Removal of Azo Dyes Orange II and Reactive Black 5 from Aqueous Solutions by Adsorption on Chitosan Beads Modified with Choline Chloride: Urea Deep Eutectic Solvent and FeO
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Adsorbents
2.3. Characterization
2.4. Adsorption Experiments
2.5. Adsorption Isotherm
2.6. Adsorption Kinetics
2.7. Desorption and Reusability Tests
3. Results and Discussion
3.1. Adsorbent Characterization
3.1.1. Morphology Study via Scanning Electron Microscopy (SEM)
3.1.2. BET and BJH Analysis
3.1.3. Chemical Characterization Using the Fourier Transform Infrared (FTIR) Spectrum
3.2. Preliminary Assays and Selection of the Optimal RB5 Adsorbent
3.3. Influences on Adsorption Behaviour
3.3.1. Adsorbent Quantity
3.3.2. Dye Concentration
3.3.3. pH
3.4. Adsorption Isotherms
3.5. Adsorption Kinetics
3.6. Reusability of the Adsorbent
3.6.1. Desorption
3.6.2. Reuse of Ch-DES Beads
3.7. Rationalization of the Adsorption Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vallvé, M.M.V. Eliminación del Color de las Aguas Residuales Procedentes de la Tintura con Colorantes Reactivos. Doctoral Thesis, Universitat Politècnica de Catalunya, Barcelona, Spain, 2015. [Google Scholar]
- Slokar, Y.; Le Marechal, A.M. Methods of decoloration of textile wastewaters. Dye. Pigment. 1998, 37, 335–356. [Google Scholar] [CrossRef]
- Hamzeh, Y.; Ashori, A.; Azadeh, E.; Abdulkhani, A. Removal of Acid Orange 7 and Remazol Black 5 reactive dyes from aqueous solutions using a novel biosorbent. Mater. Sci. Eng. C 2012, 32, 1394–1400. [Google Scholar] [CrossRef] [PubMed]
- Sharma, J.; Sharma, S.; Soni, V. Classification and impact of synthetic textile dyes on Aquatic Flora: A review. Reg. Stud. Mar. Sci. 2021, 45, 101802. [Google Scholar] [CrossRef]
- De Moraes, S.G.; Freire, R.S.; Durán, N. Degradation and toxicity reduction of textile effluent by combined photocatalytic and ozonation processes. Chemosphere 2000, 40, 369–373. [Google Scholar] [CrossRef] [PubMed]
- García, E.R.; Medina, R.L.; Lozano, M.M.; Pérez, I.H.; Valero, M.J.; Franco, A.M.M. Adsorption of Azo-Dye Orange II from Aqueous Solutions Using a Metal-Organic Framework Material: Iron-Benzenetricarboxylate. Materials 2014, 7, 8037–8057. [Google Scholar] [CrossRef] [Green Version]
- PubChem; NIH; National Library of Medicine; National Center for Biotechnology Information. Acid Orange 7. Compound Summary. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Acid-orange-7 (accessed on 17 March 2023).
- Cueva, E.M. Reducción de la Concentración de Colorante Negro Reactivo 5 en Agua Mediante el Uso de las Micro Nanoburbujas de Ozono-Aire Escala Laboratorio. 2017. Available online: https://hdl.handle.net/20.500.12692/13412 (accessed on 14 March 2023).
