An Ultra-Fast and Green LC-MS Method for Quantitative Analysis of Aesculin and Aesculetin in Cortex Fraxini
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Sample of Cortex Fraxini
2.3. Chromatographic Conditions
2.4. Standard Solution Preparation
2.5. Sample Solution Preparation
2.6. Method Validation
2.6.1. Specificity, Linearity and Limit
2.6.2. Precision
2.6.3. Accuracy
2.6.4. Stability
3. Results and Discussion
3.1. Optimization of Extraction Conditions
3.2. Optimization of Chromatographic Conditions
3.3. Method Validation
3.4. Sample Analysis
3.5. Comparison with the Reported LC Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liang, C.; Ju, W.; Pei, S.; Tang, Y.; Xiao, Y. Pharmacological activities and synthesis of esculetin and its derivatives: A mini-review. Molecules 2017, 22, 387. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.H.; Lv, Y.; Du, G.H. Progress in study of pharmacological effect of Cortex Fraxini. China J. Chin. Mater. Medica 2008, 33, 2732–2736. [Google Scholar]
- Tsai, J.C.; Tsai, S.; Chang, W.C. Effect of ethanol extracts of three Chinese medicinal plants with anti-diarrheal properties on ion transport of the rat intestinal epithelia. J. Pharmacol. Sci. 2004, 94, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Li, J.M.; Zhang, X.; Wang, X.; Xie, Y.C.; Kong, L.D. Protective effects of cortex fraxini coumarines against oxonate-induced hyperuricemia and renal dysfunction in mice. Eur. J. Pharmacol. 2011, 666, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.; Zhang, J.; Li, T.; Wang, S.; Ding, W.; Zhao, M.; Du, Y.; Wang, Q.; Jia, J. Multi-responses extraction optimization based on response surface methodology combined with polarity switching HPLC–MS/MS for the simultaneous quantitation of 11 compounds in Cortex Fraxini: Application to four species of Cortex Fraxini and its 3 confusable species. J. Pharm. Biomed. Anal. 2014, 91, 210–221. [Google Scholar]
- Zhou, L.; Kang, J.; Fan, L.; Ma, X.C.; Zhao, H.Y.; Han, J.; Wang, B.R.; Guo, D.A. Simultaneous analysis of coumarins and secoiridoids in Cortex Fraxini by high-performance liquid chromatography–diode array detection–electrospray ionization tandem mass spectrometry. J. Pharm. Biomed. Anal. 2008, 47, 39–46. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, Q.; Shen, Z.; Wang, Y.; Dong, L.; Fu, S.; Yang, L.; Qin, M.; Zhang, Y.; Guo, S. Simultaneous determination of eight active compounds in Baitouweng Decotion and its single herbs. J. Chromatogr. Sci. 2019, 57, 502–510. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, Y.; Wang, H.; Tong, M.; Gong, Y. Green and enhanced extraction of coumarins from Cortex Fraxini by ultrasound-assisted deep eutectic solvent extraction. J. Sep. Sci. 2020, 43, 3441–3448. [Google Scholar] [CrossRef]
- Ahmad, I.; Sharma, S.; Gupta, N.; Rashid, Q.; Abid, M.; Ashraf, M.Z.; Jairajpuri, M.A. Antithrombotic potential of esculin 7, 3′, 4′, 5′, 6′-O-pentasulfate (EPS) for its role in thrombus reduction using rat thrombosis model. Int. J. Biol. Macromol. 2018, 119, 360–368. [Google Scholar] [CrossRef]
- Yu, Y.; Chen, J.; Zhang, X.; Wang, Y.; Wang, S.; Zhao, L.; Wang, Y. Identification of anti-inflammatory compounds from Zhongjing formulae by knowledge mining and high-content screening in a zebrafish model of inflammatory bowel diseases. Chin. Med. 2021, 16, 42. [Google Scholar] [CrossRef]
- Song, Y.; Wang, X.; Qin, S.; Zhou, S.; Li, J.; Gao, Y. Esculin ameliorates cognitive impairment in experimental diabetic nephropathy and induces anti-oxidative stress and anti-inflammatory effects via the MAPK pathway. Mol. Med. Rep. 2018, 17, 7395–7402. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Feng, M.; Guan, W. Naturally occurring aesculetin coumarin exerts antiproliferative effects in gastric cancer cells mediated via apoptotic cell death, cell cycle arrest and targeting PI3K/AKT/M-TOR signalling pathway. Acta Biochim. Pol. 2021, 68, 109–113. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.K.; Chen, T.X.; Wang, W.; Xu, L.L.; Zhang, Y.Q.; Jin, Z.; Liu, Y.B.; Tang, Y.Z. Aesculetin exhibited anti-inflammatory activities through inhibiting NF-κB and MAPKs pathway in vitro and in vivo. J. Ethnopharmacol. 2022, 296, 115489. [Google Scholar] [CrossRef]
