Useful Extracts from Coffee By-Products: A Brief Review
Abstract
:1. Introduction
2. Chemical Composition of Coffee By-Products
3. Extraction of Phytochemicals from Coffee By-Products
3.1. Phenolic Fraction
3.2. Lipid Fraction
3.3. Biofuels
3.3.1. Biodiesel Production
3.3.2. Bioethanol Production
4. Lignocellulose Fraction
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- United States Department of Agriculture Foreign Agricultural Service. 2023. Available online: https://fas.usda.gov/data/production/commodity/0711100 (accessed on 17 October 2024).
- Yusufoğlu, B.; Kezer, G.; Wang, Y.; Ziora, Z.M.; Esatbeyoglu, T. Bio-recycling of spent coffee grounds: Recent advances and potential applications. Curr. Opin. Food Sci. 2024, 55, 1011111. [Google Scholar] [CrossRef]
- Forcina, A.; Petrillo, A.; Travaglioni, M.; di Chiara, S.; De Felice, F. A comparative life cycle assessment of different spent coffee ground reuse strategies and a sensitivity analysis for verifying the environmental convenience based on the location of sites. J. Clean. Prod. 2023, 385, 135727. [Google Scholar] [CrossRef]
- Barreto Peixo, J.A.; Silva, J.F.; Oliveira, M.B.P.P.; Alves, R.C. Sustainability issues along the coffee chain: From the field to the cup. Compr. Rev. Food Sci. Food Saf. 2023, 22, 287–332. [Google Scholar] [CrossRef] [PubMed]
- Lachenmeier, D.W.; Rajcic de Rezende, T.; Schwarz, S. An Update on Sustainable Valorization of Coffee By-Products as Novel Foods within the European Union. Biol. Life Sci. Forum 2021, 6, 37. [Google Scholar] [CrossRef]
- Machado, M.; Espírito Santo, L.; Machado, S.; Lobo, J.C.; Costa, A.S.G.; Oliveira, M.B.P.P.; Ferreira, H.; Alves, R.C. Bioactive Potential and Chemical Composition of Coffee By-Products: From Pulp to Silverskin. Foods 2023, 12, 354. [Google Scholar] [CrossRef]
- Bomfim, A.S.C.; Oliveira, D.M.; Voorwald, H.J.C.; Benini, K.C.; Dumont, M.J.; Rodrigue, D. Valorization of Spent Coffee Grounds as Precursors for Biopolymers and Composite Production. Polymers 2022, 14, 437. [Google Scholar] [CrossRef]
- Bevilacqua, E.; Cruzat, V.; Singh, I.; Rose’Meyer, R.B.; Panchal, S.K.; Brown, L. The Potential of Spent Coffee Grounds in Functional Food Development. Nutrients 2023, 16, 994. [Google Scholar] [CrossRef]
- Tamilselvan, K.; Sundarajan, S.; Ramakrishna, S.; Amirul, A.A.; Vigneswari, S. Sustainable valorisation of coffee husk into value added product in the context of circular bioeconomy: Exploring potential biomass-based value webs. Food Bioprod. Process. 2020, 145, 187–202. [Google Scholar] [CrossRef]
- Johnson, K.; Liu, Y.; Lu, M. A Review of Recent Advances in Spent Coffee Grounds Upcycle Technologies and Practices. Front. Chem. Eng. 2022, 4, 838605. [Google Scholar] [CrossRef]
- Franca, A.S.; Oliveira, L.S. Potential Uses of Spent Coffee Grounds in the Food Industry. Foods 2022, 11, 2064. [Google Scholar] [CrossRef]
- Andrade, C.; Perestrelo, R.; Câmara, J.S. Bioactive Compounds and Antioxidant Activity from Spent Coffee Grounds as a Powerful Approach for Its Valorization. Molecules 2022, 27, 7504. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, H.; Abolore, R.S.; Jaiswal, S.; Jaiswal, A.K. Toward Circular Economy: Potentials of Spent Coffee Grounds in Bioproducts and Chemical Production. Biomass 2023, 4, 286–312. [Google Scholar] [CrossRef]
- Dey, T.; Bhattacharjee, T.; Ritika, P.N.; Ghati, A.; Kuila, A. Valorization of agro-waste into value added products for sustainable development. Bioresour. Technol. 2021, 16, 100834. [Google Scholar] [CrossRef]
- Nayak, A.; Bhushan, B. An overview of the recent trends on the waste valorization techniques for food wastes. J. Environ. Manag. 2024, 233, 352–370. [Google Scholar] [CrossRef]
