Application of a Novel Bifunctionalized Magnetic Biochar to Remove Cr(VI) from Wastewater: Performance and Mechanism
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Fabrication of Biochar Adsorbents
2.3. Characterization of Biochar Adsorbents
2.4. Batch Sorption
2.4.1. Preparation of Cr(VI) Aqueous Suspension
2.4.2. Experiments for Cr(VI) Adsorption
2.4.3. Adsorption Kinetics
2.4.4. Equilibrium Isotherm
2.4.5. Adsorption Thermodynamics
2.4.6. Stability and Re-Usability Assessment
3. Results and Discussions
3.1. Biochar Characterization
3.2. Determinantal Factors for Cr(VI) Sorption
3.2.1. Impacts of Reaction Time and Kinetic Study
3.2.2. Impacts of Initial Cr(VI) Concentration and Isotherm Models
3.2.3. Impacts of Temperature and Thermodynamic Fitting
3.2.4. Impact of pH in Solution
3.2.5. Impacts of Co-Existing Ions
3.3. Mechanism Underlying Sorption
3.4. Regeneration and Re-Usability Study
3.5. Comparing Adsorption Capacity of Cr(VI)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pradhan, D.; Sukla, L.B.; Sawyer, M.; Rahman, P.K.S.M. Recent bioreduction of hexavalent chromium in wastewater treatment: A review. J. Ind. Eng. Chem. 2017, 55, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Qiao, K.; Tian, W.; Bai, J.; Zhao, J.; Du, Z.; Song, T.; Chu, M.; Wang, L.; Xie, W. Synthesis of floatable magnetic iron/biochar beads for the removal of chromium from aqueous solutions. Environ. Technol. Innov. 2020, 19, 100907. [Google Scholar] [CrossRef]
- IARC (International Agency for Research on Cancer). List of Classifications—IARC Monographs on the Identification of Carcinogenic Hazards to Humans. Last Updated: 2022-09-07 10.34am (CEST). Available online: https://monographs.iarc.who.int/wp-content/uploads/2019/07/Classifications_by_cancer_site.pdf (accessed on 5 May 2023).
- Costa, M.; Klein, C.B. Toxicity and carcinogenicity of chromium compounds in humans. Crit. Rev. Toxicol. 2006, 36, 155–163. [Google Scholar] [CrossRef]
- Zhang, W.; Long, A.; Ou, J.; Zeng, X.; Wang, J.; Wang, B.; Wang, H.; He, Q.; Tang, M.; Zhou, L.; et al. Enhanced removal of hexavalent chromium from aqueous solution by functional polymer-wrapped gamma-alumina composite adsorbent. Environ. Technol. Innov. 2021, 24, 101954. [Google Scholar] [CrossRef]
- Zhong, D.; Zhang, Y.; Wang, L.; Chen, J.; Jiang, Y.; Tsang, D.C.; Zhao, Z.; Ren, S.; Liu, Z.; Crittenden, J.C. Mechanistic insights into adsorption and reduction of hexavalent chromium from water using magnetic biochar composite: Key roles of Fe(3)O(4) and persistent free radicals. Environ. Pollut. 2018, 243 (Pt B), 1302–1309. [Google Scholar] [CrossRef]
- Pan, C.; Troyer, L.D.; Catalano, J.G.; Giammar, D.E. Dynamics of Chromium(VI) Removal from Drinking Water by Iron Electrocoagulation. Environ. Sci. Technol. 2016, 50, 13502–13510. [Google Scholar] [CrossRef]
- Rapti, S.; Pournara, A.; Sarma, D.; Papadas, I.T.; Armatas, G.S.; Tsipis, A.C.; Lazarides, T.; Kanatzidis, M.G.; Manos, M.J. Selective capture of hexavalent chromium from an anion-exchange column of metal organic resin–alginic acid composite. Chem. Sci. 2016, 7, 2427–2436. [Google Scholar] [CrossRef] [Green Version]
