Adsorptive Removal of Emulsified Automobile Fuel from Aqueous Solution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Batch Isotherm Models
3.1. Langmuir Isotherm Model
3.2. Freundlich Isotherm Model
3.3. Temkin Isotherm Model
3.4. Coefficient of Determination (R2)
3.5. Normalized Standard Deviation Test of Model Validity
4. Results and Discussion
4.1. Gasoline Removal Studies and Isotherm Model Fits
4.2. Diesel Removal Studies and Isotherm Model Fits
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ergas, S.J.; Chang, D.P.Y.; Schroeder, E.D. Bioremediation Principles, 1st ed.; William C Brown Pub: Dubuque, IA, USA, 1999. [Google Scholar]
- Liang, H.; Esmaeili, H. Application of nanomaterials for demulsification of oily wastewater: A review study. Environ. Technol. Innov. 2021, 22, 101498. [Google Scholar] [CrossRef]
- Syed, S.; Alhazzaa, I.; Asif, M. Treatment of oily water using hydrophobic nano-silica. Chem. Eng. J. 2011, 167, 99–103. [Google Scholar] [CrossRef]
- Abdullah, T.A.; Juzsakova, T.; Hafad, S.A.; Rasheed, R.T.; Al-Jammal, N.; Mallah, M.A.; Salman, A.D.; Le, P.C.; Domokos, E.; Aldulaimi, M. Functionalized multi-walled carbon nanotubes for oil spill cleanup from water. Clean Technol. Environ. Policy 2022, 24, 519–541. [Google Scholar] [CrossRef]
- Shokry, H.; Elkady, M.; Salama, E. Eco-friendly magnetic activated carbon nano-hybrid for facile oil spills separation. Sci. Rep. 2020, 10, 10265. [Google Scholar] [CrossRef] [PubMed]
- Lico, D.; Vuono, D.; Siciliano, C.; B.Nagy, J.; De Luca, P. Removal of unleaded gasoline from water by multi-walled carbon nanotubes. J. Environ. Manag. 2019, 237, 636–643. [Google Scholar] [CrossRef]
- De Nino, A.; Olivito, F.; Algieri, V.; Costanzo, P.; Jiritano, A.; Tallarida, M.A.; Maiuolo, L. Efficient and Fast Removal of Oils from Water Surfaces via Highly Oleophilic Polyurethane Composites. Toxics 2021, 9, 186. [Google Scholar] [CrossRef]
- Kosheleva, R.I.; Kyzas, G.Z.; Kokkinos, N.C.; Mitropoulos, A.C. Low-Cost Activated Carbon for Petroleum Products Clean-Up. Processes 2022, 10, 314. [Google Scholar] [CrossRef]
- Nekouei, F.; Noorizadeh, H.; Nekouei, S.; Asif, M.; Tyagi, I.; Agarwal, S.; Gupta, V.K. Removal of malachite green from aqueous solutions by cuprous iodide–cupric oxide nano-composite loaded on activated carbon as a new sorbent for solid phase extraction: Isotherm, kinetics and thermodynamic studies. J. Mol. Liq. 2016, 213, 360–368. [Google Scholar] [CrossRef]
- Tan, K.L.; Foo, K.Y. Chapter 13—The viable role of activated carbon for the effective remediation of refinery and petrochemical wastewaters. In Petroleum Industry Wastewater; El-Naas, M.H., Banerjee, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 185–203. [Google Scholar] [CrossRef]
- Rafatullah, M.; Sulaiman, O.; Hashim, R.; Ahmad, A. Adsorption of methylene blue on low-cost adsorbents: A review. J. Hazard. Mater. 2010, 177, 70–80. [Google Scholar] [CrossRef]
- Njoku, V.O.; Asif, M.; Hameed, B.H. 2,4-Dichlorophenoxyacetic acid adsorption onto coconut shell-activated carbon: Isotherm and kinetic modeling. Desalin. Water Treat. 2015, 55, 132–141. [Google Scholar] [CrossRef]
- Ying, Z.W.; Zhang, T.Y.; Li, H.; Liu, X.Q. Adsorptive removal of aflatoxin B1 from contaminated peanut oil via magnetic porous biochar from soybean dreg. Food Chem. 2023, 409, 10. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Han, M.; He, F. A review of treating oily wastewater. Arab. J. Chem. 2017, 10, S1913–S1922. [Google Scholar] [CrossRef]