- Bobková, A.; Poláková, K.; Demianová, A.; Belej, L.; Bobko, M.; Jurčaga, L.; Gálik, B.; Novotná, I.; Iriondo-DeHond, A.; del Castillo, M.D. Comparative Analysis of Selected Chemical Parameters of Coffea arabica, from Cascara to Silverskin. Foods 2022, 11, 1082. [Google Scholar] [CrossRef]
- Oliveira, G.; Passos, C.P.; Ferreira, P.; Coimbra, M.A.; Gonçalves, I. Coffee By-Products and Their Suitability for Developing Active Food Packaging Materials. Foods 2021, 10, 683. [Google Scholar] [CrossRef]
- Garcia, C.V.; Kim, Y.T. Spent Coffee Grounds and Coffee Silverskin as Potential Materials for Packaging: A Review. J. Polym. Environ. 2021, 29, 2372–2384. [Google Scholar] [CrossRef]
- Iriondo-DeHond, A.; Martorell, P.; Genovés, S.; Ramón, D.; Stamatakis, K.; Fresno, M.; Molina, A.; Del Castillo, M.D. Coffee Silverskin Extract Protects against Accelerated Aging Caused by Oxidative Agents. Molecules 2016, 21, 721. [Google Scholar] [CrossRef]
- Hoseini, M.; Cocco, S.; Casucci, C.; Cardelli, V.; Corti, G. Coffee by-products derived resources. A review. Biomass Bioenergy 2021, 148, 106009. [Google Scholar] [CrossRef]
- Klingel, T.; Kremer, J.I.; Gottstein, V.; Rajcic de Rezende, T.; Schwarz, S.; Lachenmeier, D.W. A Review of Coffee By-Products Including Leaf, Flower, Cherry, Husk, Silver Skin, and Spent Grounds as Novel Foods within the European Union. Foods 2020, 9, 2020665. [Google Scholar] [CrossRef]
- Kargarghomsheh, P.; Tooryan, F.; Sharifiarab, G.; Moazzen, M.; Shariatifar, N.; Arabameri, M. Evaluation of Trace Elements in Coffee and Mixed Coffee Samples Using ICP-OES Method. Biol Trace Elem Res. 2024, 202, 2338–2346. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority (EFSA). Scientific Opinion on the safety of dried coffee husk (cascara) from Coffea arabica L. as a Novel food pursuant to Regulation (EU) 2015/2283. EFSA J. 2022, 20, 7085. [Google Scholar]
- Sugebo, B. A review on enhanced biofuel production from coffee by-products using different enhancement techniques. Mater. Renew. Sustain. Energy 2022, 11, 91–103. [Google Scholar] [CrossRef]
- Singh, T.A.; Pal, N.; Sharma, P.; Passari, A.K. Spent coffee ground: Transformation from environmental burden into valuable bioactive metabolites. Rev. Environ. Sci. Biotechnol. 2023, 22, 887–898. [Google Scholar] [CrossRef]
- Bhosale, G.D.; Shobana, S.; Rajesh Banu, J.; Pugazhendhi, A.; Mahmoud, E.; Sirohi, R.; Bhatia, S.K.; Atabani, A.E.; Mulone, V.; Yoon, J.J.; et al. A review on valorization of spent coffee grounds (SCG) towards biopolymers and biocatalysts production. Bioresour. Technol. 2020, 314, 123800. [Google Scholar]
- Kanlayavattanakul, M.; Lourith, N.; Chaikul, P. Valorization of spent coffee grounds as the speciality material for dullness and ageing of skin treatments. Chem. Biol. Technol. Agric. 2021, 8, 55. [Google Scholar] [CrossRef]
- Martuscelli, M.; Esposito, L.; Di Mattia, C.D.; Ricci, A.; Mastrocola, D. Characterization of Coffee Silver Skin as Potential Food-Safe Ingredient. Foods 2021, 10, 1367. [Google Scholar] [CrossRef]
- Solomakou, N.; Tsafrakidou, P.; Goula, A.M. Valorization of SCG through Extraction of Phenolic Compounds and Synthesis of New Biosorbent. Sustainability 2022, 14, 9358. [Google Scholar] [CrossRef]
- Cavanagh, Q.; Su-Ling Brooks, M.; Rupasinghe, H.P.V. Innovative technologies used to convert spent coffee grounds into new food ingredients: Opportunities, challenges, and prospects. Future Foods 2023, 8, 100255. [Google Scholar] [CrossRef]