- Duan, W.; Chen, G.; Chen, C.; Sanghvi, R.; Iddya, A.; Walker, S.; Liu, H.; Ronen, A.; Jassby, D. Electrochemical removal of hexavalent chromium using electrically conducting carbon nanotube/polymer composite ultrafiltration membranes. J. Membr. Sci. 2017, 531, 160–171. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Fiol, N.; Villaescusa, I.; Poch, J. New approach in modeling Cr(VI) sorption onto biomass from metal binary mixtures solutions. Sci. Total Environ. 2016, 541, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Liu, X.; Wang, D.; Lin, H.; Huang, L. Removal and reduction of Cr(VI) in simulated wastewater using magnetic biochar prepared by co-pyrolysis of nano-zero-valent iron and sewage sludge. J. Clean. Prod. 2020, 257, 120562. [Google Scholar] [CrossRef]
- Cheng, N.; Wang, B.; Wu, P.; Lee, X.; Xing, Y.; Chen, M.; Gao, B. Adsorption of emerging contaminants from water and wastewater by modified biochar: A review. Environ. Pollut. 2021, 273, 116448. [Google Scholar] [CrossRef] [PubMed]
- Rajapaksha, A.U.; Selvasembian, R.; Ashiq, A.; Gunarathne, V.; Ekanayake, A.; Perera, V.; Wijesekera, O.H.; Mia, S.; Ahmad, M.; Vithanage, M.; et al. A Systematic Review on Adsorptive Removal of Hexavalent Chromium from Aqueous Solutions: Recent Advances. Sci Total Environ 2022, 809, 152055. [Google Scholar] [CrossRef] [PubMed]
- Karthikeyan, T.; Rajgopal, S.; Miranda, L. Chromium(VI) adsorption from aqueous solution by sawdust activated carbon. J. Hazard. Mater. 2005, 124, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Niu, H.Y.; Li, X.; Li, J. Dithiocarbamate modification of activated carbon for the efficient removal of Pb(ii), Cd(ii), and Cu(ii) from wastewater. New J. Chem. 2022, 46, 5234–5245. [Google Scholar] [CrossRef]
- Chen, H.; Gao, Y.; El-Naggar, A.; Niazi, N.K.; Sun, C.; Shaheen, S.M.; Hou, D.; Yang, X.; Tang, Z.; Liu, Z.; et al. Enhanced sorption of trivalent antimony by chitosan-loaded biochar in aqueous solutions: Characterization, performance and mechanisms. J. Hazard. Mater. 2022, 425, 127971. [Google Scholar] [CrossRef]
- Ifthikar, J.; Chen, Z.; Chen, Z.; Jawad, A. A self-gating proton-coupled electron transfer reduction of hexavalent chromium by core-shell SBA-Dithiocarbamate chitosan composite. J. Hazard. Mater. 2020, 384, 121257. [Google Scholar] [CrossRef]
- Nazir, M.A.; Najam, T.; Shahzad, K.; Wattoo, M.A.; Hussain, T.; Tufail, M.K.; Shah, S.S.A.; Rehman, A.U. Heterointerface engineering of water stable ZIF-8@ZIF-67: Adsorption of rhodamine B from water. Surf. Interfaces 2022, 34, 102324. [Google Scholar] [CrossRef]
- Zhao, N.; Zhao, C.; Tsang, D.C.; Liu, K.; Zhu, L.; Zhang, W.; Zhang, J.; Tang, Y.; Qiu, R. Microscopic mechanism about the selective adsorption of Cr(VI) from salt solution on O-rich and N-rich biochars. J. Hazard. Mater. 2021, 404, 124162. [Google Scholar] [CrossRef]
- Zou, H.; Zhao, J.; He, F.; Zhong, Z.; Huang, J.; Zheng, Y.; Zhang, Y.; Yang, Y.; Yu, F.; Bashir, M.A.; et al. Ball milling biochar iron oxide composites for the removal of chromium (Cr(VI)) from water: Performance and mechanisms. J. Hazard. Mater. 2021, 413, 125252. [Google Scholar] [CrossRef]
- Zheng, Y.; Zimmerman, A.R.; Gao, B. Comparative investigation of characteristics and phosphate removal by engineered biochars with different loadings of magnesium, aluminum, or iron. Sci. Total Environ. 2020, 747, 141277. [Google Scholar] [CrossRef]
- Foong, S.Y.; Chan, Y.H.; Chin, B.L.F.; Lock, S.S.M.; Yee, C.Y.; Yiin, C.L.; Peng, W.; Lam, S.S. Production of Biochar from Rice Straw and Its Application for Wastewater Remediation—An Overview. Bioresour. Technol. 2022, 360, 127588. [Google Scholar] [CrossRef] [PubMed]
- FAOSTAT. Crops and Livestock Products. Food and Agriculture Organization of the United Nations. 2021. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 24 March 2023).
