Pathogenic Microorganisms. BioMed Res. Int. 2022, 2022, 5218950. [Google Scholar] [CrossRef]
- Zarkovic, N.; Vukovic, T.; Loncaric, I.; Miletic, M.; Zarkovic, K.; Cipak, A.; Sabolovic, S.; Konitzer, M.; Mang, S. An Overview on Anticancer Activities of the Viscum Album Extract Isorel ®. Cancer Biother. Radiopharm. 2001, 16, 55–62. [Google Scholar]
- Petković, M.; Schiller, J.; Müller, M.; Benard, S.; Reichl, S.; Arnold, K.; Arnhold, J. Detection of Individual Phospholipids in Lipid Mixtures by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry: Phosphatidylcholine Prevents the Detection of Further Species. Anal. Biochem. 2001, 289, 202–216. [Google Scholar] [CrossRef]
- Mahmud, M.; Putri, D.K.Y.; Dewi, I.E.P.; Kusuma, H.S. Extraction of essential oil from cananga (cananga odorata) using solvent-free microwave extraction: A preliminary study. Rasayan J. Chem. 2017, 10, 86–91. [Google Scholar] [CrossRef]
- Khan, S.; Sahar, A.; Tariq, T.; Sameen, A.; Tariq, F. Essential Oils in Plants: Plant Physiology, the Chemical Composition of the Oil, and Natural Variation of the Oils (Chemotaxonomy and Environmental Effects, etc.). In Essential Oils; Elsevier: Amsterdam, The Netherlands, 2023; pp. 1–36. [Google Scholar] [CrossRef]
- Politeo, O.; Popović, M.; Bratinčević, M.V.; Koceić, P.; Runjić, T.N.; Mekinić, I.G. Conventional vs. Microwave-Assisted Hydrodistillation: Influence on the Chemistry of Sea Fennel Essential Oil and Its By-Products. Plants 2023, 12, 1466. [Google Scholar] [CrossRef]
- Picot-Allain, C.; Mahomoodally, M.F.; Ak, G.; Zengin, G. Conventional versus green extraction techniques—A comparative perspective. Curr. Opin. Food Sci. 2021, 40, 144–156. [Google Scholar] [CrossRef]
- Tunç, M.T.; Koca, I. Optimization of ohmic heating assisted hydrodistillation of cinnamon and bay leaf essential oil. J. Food Process. Eng. 2020, 44, e13635. [Google Scholar] [CrossRef]
- Kusuma, H.; Mahfud, M. Kinetic studies on extraction of essential oil from sandalwood (Santalum album) by microwave air-hydrodistillation method. Alex. Eng. J. 2018, 57, 1163–1172. [Google Scholar] [CrossRef]
- Jain, P.L.; Patel, S.R.; Desai, M.A. An innovative ultrasonic-assisted extraction process for enhancing the patchoulol from Pogostemon cablin essential oil using hydrotropes. Mater. Today Proc. 2021, 57, 2377–2380. [Google Scholar] [CrossRef]
- Phu, H.H.; Van, K.P.; Tran, T.H.; Pham, D.T.N. Extraction, Chemical Compositions and Biological Activities of Essential Oils of Cinnamomum verum Cultivated in Vietnam. Processes 2022, 10, 1713. [Google Scholar] [CrossRef]
- Kusuma, H.S.; Altway, A.; Mahfud, M. Solvent-free microwave extraction of essential oil from dried patchouli (Pogostemon cablin Benth) leaves. J. Ind. Eng. Chem. 2018, 58, 343–348. [Google Scholar] [CrossRef]
- Jayawardena, B.; Smith, R.M. Superheated water extraction of essential oils from Cinnamomum zeylanicum (L.). Phytochem. Anal. 2010, 21, 470–472. [Google Scholar] [CrossRef]
- Narayanankutty, A.; Kunnath, K.; Alfarhan, A.; Rajagopal, R.; Ramesh, V. Chemical composition of Cinnamomum verum leaf and flower essential oils and analysis of their antibacterial, insecticidal, and larvicidal properties. Molecules 2021, 26, 6303. [Google Scholar] [CrossRef]