- Anjaneyulu, Y.; Chary, N.S.; Raj, D.S.S. Decolourization of Industrial Effluents—Available Methods and Emerging Technologies—A Review. Rev. Environ. Sci. Bio Technol. 2005, 4, 245–273. [Google Scholar] [CrossRef]
- Patel, R.; Suresh, S. Kinetic and equilibrium studies on the biosorption of reactive black 5 dye by Aspergillus foetidus. Bioresour. Technol. 2008, 99, 51–58. [Google Scholar] [CrossRef]
- Crini, G. Non-conventional low-cost adsorbents for dye removal: A review. Bioresour. Technol. 2006, 97, 1061–1085. [Google Scholar] [CrossRef]
- Figueroa, D.; Moreno, A.; Hormaza, A.; Sc, M.; Asociado, P. Equilibrio, termodinámica y modelos cinéticos en la adsorción de Rojo 40 sobre tuza de maíz. Rev. Ing. Univ. Medellín 2015, 14, 105–120. [Google Scholar] [CrossRef]
- Chiou, M.-S.; Ho, P.-Y.; Li, H.-Y. Adsorption of anionic dyes in acid solutions using chemically cross-linked chitosan beads. Dye. Pigment. 2004, 60, 69–84. [Google Scholar] [CrossRef]
- Ouachtak, H.; El Guerdaoui, A.; El Haouti, R.; Haounati, R.; Ighnih, H.; Toubi, Y.; Alakhras, F.; Rehman, R.; Hafid, N.; Addi, A.A.; et al. Combined molecular dynamics simulations and experimental studies of the removal of cationic dyes on the eco-friendly adsorbent of activated carbon decorated montmorillonite Mt@AC. RSC Adv. 2023, 13, 5027–5044. [Google Scholar] [CrossRef] [PubMed]
- Da Silva Alves, D.C.; Healy, B.; Pinto, L.A.D.A.; Cadaval, T.R.S., Jr.; Breslin, C.B. Recent Developments in Chitosan-Based Adsorbents for the Removal of Pollutants from Aqueous Environments. Molecules 2021, 26, 594. [Google Scholar] [CrossRef] [PubMed]
- Sadiq, A.C.; Rahim, N.Y.; Suah, F.B.M. Adsorption and desorption of malachite green by using chitosan-deep eutectic solvents beads. Int. J. Biol. Macromol. 2020, 164, 3965–3973. [Google Scholar] [CrossRef] [PubMed]
- Patiño-Ruiz, D.A.; De Ávila, G.; Alarcón-Suesca, C.; González-Delgado, D.; Herrera, A. Ionic Cross-Linking Fabrication of Chitosan-Based Beads Modified with FeO and TiO2 Nanoparticles: Adsorption Mechanism toward Naphthalene Removal in Seawater from Cartagena Bay Area. ACS Omega 2020, 5, 26463–26475. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Chen, W.; Mao, Q.; Bai, Y.; Ma, H. Facile synthesis of chitosan/gelatin filled with graphene bead adsorbent for orange II removal. Chem. Eng. Res. Des. 2019, 144, 35–46. [Google Scholar] [CrossRef]
- Sirajudheen, P.; Poovathumkuzhi, N.C.; Vigneshwaran, S.; Chelaveettil, B.M.; Meenakshi, S. Applications of chitin and chitosan based biomaterials for the adsorptive removal of textile dyes from water—A comprehensive review. Carbohydr. Polym. 2021, 273, 118604. [Google Scholar] [CrossRef]
- Jakubowska, E.; Gierszewska, M.; Nowaczyk, J.; Olewnik-Kruszkowska, E. Physicochemical and storage properties of chitosan-based films plasticized with deep eutectic solvent. Food Hydrocoll. 2020, 108, 106007. [Google Scholar] [CrossRef]
- Pontillo, A.R.N.; Koutsoukos, S.; Welton, T.; Detsi, A. Investigation of the influence of natural deep eutectic solvents (NaDES) in the properties of chitosan-stabilised films. Mater. Adv. 2021, 2, 3954–3964. [Google Scholar] [CrossRef]
- Dai, Y.; Row, K.H. Magnetic chitosan functionalized with β-cyclodextrin as ultrasound-assisted extraction adsorbents for the removal of methyl orange in wastewater coupled with high-performance liquid chromatography. J. Sep. Sci. 2018, 41, 3397–3403. [Google Scholar] [CrossRef]
- Lawal, I.A.; Dolla, T.H.; Pruessner, K.; Ndungu, P. Synthesis and characterization of deep eutectic solvent functionalized CNT/ZnCo2O4 nanostructure: Kinetics, isotherm and regenerative studies on Eosin Y adsorption. J. Environ. Chem. Eng. 2018, 7, 102877. [Google Scholar] [CrossRef]