- Malik, K.; Ajay, S.; Dandu, H.; Vijaya, R.; Nisha, A.; Anurag, M.; Sunita, R.; Punesh, S.; Tanvi, B. Deciphering the Biochemical and Functional Characterization of Rice Straw Cultivars for Industrial Applications. Heliyon 2023, 9, e16399. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Li, C.; Ristovski, Z.; Milic, A.; Gu, Y.; Islam, M.S.; Wang, S.; Hao, J.; Zhang, H.; He, C.; et al. A review of biomass burning: Emissions and impacts on air quality, health and climate in China. Sci. Total Environ. 2017, 579, 1000–1034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, W.J.; Fang, Y.R.; Chang, Y.Y.; Xie, G.H. Toward sustainable utilization of crop straw: Greenhouse gas emissions and their reduction potential from 1950 to 2021 in China. Resour. Conserv. Recycl. 2023, 190, 106824. [Google Scholar] [CrossRef]
- Rajapaksha, A.U.; Chen, S.S.; Tsang, D.C.; Zhang, M.; Vithanage, M.; Mandal, S.; Gao, B.; Bolan, N.S.; Ok, Y.S. Engineered/designer biochar for contaminant removal/immobilization from soil and water: Potential and implication of biochar modification. Chemosphere 2016, 148, 276–291. [Google Scholar] [CrossRef]
- Chen, R.; Zhao, X.; Jiao, J.; Li, Y.; Wei, M. Surface-Modified Biochar with Polydentate Binding Sites for the Removal of Cadmium. Int. J. Mol. Sci. 2019, 20, 1755. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Dong, X.; da Silva, E.B.; de Oliveira, L.M.; Chen, Y.; Ma, L.Q. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere 2017, 178, 466–478. [Google Scholar] [CrossRef]
- Cai, W.; Wei, J.; Li, Z.; Liu, Y.; Zhou, J.; Han, B. Preparation of amino-functionalized magnetic biochar with excellent adsorption performance for Cr(VI) by a mild one-step hydrothermal method from peanut hull. Colloids Surf. A Physicochem. Eng. Asp. 2019, 563, 102–111. [Google Scholar] [CrossRef]
- Deng, J.; Li, X.; Wei, X.; Liu, Y.; Liang, J.; Shao, Y.; Huang, W.; Cheng, X. Different adsorption behaviors and mechanisms of a novel amino-functionalized hydrothermal biochar for hexavalent chromium and pentavalent antimony. Bioresour. Technol. 2020, 310, 123438. [Google Scholar] [CrossRef]
- Xu, X.; Gao, B.Y.; Tan, X.; Yue, Q.Y.; Zhong, Q.Q.; Li, Q. Characteristics of Amine-Crosslinked Wheat Straw and Its Adsorption Mechanisms for Phosphate and Chromium (Vi) Removal from Aqueous Solution. Carbohydr. Polym. 2011, 84, 1054–1060. [Google Scholar] [CrossRef]
- Li, F.Y.; Zimmerman, A.R.; Hu, X.; Gao, B. Removal of aqueous Cr(VI) by Zn- and Al-modified hydrochar. Chemosphere 2020, 260, 127610. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; He, J.; Huang, J.; Zhao, Q.; Li, Y.; Tian, S. Removal of Cr(VI) from aqueous solutions using polyamidoamine dendrimer-modified biochar. Desalination Water Treat. 2022, 270, 111–126. [Google Scholar] [CrossRef]