- Lu, L.; Shu, C.; Chen, L.; Yang, Y.; Ma, S.; Zhu, K.; Shi, B. Insecticidal activity and mechanism of cinnamaldehyde in C. elegans. Fitoterapia 2020, 146, 104687. [Google Scholar] [CrossRef]
- Kasim, N.N.; Nursyimi, S.; Syed, A.; Masdar, N.D.; Hamid, F.A.; Nawawi, W.I. Extraction and Potential of Cinnamon Essential Oil towards Repellency and Insecticidal Activity. Int. J. Sci. Res. Publ. 2014, 4, 2250–3153. [Google Scholar]
- Nyamador, S.W.; Mondédji, A.D.; Kasseney, B.D.; Ketoh, G.K.; Honoré, K.; Glitho, I.A. Insecticidal activity of four essential oils on the survival and oviposition of two sympatric bruchid species: Callosobruchus maculatus F. and Callosobruchus subinnotatus PIC. (Coleoptera: Chrysomelidea: Bruchinae). J. Stored Prod. Postharvest Res. 2017, 8, 103–112. [Google Scholar]
- Ketoh, G.K.; Glitho, A.I.; Huignard, J. Susceptibility of the Bruchid Callosobruchus maculatus (Coleoptera: Bruchidae) and its Parasitoid Dinarmus basalis (Hymenoptera: Pteromalidae) to Three Essential Oils. J. Econ. Èntomol. 2002, 95, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Zouirech, O.; Alajmi, R.; El Jeddab, H.; Allali, A.; Bourhia, M.; El Moussaoui, A.; El Barnossi, A.; Ahmed, A.M.; Giesy, J.P.; Aboul-Soud, M.A.M.; et al. Chemical Composition and Evaluation of Antifungal and Insecticidal Activities of Essential Oils Extracted from Jambosa caryophyllus (Thunb.) Nied: Clove Buds. Evid.-Based Complement. Altern. Med. 2022, 2022, 4675016. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, L.D.D.; de Moraes, A.A.B.; da Costa, K.S.; Galúcio, J.M.P.; Taube, P.S.; Costa, C.M.L.; Cruz, J.N.; de Aguiar Andrade, E.H.; de Faria, L.J.G. Bioactive Natural Compounds and Antioxidant Activity of Essential Oils from Spice Plants: New Findings and Potential Applications. Biomolecules 2020, 10, 988. [Google Scholar] [CrossRef] [PubMed]
- Farias, A.P.P.; Monteiro, O.D.S.; da Silva, J.K.R.; Figueiredo, P.L.B.; Rodrigues, A.A.C.; Monteiro, I.N.; Maia, J.G.S. Chemical composition and biological activities of two chemotype-oils from Cinnamomum verum J. Presl growing in North Brazil. J. Food Sci. Technol. 2020, 57, 3176–3183. [Google Scholar] [CrossRef]
- Al-Zereini, W.A.; Al-Trawneh, I.N.; Al-Qudah, M.A.; TumAllah, H.M.; Al Rawashdeh, H.A.; Abudayeh, Z.H. Essential oils from Elettaria cardamomum (L.) Maton grains and Cinnamomum verum J. Presl barks: Chemical examination and bioactivity studies. J. Pharm. Pharmacogn. Res. 2022, 10, 173–185. [Google Scholar] [CrossRef]
- Saranya, B.; Sulfikarali, T.; Chindhu, S.; Muneeb, A.M.; Leela, N.K.; Zachariah, T.J. Turmeric and cinnamon dominate in antioxidant potential among four major spices. J. Spices Aromat. Crop. 2017, 26, 27. [Google Scholar] [CrossRef] [Green Version]
- Wanakhachornkrai, O.; Banglao, W.; Thongmee, A.; Sukplang, P. Determination of Antioxidant, Anti-Aging and Cytotoxicity Activity of the Essential Oils from Cinnamomum zeylanicum. J. Microbiol. Biotechnol. Food Sci. 2020, 10, 436–440. [Google Scholar] [CrossRef]
- Elgendy, E.M.; Ibrahim, H.S.; Elmeherry, H.F.; Sedki, A.G.; Mekhemer, F.U. Chemical and Biological Comparative in Vitro Studies of Cinnamon Bark and Lemon Peel Essential Oils. Food Nutr. Sci. 2017, 8, 110–125. [Google Scholar] [CrossRef] [Green Version]