- Liang, J.; Huang, X.; Ma, G. Antimicrobial activities and mechanisms of extract and components of herbs in East Asia. RSC Adv. 2022, 12, 29197–29213. [Google Scholar] [CrossRef]
- Clifford, M.N.; Wu, W.; Kirkpatrick, J.; Kuhnert, N. Profiling the chlorogenic acids and other caffeic acid derivatives of herbal Chrysanthemum by LC–MSn. J. Agric. Food. Chem. 2007, 55, 929–936. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Shim, W.S.; Yoon, J.; Choi, D.; Song, E.; Choi, Y.J.; Paik, S.H.; Lee, K.T. Method Development and Validation for the Simultaneous Quantitation of Pentoxifylline, Its Pharmacologically Active Metabolites, and Donepezil Using LC–MS/MS in Rat Plasma: Its Application to a Pharmacokinetic Study. Separations 2023, 10, 276. [Google Scholar] [CrossRef]
- Haque, A.; Iqbal, M.; Alamoudi, M.K.; Alam, P. A Selective and Accurate LC–MS/MS Method for Simultaneous Quantification of Valsartan and Hydrochlorothiazide in Human Plasma. Separations 2023, 10, 119. [Google Scholar] [CrossRef]
- Glish, G.L.; Vachet, R.W. The basics of mass spectrometry in the twenty-first century. Nat. Rev. Drug Discov. 2003, 2, 140–150. [Google Scholar] [CrossRef]
- Li, W.; Qian, Z.; Lei, Q.; Lian, Y.; Zou, Y.; Wang, Y.; Lan, D. An ultra-rapid and eco-friendly method for determination of loganic acid and gentiopicroside from Gentianae Macrophyllae Radix by vortex-assisted matrix solid-phase dispersion extraction and LC–MS. J. Pharm. Biomed. Anal. 2023, 222, 115085. [Google Scholar] [CrossRef]
- Li, L.; Huang, M.; Shao, J.; Lin, B.; Shen, Q. Rapid determination of alkaloids in Macleaya cordata using ionic liquid extraction followed by multiple reaction monitoring UPLC–MS/MS analysis. J. Pharm. Biomed. Anal. 2017, 135, 61–66. [Google Scholar] [CrossRef]
- Lin, H.Y.; Lin, T.S.; Wang, C.S.; Chien, H.J.; Juang, Y.M.; Chen, C.J.; Lai, C.C. Rapid determination of bioactive compounds in the different organs of Salvia Miltiorrhiza by UPLC–MS/MS. J. Chromatogr. B 2019, 1104, 81–88. [Google Scholar] [CrossRef]
- Committee of the Chinese Pharmacopoeia. Pharmacopoeia of the People’s Republic of China, 2020th ed.; China Medical Science Press: Beijing, China, 2020; Volume 4, pp. 466–468. [Google Scholar]
- Tanaka, N.; McCalley, D.V. Core–shell, ultrasmall particles, monoliths, and other support materials in high-performance liquid chromatography. Anal. Chem. 2016, 88, 279–298. [Google Scholar] [CrossRef] [PubMed]
- Waterlot, C.; Ghinet, A.; Lipka, E. Core-shell particles: A way to greening liquid chromatography in environmental applications. Curr. Chromatogr. 2018, 5, 78–90. [Google Scholar] [CrossRef]
- Committee of the Chinese Pharmacopoeia. Pharmacopoeia of the People’s Republic of China, 2020th ed.; China Medical Science Press: Beijing, China, 2020; Volume 1, pp. 282–283. [Google Scholar]
- Gałuszka, A.; Migaszewski, Z.M.; Konieczka, P.; Namieśnik, J. Analytical Eco-Scale for assessing the greenness of analytical procedures. Trac-Trends Anal. Chem. 2012, 37, 61–72. [Google Scholar] [CrossRef]
Analytes | Linearity | Limit | ||
---|---|---|---|---|
Calibration Curves | R | Range (µg/mL) | LOQ (µg/mL) | |
Aesculin | Y = 11,928.8 X + 30,325.3 | 0.9929 | 1.01~50.5 | 0.101 |
Aesculetin | Y = 7290.2 X − 3581.4 | 0.9997 | 1.01~50.5 | 1.01 |
Batch | Aesculin (mg/g) | Aesculetin (mg/g) | Total (mg/g) | ||
---|---|---|---|---|---|
S1 | 11.6 | ±0.239 | 1.12 | ±0.0325 | 12.7 |
S2 | 16.8 | ±0.202 | 2.39 | ±0.0427 | 19.2 |
S3 | 16.0 | ±0.407 | 2.67 | ±0.0275 | 18.6 |