- Li, G.; Row, K.H. Deep eutectic solvents skeleton typed molecularly imprinted chitosan microsphere coated magnetic graphene oxide for solid-phase microextraction of chlorophenols from environmental water. J. Sep. Sci. 2019, 43, 1063–1070. [Google Scholar] [CrossRef]
- Blanco, L.V.; Sas, O.G.; Sánchez, P.B.; Santiago, D.; de Prado, B.G. Congo red recovery from water using green extraction solvents. Water Resour. Ind. 2022, 27, 100170. [Google Scholar] [CrossRef]
- Villar, L.; Martínez-Rico, Ó.; Asla, A.; Domínguez, Á.; González, B. Testing Thymol-Based DES for the Elimination of 11 Textile Dyes from Water. Separations 2022, 9, 442. [Google Scholar] [CrossRef]
- Starbird-Pérez, R.; Montero-Campos, V. Synthesis of magnetic iron oxide nanoparticles toward arsenic removal from drinking water. Rev. Tecnol. Marcha 2015, 28, 45. [Google Scholar] [CrossRef] [Green Version]
- Blanco, L.; Martínez-Rico, O.; Domínguez, Á.; González, B. Removal of Acid Blue 80 from aqueous solutions using chitosan-based beads modified with choline chloride:urea Deep Eutectic Solvent and FeO. Water Resour. Ind. 2023, 29, 100195. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef] [Green Version]
- Freundlich, H.M.F. Über die Adsorption in Lösungen. Z. Phys. Chem. 1907, 57U, 385–470. [Google Scholar] [CrossRef]
- Temkin, M.I.; Pyzhev, V. Kinetic of Ammonia Synthesis on Promoted Iron Catalysts. J. Phys. Chem. USSR 1939, 13, 851–857. [Google Scholar]
- Soliman, N.K.; Moustafa, A.F.; El-Mageed, H.R.A.; Abdel-Gawad, O.F.; Elkady, E.T.; Ahmed, S.A.; Mohamed, H.S. Experimentally and theoretically approaches for disperse red 60 dye adsorption on novel quaternary nanocomposites. Sci. Rep. 2021, 11, 10000. [Google Scholar] [CrossRef]
- Wu, F.-C.; Tseng, R.-L.; Juang, R.-S. Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics. Chem. Eng. J. 2009, 153, 1–8. [Google Scholar] [CrossRef]
- Weber, W.J., Jr.; Morris, J.C. Kinetics of Adsorption on Carbon from Solution. J. Sanit. Eng. Div. 1963, 89, 31–59. [Google Scholar] [CrossRef]
- Hamd, A.; Rady, D.; Shaban, M.; Elsayed, K.N.M.; Al Mohamadi, H.; Elzanaty, A.M.; Ahmed, S.A.; El-Sayed, R.; Soliman, N.K. Application of Nano Bio-clay Composite in a Scaling-up Study for Wastewater Treatment. Biointerface Res. Appl. Chem. 2021, 12, 6393–6414. [Google Scholar] [CrossRef]
- Dryaz, A.R.; Shaban, M.; AlMohamadi, H.; Abu Al-Ola, K.A.; Hamd, A.; Soliman, N.K.; Ahmed, S.A. Design, characterization, and adsorption properties of Padina gymnospora/zeolite nanocomposite for Congo red dye removal from wastewater. Sci. Rep. 2021, 11, 21058. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, H.S.; El-Mageed, H.R.A.; Ali, H.S.; Mahmoud, T.R.; Ahmed, S.A.; Soliman, N.K. Adsorption of Mn+7 ions on chitosan/cellulose composite: Experimentally and theoretically approaches. J. Dispers. Sci. Technol. 2021, 43, 1525–1542. [Google Scholar] [CrossRef]
- Aramesh, N.; Bagheri, A.R.; Bilal, M. Chitosan-based hybrid materials for adsorptive removal of dyes and underlying interaction mechanisms. Int. J. Biol. Macromol. 2021, 183, 399–422. [Google Scholar] [CrossRef] [PubMed]
- Verma, M.; Lee, I.; Hong, Y.; Kumar, V.; Kim, H. Multifunctional β-Cyclodextrin-EDTA-Chitosan polymer adsorbent synthesis for simultaneous removal of heavy metals and organic dyes from wastewater. Environ. Pollut. 2022, 292, 118447. [Google Scholar] [CrossRef]
- Chen, B.; Zhao, H.; Chen, S.; Long, F.; Huang, B.; Yang, B.; Pan, X. A magnetically recyclable chitosan composite adsorbent functionalized with EDTA for simultaneous capture of anionic dye and heavy metals in complex wastewater. Chem. Eng. J. 2018, 356, 69–80. [Google Scholar] [CrossRef]