- Manafi, M.R.; Manafi, P.; Agarwal, S.; Bharti, A.K.; Asif, M.; Gupta, V.K. Synthesis of nanocomposites from polyacrylamide and graphene oxide: Application as flocculants for water purification. J. Colloid Interface Sci. 2017, 490, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Elhady, S.; Bassyouni, M.; Mansour, R.A.; Elzahar, M.H.; Abdel-Hamid, S.; Elhenawy, Y.; Saleh, M.Y. Oily Wastewater Treatment Using Polyamide Thin Film Composite Membrane Technology. Membranes 2020, 10, 84. [Google Scholar] [CrossRef]
- Kayvani Fard, A.; Rhadfi, T.; McKay, G.; Al-marri, M.; Abdala, A.; Hilal, N.; Hussien, M.A. Enhancing oil removal from water using ferric oxide nanoparticles doped carbon nanotubes adsorbents. Chem. Eng. J. 2016, 293, 90–101. [Google Scholar] [CrossRef]
- Ma, J.Y.; Wu, G.Y.; Zhang, R.; Xia, W.; Nie, Y.; Kong, Y.L.; Jia, B.T.; Li, S. Emulsified oil removal from steel rolling oily wastewater by using magnetic chitosan-based flocculants: Flocculation performance, mechanism, and the effect of hydrophobic monomer ratio. Sep. Purif. Technol. 2023, 304, 122329. [Google Scholar] [CrossRef]
- Raymundo-Piñero, E.; Azaïs, P.; Cacciaguerra, T.; Cazorla-Amorós, D.; Linares-Solano, A.; Béguin, F. KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation. Carbon 2005, 43, 786–795. [Google Scholar] [CrossRef]
- Nandi, R.; Jha, M.K.; Guchhait, S.K.; Sutradhar, D.; Yadav, S. Impact of KOH Activation on Rice Husk Derived Porous Activated Carbon for Carbon Capture at Flue Gas alike Temperatures with High CO2/N2 Selectivity. ACS Omega 2023, 8, 4802–4812. [Google Scholar] [CrossRef]
- Langmuir, I. The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef]
- Basu, A.; Ali, S.S.; Hossain, S.S.; Asif, M. A Review of the Dynamic Mathematical Modeling of Heavy Metal Removal with the Biosorption Process. Processes 2022, 10, 1154. [Google Scholar] [CrossRef]
- H.R., P. Kapillarchemie, Eine Darstellung der Chemie der Kolloide und verwandter Gebiete. Nature 1911, 85, 534–535. [Google Scholar] [CrossRef]
- Kumar, N.S.; Shaikh, H.M.; Asif, M.; Al-Ghurabi, E.H. Engineered biochar from wood apple shell waste for high-efficient removal of toxic phenolic compounds in wastewater. Sci. Rep. 2021, 11, 2586. [Google Scholar] [CrossRef] [PubMed]
- Siva Kumar, N.; Asif, M.; Poulose, A.M.; Suguna, M.; Al-Hazza, M.I. Equilibrium and Kinetic Studies of Biosorptive Removal of 2,4,6-Trichlorophenol from Aqueous Solutions Using Untreated Agro-Waste Pine Cone Biomass. Processes 2019, 7, 757. [Google Scholar] [CrossRef]
Isotherm Model | Slope | Intercept | R2 | ∆q(%) |
---|---|---|---|---|
Langmuir | 0.3209 | 0.00012 | 0.9656 | 13.2 |
Freundlich | 1.0300 | 0.4118 | 0.9797 | 11.0 |
Temkin | 670.5721 | −2759.3407 | 0.8315 | 58.3 |
Isotherm Model | Slope | Intercept | R2 | ∆q(%) |
---|---|---|---|---|
Langmuir | 0.0434 | 0.0001 | 0.9475 | 9.3 |
Freundlich | 0.8255 | 1.5818 | 0.9787 | 9.0 |
Temkin | 1034.3979 | −2735.7057 | 0.9382 | 17.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asif, M.; Boumaza, M.M.; Kumar, N.S.; Al-Ghurabi, E.H.; Shahabuddin, M. Adsorptive Removal of Emulsified Automobile Fuel from Aqueous Solution. Separations 2023, 10, 493. https://doi.org/10.3390/separations10090493
Asif M, Boumaza MM, Kumar NS, Al-Ghurabi EH, Shahabuddin M. Adsorptive Removal of Emulsified Automobile Fuel from Aqueous Solution. Separations. 2023; 10(9):493. https://doi.org/10.3390/separations10090493
Chicago/Turabian StyleAsif, Mohammad, Mourad M. Boumaza, Nadavala Siva Kumar, Ebrahim H. Al-Ghurabi, and Mohammed Shahabuddin. 2023. "Adsorptive Removal of Emulsified Automobile Fuel from Aqueous Solution" Separations 10, no. 9: 493. https://doi.org/10.3390/separations10090493
APA StyleAsif, M., Boumaza, M. M., Kumar, N. S., Al-Ghurabi, E. H., & Shahabuddin, M. (2023). Adsorptive Removal of Emulsified Automobile Fuel from Aqueous Solution. Separations, 10(9), 493. https://doi.org/10.3390/separations10090493