- Shi, L.; Wang, T.; Zhang, H.; Chang, K.; Meng, X.; Liu, H.; Ye, J. An Amine-Functionalized Iron(III) Metal-Organic Framework as Efficient Visible-Light Photocatalyst for Cr(VI) Reduction. Adv. Sci. (Weinh) 2015, 2, 1500006. [Google Scholar] [CrossRef]
- Qu, J.; Shi, J.; Wang, Y.; Tong, H.; Zhu, Y.; Xu, L.; Wang, Y.; Zhang, B.; Tao, Y.; Dai, X.; et al. Applications of functionalized magnetic biochar in environmental remediation: A review. J. Hazard. Mater. 2022, 434, 128841. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Yuan, R.; Wang, F.; Chen, Z.; Zhou, B.; Chen, H. Preparation of magnetic biochar and its application in catalytic degradation of organic pollutants: A review. Sci. Total Environ. 2021, 765, 142673. [Google Scholar] [CrossRef]
- Kera, N.H.; Bhaumik, M.; Pillay, K.; Ray, S.S.; Maity, A. Selective removal of toxic Cr(VI) from aqueous solution by adsorption combined with reduction at a magnetic nanocomposite surface. J. Colloid Interface Sci. 2017, 503, 214–228. [Google Scholar] [CrossRef]
- Tan, X.; Liu, Y.; Zeng, G.; Wang, X.; Hu, X.; Gu, Y.; Yang, Z. Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere 2015, 125, 70–85. [Google Scholar] [CrossRef]
- Qu, J.; Meng, Q.; Lin, X.; Han, W.; Jiang, Q.; Wang, L.; Hu, Q.; Zhang, L.; Zhang, Y. Microwave-assisted synthesis of beta-cyclodextrin functionalized celluloses for enhanced removal of Pb(II) from water: Adsorptive performance and mechanism exploration. Sci. Total Environ. 2021, 752, 141854. [Google Scholar] [CrossRef]
- Chin, J.F.; Heng, Z.W.; Teoh, H.C.; Chong, W.C.; Pang, Y.L. Recent development of magnetic biochar crosslinked chitosan on heavy metal removal from wastewater—Modification, application and mechanism. Chemosphere 2022, 291, 133035. [Google Scholar] [CrossRef]
- Mo, H.; Qiu, J. Preparation of Chitosan/Magnetic Porous Biochar as Support for Cellulase Immobilization by Using Glutaraldehyde. Polymers 2020, 12, 2672. [Google Scholar] [CrossRef]
- Han, R.; Li, W.; Pan, W.; Zhu, M.; Zhou, D.; Li, F.S. 1D Magnetic Materials of Fe3O4 and Fe with High Performance of Microwave Absorption Fabricated by Electrospinning Method. Sci. Rep. 2014, 4, 7493. [Google Scholar] [CrossRef] [Green Version]
- Mo, H.; Qiu, J.; Yang, C.; Zang, L.; Sakai, E.; Chen, J. Porous biochar/chitosan composites for high performance cellulase immobilization by glutaraldehyde. Enzym. Microb. Technol. 2020, 138, 109561. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zhou, J.; Liu, Y.; Guo, J.; Ren, J.; Zhou, F. Preparation of iminodiacetic acid-modified magnetic biochar by carbonization, magnetization and functional modification for Cd(II) removal in water. Fuel 2018, 233, 469–479. [Google Scholar] [CrossRef]