Peak | RT | Compounds | Molecular Formula | Chemical Class | Area (%) |
---|---|---|---|---|---|
1 | 5.11 | Heptanal | C7H14O | Other | 0.05 |
2 | 8.36 | Hexyl acetate | C8H16O2 | Other | 0.02 |
3 | 10.91 | Acetophenone | C8H8O | Other | 0.07 |
4 | 16.86 | Verbenone | C10H14O | Monterpene | 0.03 |
5 | 19.38 | Cinnamicaldehyde | C10H10O2 | Monterpene | 35.04 |
6 | 20.95 | Piperonal | C8H16O3 | Other | 0.01 |
7 | 22.21 | α-Copaene | C15H24 | Sesquiterpene | 0.11 |
8 | 23.85 | Cinnamaldehyde dimethyl acetal | C11H14O2 | Other | 64.50 |
9 | 26.41 | Isoeugenol | C10H12O2 | Monterpene | 0.01 |
10 | 27.19 | Thujopsene | C15H24 | Sesquiterpene | 0.04 |
11 | 31.23 | Coumarin | C9H6O2 | Other | 0.01 |
Total | 99.98 |
Sample | DPPH (IC50 mg/mL) | FRAP (EC50 mg/mL) | TAC (mg AAE/g EOCV) |
---|---|---|---|
C. verum | 39.80 ±1.34 | 68.38 ± 2.51 | 229.15 ± 29.54 |
Ascorbic acid | 0.0027 | 0.0029 |
Human Acetylcholinesterase (PDB: 4EY7) | |||
---|---|---|---|
Glide Gscore (Kcal/mol) | Glide Emodel (Kcal/mol) | Glide Energy (Kcal/mol) | |
Coumarin | −7.665 | −39.64 | −26.212 |
Piperonal | −7.207 | −36.878 | −24.88 |
Cinnamaldehyde dimethyl | −6.878 | −38.909 | −28.743 |
Alpha-Copaene | −6.68 | −31.517 | −23.203 |
Thujopsene | −6.455 | −30.441 | −22.661 |
Cinnamaldehyde | −5.954 | −38.092 | −28.04 |
Isoeugenol | −5.951 | −39.713 | −28.46 |
Verbenone | −5.862 | −31.121 | −22.721 |
Acetophenone | −5.617 | −33.031 | −24.488 |
Heptanal | −3.909 | −25.405 | −20.508 |
Hexyl acetate | −3.836 | −28.588 | −23.732 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beniaich, G.; Zouirech, O.; Allali, A.; Bouslamti, M.; Maliki, I.; El Moussaoui, A.; Chebaibi, M.; Nafidi, H.-A.; Bin Jardan, Y.A.; Bourhia, M.; et al. Chemical Characterization, Antioxidant, Insecticidal and Anti-Cholinesterase Activity of Essential Oils Extracted from Cinnamomum verum L. Separations 2023, 10, 348. https://doi.org/10.3390/separations10060348
Beniaich G, Zouirech O, Allali A, Bouslamti M, Maliki I, El Moussaoui A, Chebaibi M, Nafidi H-A, Bin Jardan YA, Bourhia M, et al. Chemical Characterization, Antioxidant, Insecticidal and Anti-Cholinesterase Activity of Essential Oils Extracted from Cinnamomum verum L. Separations. 2023; 10(6):348. https://doi.org/10.3390/separations10060348
Chicago/Turabian StyleBeniaich, Ghada, Otmane Zouirech, Aimad Allali, Mohammed Bouslamti, Imane Maliki, Abdelfattah El Moussaoui, Mohamed Chebaibi, Hiba-Allah Nafidi, Yousef A. Bin Jardan, Mohammed Bourhia, and et al. 2023. "Chemical Characterization, Antioxidant, Insecticidal and Anti-Cholinesterase Activity of Essential Oils Extracted from Cinnamomum verum L." Separations 10, no. 6: 348. https://doi.org/10.3390/separations10060348
APA StyleBeniaich, G., Zouirech, O., Allali, A., Bouslamti, M., Maliki, I., El Moussaoui, A., Chebaibi, M., Nafidi, H. -A., Bin Jardan, Y. A., Bourhia, M., & Taleb, M. (2023). Chemical Characterization, Antioxidant, Insecticidal and Anti-Cholinesterase Activity of Essential Oils Extracted from Cinnamomum verum L. Separations, 10(6), 348. https://doi.org/10.3390/separations10060348