Test | Dye Concentration (mg/L) | Adsorbent | Adsorbent Dosage (g) | Temperature (K) |
---|---|---|---|---|
Adsorbent selection | 100 | un-Ch Ch-DES Ch-FeO-DES | 0.025 | 298.16 |
Dosage | 100 | The best one | 0.005, 0.010, 0.015, 0.025, 0.035 | 298.16 |
Dye Concentration | 25, 50, 100, 150 | The best one | The best one | 298.16 |
BET Surface Area (m2/g) | Pore Volume (cm3/g) | Pore Size (nm) | Micropore Surface Area (m2/g) | |
---|---|---|---|---|
un-Ch | 0.34 | 3.6 × 10−4 | 4.16 | 0.54 |
Ch-DES | 0.15 | 1.5 × 10−4 | 4.05 | 0.23 |
Ch-FeO-DES | 0.27 | 4.3 × 10−4 | 6.54 | 0.142 |
Langmuir Isotherm | Freundlich Isotherm | Temkin Isotherm | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Parameters | qm (mg/g) | KL (L/mg) | RL | R2 | n | KF | R2 | B (J/mol) | KT (L/mol) | R2 |
OII | 36.9 | 177 | 0.07 | 0.9901 | 3 | 9.5 | 0.9772 | 6.0 | 3.9 | 0.9920 |
RB5 | 28.5 | 1073 | 0.01 | 1.0000 | 5 | 13.0 | 0.9133 | 3.5 | 57.0 | 0.9675 |
Dye | OII | RB5 | ||||||
---|---|---|---|---|---|---|---|---|
Concentration (mg/L) | 25 | 50 | 100 | 150 | 25 | 50 | 100 | 150 |
qe, exp (mg/g) | 8.98 | 17.66 | 27.17 | 34.97 | 8.93 | 18.35 | 27.49 | 28.16 |
Pseudo-first-order kinetic model | ||||||||
k1 (1/min) | 97.0 × 10−3 | 15.9 × 10−3 | 12.6 × 10−3 | 13.5 × 10−3 | 15.7 × 10−3 | 11.0 × 10−3 | 21.1 × 10−3 | 16.8 × 10−3 |
qe (mg/g) | 1.50 | 15.51 | 19.53 | 41.41 | 5.30 | 14.19 | 53.37 | 39.64 |
R2 | 0.4403 | 0.9393 | 0.9435 | 0.9424 | 0.8387 | 0.4790 | 0.8983 | 0.9322 |
Pseudo-second-order kinetic model | ||||||||
k2 (mg/(g min)) | 6.9 × 10−3 | 1.3 × 10−3 | 0.6 × 10−3 | 0.3 × 10−3 | 3.1 × 10−3 | 0.7 × 10−3 | 0.2 × 10−3 | 0.3 × 10−3 |
qe (mg/g) | 9.55 | 19.80 | 31.75 | 42.02 | 10.01 | 22.73 | 38.91 | 38.17 |
R2 | 0.9952 | 0.9942 | 0.9978 | 0.9879 | 0.9897 | 0.9908 | 0.9572 | 0.9765 |
Elovich kinetic model | ||||||||
β (g/mg) | 0.582 | 0.254 | 0.146 | 0.116 | 0.468 | 0.206 | 0.125 | 0.125 |
α (mg/(g min)) | 1.63 | 1.24 | 1.36 | 1.36 | 2.14 | 0.80 | 0.79 | 0.89 |
R2 | 0.8175 | 0.9499 | 0.9780 | 0.9715 | 0.8929 | 0.9760 | 0.9440 | 0.9598 |
Intraparticle diffusion kinetic model | ||||||||
k3 (mg/(g min1/2)) | 0.307 | 0.772 | 1.324 | 1.774 | 0.428 | 1.048 | 1.784 | 1.769 |
I | 4.38 | 4.90 | 5.54 | 3.89 | 2.59 | 2.03 | −1.26 | −0.27 |
R2 | 0.6237 | 0.8737 | 0.8761 | 0.9772 | 0.7470 | 0.9468 | 0.9761 | 0.982 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Rico, Ó.; Blanco, L.; Domínguez, Á.; González, B. Removal of Azo Dyes Orange II and Reactive Black 5 from Aqueous Solutions by Adsorption on Chitosan Beads Modified with Choline Chloride: Urea Deep Eutectic Solvent and FeO. Separations 2023, 10, 426. https://doi.org/10.3390/separations10080426
Martínez-Rico Ó, Blanco L, Domínguez Á, González B. Removal of Azo Dyes Orange II and Reactive Black 5 from Aqueous Solutions by Adsorption on Chitosan Beads Modified with Choline Chloride: Urea Deep Eutectic Solvent and FeO. Separations. 2023; 10(8):426. https://doi.org/10.3390/separations10080426
Chicago/Turabian StyleMartínez-Rico, Óscar, Lucía Blanco, Ángeles Domínguez, and Begoña González. 2023. "Removal of Azo Dyes Orange II and Reactive Black 5 from Aqueous Solutions by Adsorption on Chitosan Beads Modified with Choline Chloride: Urea Deep Eutectic Solvent and FeO" Separations 10, no. 8: 426. https://doi.org/10.3390/separations10080426
APA StyleMartínez-Rico, Ó., Blanco, L., Domínguez, Á., & González, B. (2023). Removal of Azo Dyes Orange II and Reactive Black 5 from Aqueous Solutions by Adsorption on Chitosan Beads Modified with Choline Chloride: Urea Deep Eutectic Solvent and FeO. Separations, 10(8), 426. https://doi.org/10.3390/separations10080426