- Wang, F.; Li, L.; Iqbal, J.; Yang, Z.; Du, Y. Preparation of magnetic chitosan corn straw biochar and its application in adsorption of amaranth dye in aqueous solution. J. Biol. Macromol. 2022, 199, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhang, R.; Liu, H.; Li, M.; Chen, T.; Chen, D.; Zou, X.; Frost, R.L. Green preparation of magnetic biochar for the effective accumulation of Pb(II): Performance and mechanism. Chem. Eng. J. 2019, 375, 122011. [Google Scholar] [CrossRef]
- Baghban, N.; Yilmaz, E.; Soylak, M. A magnetic MoS2-Fe3O4 nanocomposite as an effective adsorbent for dispersive solid-phase microextraction of lead(II) and copper(II) prior to their determination by FAAS. Microchim. Acta 2017, 184, 3969–3976. [Google Scholar] [CrossRef]
- Vigneshwaran, S.; Sirajudheen, P.; Nikitha, M.; Ramkumar, K.; Meenakshi, S. Facile synthesis of sulfur-doped chitosan/biochar derived from tapioca peel for the removal of organic dyes: Isotherm, kinetics and mechanisms. J. Mol. Liq. 2021, 326, 115303. [Google Scholar] [CrossRef]
- Palansooriya, K.N.; Kim, S.; Igalavithana, A.D.; Hashimoto, Y.; Choi, Y.-E.; Mukhopadhyay, R.; Sarkar, B.; Ok, Y.S. Fe(III) loaded chitosan-biochar composite fibers for the removal of phosphate from water. J. Hazard. Mater. 2021, 415, 125464. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, N.; Wang, Q.; Wang, P.; Yuan, J.; Shen, J.; Fan, X. Disulfide bond reconstruction: A novel approach for grafting of thiolated chitosan onto wool. Carbohydr. Polym. 2019, 203, 369–377. [Google Scholar] [CrossRef]
- Teng, D.; Zhang, B.; Xu, G.; Wang, B.; Mao, K.; Wang, J.; Sun, J.; Feng, X.; Yang, Z.; Zhang, H. Efficient removal of Cd(II) from aqueous solution by pinecone biochar: Sorption performance and governing mechanisms. Environ. Pollut. 2020, 265 (Pt A), 115001. [Google Scholar] [CrossRef]
- Song, J.; Messele, S.A.; Meng, L.; Huang, Z.; Gamal El-Din, M. Adsorption of metals from oil sands process water (OSPW) under natural pH by sludge-based Biochar/Chitosan composite. Water Res. 2021, 194, 116930. [Google Scholar] [CrossRef]
- Yamashita, T.; Hayes, P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 2008, 254, 2441–2449. [Google Scholar] [CrossRef]
- Ji, J.; Chen, G.; Zhao, J. Preparation and characterization of amino/thiol bifunctionalized magnetic nanoadsorbent and its application in rapid removal of Pb (II) from aqueous system. J. Hazard. Mater. 2019, 368, 255–263. [Google Scholar] [CrossRef]
- Ma, Y.X.; Xing, D.; Shao, W.J.; Du, X.Y.; La, P.Q. Preparation of polyamidoamine dendrimers functionalized magnetic graphene oxide for the adsorption of Hg(II) in aqueous solution. J. Colloid Interface Sci. 2017, 505, 352–363. [Google Scholar] [CrossRef]