S4 | 8.59 | ±0.223 | 16.2 | ±0.0467 | 24.8 |
S5 | 9.14 | ±0.208 | 2.53 | ±0.0680 | 11.7 |
S6 | 18.8 | ±0.0171 | 1.24 | ±0.0233 | 20.0 |
S7 | 8.00 | ±0.0901 | 3.97 | ±0.0446 | 12.0 |
S8 | 5.09 | ±0.0273 | 4.85 | ±0.0253 | 9.95 |
S9 | 3.55 | ±0.0374 | 1.01 | ±0.0119 | 4.56 |
S10 | 17.4 | ±0.501 | 4.33 | ±0.103 | 21.8 |
Average | 11.5 | ±5.45 | 4.03 | ±4.49 | 15.5 |
No | Analysts | Sample Preparation | Sample Detection | Total Time | Average Content (mg/g) | References | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Methods | Solvents | Time | Other Steps | Methods | Mobile Phase | Time | |||||
1 | Aesculin Aesculetin | Ultrasonic ice water bath extraction | 73% methanol; over 10 mL | 75 min | Centrifugation | HPLC-MS/MS | A: methanol; 10.7 mL B: 0.05% acetic acid aqueous solution; 13.3 mL | 24 min | 99 min | 24.6 3.79 | [5] |
2 | Aesculin Aesculetin | Sonication extraction | 80% methanol; 15 mL | 45 min | Filtration | HPLC-DAD-ESI-MS | A: acetonitrile; 9.28 mL B: 0.3% acetic acid aqueous solution; 30.2 mL | 40 min | 85 min | 16.5 7.81 | [6] |
3 | Aesculin Aesculetin | Immersion extraction Ultrasonic extraction | 70% ethanol; Approximately 2340 mL. Methanol; Approximately 10 mL. 0.1% phosphoric acid containing 0.2% triethylamine; Approximately 5 mL. | Over 190 min | Centrifugation. Evaporation. Filtration. | HPLC-UV | A: acetonitrile; 9 mL B: 0.1% phosphoric acid contained 0.2% triethylamine; 31 mL | 50 min | Over 240 min | NC | [7] |
4 | Aesculin Aesculetin | Ultrasonic extraction | 20% betaine/glycerol (1:3); 10mL | 50 min | Centrifugation Filtration | HPLC-UV | A: 0.1% formic acid aqueous solution; 8.75 mL B: methanol; 3.75 mL | 25 min | 75 min | 36.3 1.87 | [8] |
5 | Aesculin Aesculetin | Microwave extraction | Ultrapure water; 10 mL | 2.5 min | Filtration | LC-MS | A: 0.1% formic acid aqueous solution; 0.54 mL B: acetonitrile; 0.06 mL | 1.5 min | 4 min | 11.5 4.03 | This work |
Scoring Items | Penalty Points | ||||
---|---|---|---|---|---|
Method 1 | Method 2 | Method 3 | Method 4 | Proposed Method | |
Reagents | |||||
Acetic acid | 4 | 4 | / | / | / |
Phosphoric acid | / | / | 2 | / | / |
Triethylamine | / | / | 6 | / | / |
Betaine | / | / | / | 1 | / |
Glycerol | / | / | / | 0 | / |
Formic acid | / | / | / | 2 | 2 |
Acetonitrile | / | 4 | 4 | / | 4 |
Methanol | 12 | 12 | 12 | 6 | / |
Ethanol | / | / | 6 | / | / |
Ultrapure water | 0 | 0 | 0 | 0 | 0 |
Instrument energy | |||||
Ultrasonic generator | 2 | 1 | 1 | 1 | / |
Centrifuge | 0 | / | 0 | 1 | / |
Heater | / | / | 2 | / | / |
Microwave oven | / | / | / | / | 0 |
HPLC-MS/MS | 1 | / | / | / | / |
HPLC-DAD-ESI-MS | / | 1 | / | / | / |
HPLC-UV | / | / | 1 | 1 | / |
LC-MS | / | / | / | / | 0 |
Occupational hazard | 3 | 3 | 3 | 0 | 3 |
Waste | 5 | 5 | 5 | 5 | 1 |
Total penalty points | 27 | 30 | 42 | 17 | 10 |
Analytical Eco-Scale total score | 73 | 70 | 58 | 83 | 90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Wang, W.; Lei, Q.; Qian, Z.; Deng, W. An Ultra-Fast and Green LC-MS Method for Quantitative Analysis of Aesculin and Aesculetin in Cortex Fraxini. Separations 2023, 10, 515. https://doi.org/10.3390/separations10090515
Wang X, Wang W, Lei Q, Qian Z, Deng W. An Ultra-Fast and Green LC-MS Method for Quantitative Analysis of Aesculin and Aesculetin in Cortex Fraxini. Separations. 2023; 10(9):515. https://doi.org/10.3390/separations10090515
Chicago/Turabian StyleWang, Xiaodong, Wenhao Wang, Qinggui Lei, Zhengming Qian, and Wenbin Deng. 2023. "An Ultra-Fast and Green LC-MS Method for Quantitative Analysis of Aesculin and Aesculetin in Cortex Fraxini" Separations 10, no. 9: 515. https://doi.org/10.3390/separations10090515
APA StyleWang, X., Wang, W., Lei, Q., Qian, Z., & Deng, W. (2023). An Ultra-Fast and Green LC-MS Method for Quantitative Analysis of Aesculin and Aesculetin in Cortex Fraxini. Separations, 10(9), 515. https://doi.org/10.3390/separations10090515