- Shahrin, E.W.E.; Narudin, N.A.H.; Shahri, N.N.M.; Nur, M.; Lim, J.-W.; Bilad, M.R.; Mahadi, A.H.; Hobley, J.; Usman, A. A comparative study of adsorption behavior of rifampicin, streptomycin, and ibuprofen contaminants from aqueous solutions onto chitosan: Dynamic interactions, kinetics, diffusions, and mechanisms. Emerg. Contam. 2022, 9, 100199. [Google Scholar] [CrossRef]
- Fang, W.; Jiang, X.; Luo, H.; Geng, J. Synthesis of graphene/SiO(2)@polypyrrole nanocomposites and their application for Cr(VI) removal in aqueous solution. Chemosphere 2018, 197, 594–602. [Google Scholar] [CrossRef]
- Kim, S.A.; Kamala-Kannan, S.; Lee, K.-J.; Park, Y.-J.; Shea, P.J.; Lee, W.-H.; Kim, H.-M.; Oh, B.-T. Removal of Pb(II) from aqueous solution by a zeolite–nanoscale zero-valent iron composite. Chem. Eng. J. 2013, 217, 54–60. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Yuan, X.; Wu, Y.; Chen, X.; Leng, L.; Wang, H.; Li, H.; Zeng, G. Facile synthesis of polypyrrole decorated reduced graphene oxide–Fe3O4 magnetic composites and its application for the Cr(VI) removal. Chem. Eng. J. 2015, 262, 597–606. [Google Scholar] [CrossRef]
- Xiang, L.; Niu, C.-G.; Tang, N.; Lv, X.-X.; Guo, H.; Li, Z.-W.; Liu, H.-Y.; Lin, L.-S.; Yang, Y.-Y.; Liang, C. Polypyrrole coated molybdenum disulfide composites as adsorbent for enhanced removal of Cr(VI) in aqueous solutions by adsorption combined with reduction. Chem. Eng. J. 2021, 408, 127281. [Google Scholar] [CrossRef]
- Yi, Y.; Tu, G.; Zhao, D.; Tsang, P.E.; Fang, Z. Key role of FeO in the reduction of Cr(VI) by magnetic biochar synthesised using steel pickling waste liquor and sugarcane bagasse. J. Clean. Prod. 2020, 245, 118886. [Google Scholar] [CrossRef]
- Ko, D.; Lee, J.S.; Patel, H.A.; Jakobsen, M.H.; Hwang, Y.; Yavuz, C.T.; Hansen, H.C.B.; Andersen, H.R. Selective removal of heavy metal ions by disulfide linked polymer networks. J. Hazard. Mater. 2017, 332, 140–148. [Google Scholar] [CrossRef] [Green Version]
- Zhu, K.; Gao, Y.; Tan, X.; Chen, C. Polyaniline-Modified Mg/Al Layered Double Hydroxide Composites and Their Application in Efficient Removal of Cr(VI). ACS Sustain. Chem. Eng. 2016, 4, 4361–4369. [Google Scholar] [CrossRef]
- Prajapati, A.K.; Das, S.; Mondal, M.K. Exhaustive studies on toxic Cr(VI) removal mechanism from aqueous solution using activated carbon of Aloe vera waste leaves. J. Mol. Liq. 2020, 307, 112956. [Google Scholar] [CrossRef]
- Zhang, S.L.; Wang, Z.K.; Chen, H.Y.; Kai, C.C.; Jiang, M.; Wang, Q.; Zhou, Z.W. Polyethylenimine functionalized Fe3O4/steam-exploded rice straw composite as an efficient adsorbent for Cr(VI) removal. Appl. Surf. Sci. 2018, 440, 1277–1285. [Google Scholar] [CrossRef]
- Lin, C.; Luo, W.J.; Luo, T.T.; Zhou, Q.; Li, H.F.; Jing, L.R. A study on adsorption of Cr (VI) by modified rice straw: Characteristics, performances and mechanism. J. Clean. Prod. 2018, 196, 626–634. [Google Scholar] [CrossRef]
- Chen, S.; Yue, Q.; Gao, B.; Li, Q.; Xu, X. Removal of Cr(Vi) from Aqueous Solution Using Modified Corn Stalks: Characteristic, Equilibrium, Kinetic and Thermodynamic Study. Chem. Eng. J. 2011, 168, 909–917. [Google Scholar] [CrossRef]
- Zhao, N.; Yin, Z.; Liu, F.; Zhang, M.; Lv, Y.; Hao, Z.; Pan, G.; Zhang, J. Environmentally persistent free radicals mediated removal of Cr(VI) from highly saline water by corn straw biochars. Bioresour. Technol. 2018, 260, 294–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Biochar | Surface Properties | Elemental Composition (wt.%) | ||||||
---|---|---|---|---|---|---|---|---|
SSA (m2/g) | TPV (m3/g) | APD (nm) | C 1s | O 1s | N 1s | Fe 2p | S 2p | |
PBC | 123.079 | 0.083 | 2.553 | 76.77 | 22.81 | 0.41 | – | – |
MBC | 272.565 | 0.173 | 2.443 | 75.86 | 20.29 | 2.43 | 1.31 | – |
BMBC | 95.595 | 0.117 | 5.034 | 74.27 | 16.08 | 4.49 | 0.83 | 2.66 |
Biochar Adsorbents | Pseudo–First-Order Model | Pseudo–Second-Order Model | ||||
---|---|---|---|---|---|---|
K1 (min−1) | Qe (mg/g) | R2 | K2 (g/(mg·min)) | Qe (mg/g) | R2 | |
PBC | 0.0025 | 9.12 | 0.9497 | 0.0007 | 15.12 | 0.9970 |
MBC | 0.0018 | 11.69 | 0.9918 | 0.0004 | 18.67 | 0.9929 |
BMBC | 0.0034 | 5.18 | 0.9534 | 0.0022 | 24.98 | 0.9997 |
Biochar Adsorbents | Kp1 (mg/g·min1/2) | C1 | (R1)2 | Kp2 (mg/g·min1/2) | C2 | (R2)2 | Kp3 (mg/g·min1/2) | C3 | (R3)2 |
---|---|---|---|---|---|---|---|---|---|
PBC | 0.5177 | 3.68 | 0.9823 | 0.2450 | 6.18 | 0.9975 | 0.1270 | 9.29 | 0.9927 |
MBC | 0.5167 | 3.99 | 0.9961 | 0.3282 | 6.54 | 0.9939 | 0.2210 | 8.55 | 0.9626 |
BMBC | 0.8592 | 13.96 | 0.9966 | 0.2511 | 18.98 | 0.9975 | 0.0317 | 23.62 | 0.9343 |
Biochar | T (°C) | Langmuir | Freundlich | |||||
---|---|---|---|---|---|---|---|---|
Qmax (mg/g) | KL (L/mg) | R2 | RL | n | KF (mg/g) | R2 | ||
PBC | 30 | 14.69 | 0.3660 | 0.9472 | 0.0054 | 9.8880 | 8.885 | 0.8556 |
40 | 18.55 | 0.1686 | 0.9384 | 0.0117 | 9.4930 | 10.4896 | 0.6474 | |
50 | 23.82 | 0.1228 | 0.9206 | 0.0160 | 7.6889 | 11.3924 | 0.7687 | |
MBC | 30 | 21.91 | 0.2175 | 0.9950 | 0.0091 | 11.9588 | 12.7263 | 0.6822 |
40 | 25.89 | 0.2101 | 0.9651 | 0.0094 | 10.5480 | 14.8270 | 0.8152 | |
50 | 33.63 | 0.2670 | 0.9353 | 0.0074 | 5.8802 | 14.9895 | 0.9127 | |
BMBC | 30 | 48.19 | 0.0975 | 0.9518 | 0.0201 | 12.0097 | 29.0117 | 0.9481 |
40 | 61.49 | 0.1085 | 0.9181 | 0.0181 | 8.6828 | 32.2779 | 0.8947 | |
50 | 66.10 | 0.2078 | 0.9278 | 0.0095 | 9.9235 | 38.5484 | 0.8618 |
Adsorbents | T (K) | ΔGo (kJ/mol·K) | ΔSo (J/mol·K) | ΔHo (kJ/mol·K) |
---|---|---|---|---|
MBC | 303 (30 °C) | −17.09 | 58.55 | 0.51 |
313 (40 °C) | −18.12 | |||
323 (50 °C) | −18.24 | |||
BMBC | 303 (30 °C) | −15.60 | 70.57 | 5.70 |
313 (40 °C) | −16.58 | |||
323 (50 °C) | −17.00 |
Reference | Carbon Source | Biochar | Modifying Agent | Sorption Capacity (mg/g) | Magnetism | Temperature (°C) | Solution pH |
---|---|---|---|---|---|---|---|
This work | Rice straw | BMBC | Cystamine, glutaraldehyde | 66.10 | Yes | 50 | 2 |
BMC | Fe(III)/Fe(II) mixture | 33.63 | Yes | 50 | 2 | ||
PBC | Raw | 23.82 | Yes | 50 | 2 | ||
[34] | Rice straw | BC-G1 | HNO3, G1 polyamidoamine dendrimer | 101.52 | No | 30 | 2 |
BC-G2 | HNO3, G2 polyamidoamine dendrimer | 120.77 | No | 30 | 2 | ||
BC-G3 | HNO3, G3 polyamidoamine dendrimer | 40.98 | No | 30 | 2 | ||
[67] | Rice straw | A-RS/PVA | Amination reaction: polyvinyl alcohol and diethylenetriamine | 142.03 | No | 60 | 2 |
[11] | Rice straw | WS-CA-AM | NaOH, citric acid, acrylamide | 53.88 | No | 25 | 3 |
[11] | Rice straw | MRS | Amine-functionalization: epichlorohydrin, diethylenetriamine | 21.87 | No | 25 | 2 |
[66] | Rice straw | Fe3O4-PEI-SERS | Amino-functionalization: polyethyleneimine, Fe3O4 | 338.98 | Yes | 45 | 2 |
[32] | Wheat straw | AC-WS | Amination reaction: epichlorohydrin and ethylenediamine | 287.02 | No | 30 | 2 |
[68] | Corn stalks | MCS | Amine-functionalization: epichlorohydrin, diethylenetriamine | 194.13 | No | 25 | 4 |
[69] | Corn straw | HNO3 activation | 33.33 | No | / | ~7 | |
[30] | Peanut shells | PHC-HDA | Amino-functionalized magnetic biochar using hexamethylenediamine (HDA) | 121.95 | No | 25 | 2 |
MPHC-HDA | HDA-modified magnetic biochar | 142.86 | No | 25 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, X.; Wang, J.; Zhao, Q.; Li, C.; Huang, J.; Hu, X.; Li, J.; Li, M. Application of a Novel Bifunctionalized Magnetic Biochar to Remove Cr(VI) from Wastewater: Performance and Mechanism. Separations 2023, 10, 358. https://doi.org/10.3390/separations10060358
Cui X, Wang J, Zhao Q, Li C, Huang J, Hu X, Li J, Li M. Application of a Novel Bifunctionalized Magnetic Biochar to Remove Cr(VI) from Wastewater: Performance and Mechanism. Separations. 2023; 10(6):358. https://doi.org/10.3390/separations10060358
Chicago/Turabian StyleCui, Xiangfen, Juan Wang, Qun Zhao, Chen Li, Jianhong Huang, Xuewei Hu, Jie Li, and Mantao Li. 2023. "Application of a Novel Bifunctionalized Magnetic Biochar to Remove Cr(VI) from Wastewater: Performance and Mechanism" Separations 10, no. 6: 358. https://doi.org/10.3390/separations10060358
APA StyleCui, X., Wang, J., Zhao, Q., Li, C., Huang, J., Hu, X., Li, J., & Li, M. (2023). Application of a Novel Bifunctionalized Magnetic Biochar to Remove Cr(VI) from Wastewater: Performance and Mechanism. Separations, 10(6), 358. https://doi.org/10.3390/separations10060358