- Hu, S.; Gil-Ramírez, A.; Martín-Trueba, M.; Benítez, V.; Aguilera, Y.; Martín-Cabrejas, M.A. Valorization of coffee pulp as a bioactive food ingredient by sustainable extraction methodologies. Curr. Res. Food Sci. 2023, 6, 100475. [Google Scholar] [CrossRef]
- Gigliobianco, M.R.; Campisi, B.; Peregrina, D.V.; Censi, R.; Khamitova, G.; Angeloni, S.; Caprioli, G.; Zannotti, M.; Ferraro, S.; Giovannetti, R.; et al. Optimization of the Extraction from Spent Coffee Grounds Using the Desirability Approach. Antioxidants 2020, 29, 370. [Google Scholar] [CrossRef] [PubMed]
- Van Nguyen, D.; Duong, C.T.T.; Minh Vu, C.N.; Nguyen, H.M.; Pham, T.T.; Tran-Thuy, T.M.; Nguyen, L.Q. Data on chemical composition of coffee husks and lignin microparticles as their extracted product. Data Brief 2023, 51, 109781. [Google Scholar] [CrossRef] [PubMed]
- Cangussu, L.B.; Franca, A.S.; Oliveira, L.S. Chemical Characterization of Coffee Husks, a By-Product of Coffea arabica Production. Foods 2021, 16, 3125. [Google Scholar] [CrossRef] [PubMed]
- Rebollo-Hernanz, M.; Canas, S.; Taladrid, D.; Benitez, V.; Bartolome, B.; Aguilera, Y.; Martin-Cabrejas, M.A. Revalorization of coffee husk: Modeling and optimizing the green sustainable extraction of phenolic compounds. Foods 2021, 10, 653. [Google Scholar] [CrossRef]
- Frómeta, R.A.R.; Sánchez, J.L.; Ros García, J.M. Evaluation of coffee pulp as substrate for polygalacturonase production in solid state fermentation. Emir. J. Food Agric. 2020, 32, 117–124. [Google Scholar] [CrossRef]
- Rohaya, S.; Anwar, S.H.; Amhar, A.B.; Sutriana, A.; Muzaifa, M. Antioxidant activity and physicochemical composition of coffee pulp obtained from three coffee varieties in Aceh, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2023, 1182, 012063. [Google Scholar] [CrossRef]
- Avallone, S.; Guiraud, J.P.; Guyot, B.; Olguin, E.; Brillouet, J.M. Polysaccharide Constituents of Coffee Bean Mucilage. J. Food Sci. 2000, 65, 1308–1311. [Google Scholar] [CrossRef]
- Sierra-López, L.D.; Hernandez-Tenorio, F.; Marín-Palacio, L.D.; Giraldo-Estrada, C. Coffee mucilage clarification: A promising raw material for the food industry. Food Humanit. 2023, 1, 689–695. [Google Scholar] [CrossRef]
- KC, Y.; Subba, R.; Shiwakoti, L.D.; Dhungana, P.K.; Bajagain, R.; Chaudhary, D.K.; Pant, B.R.; Bajgai, T.R.; Lamichhane, J.; Timilsina, S.; et al. Utilizing Coffee Pulp and Mucilage for Producing Alcohol-Based Beverage. Fermentation 2021, 7, 53. [Google Scholar] [CrossRef]
- Campuzano, F.; Escobar, D.M.; Torres, A.M. Physicochemical characterization of coffee parchment of species Coffee arabica variety Castillo®. Coffee Sci. 2024, 19, e192182. [Google Scholar] [CrossRef]
- Aguilera, Y.; Rebollo-Hernanz, M.; Cañas, S.; Taladrid, D.; Martín-Cabrejas, M.A. Response surface methodology to optimise the heat-assisted aqueous extraction of phenolic compounds from coffee parchment and their comprehensive analysis. Food Funct. 2019, 10, 4739–4750. [Google Scholar] [CrossRef] [PubMed]
- Mirón-Mérida, V.A.; Yáñez-Fernández, J.; Montañez-Barragán, B.; Barragán Huerta, B.E. Valorization of coffee parchment waste (Coffea arabica) as a source of caffeine and phenolic compounds in antifungal gellan gum films. LWT 2019, 101, 167–174. [Google Scholar] [CrossRef]
- Benitez, V.; Rebollo-Hernanz, M.; Hernanz, S.; Chantres, S.; Aguilera, Y.; Martin-Cabrejas, M.A. Coffee parchment as a new dietary fiber ingredient: Functional and physiological characterization. Food Res. Int. 2019, 122, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Benítez, V.; Rebollo-Hernanz, M.; Aguilera, Y.; Bejerano, S.; Cañas, S.; Martín-Cabrejas, M.A. Extruded coffee parchment shows enhanced antioxidant, hypoglycaemic, and hypolipidemic properties by releasing phenolic compounds from the fibre matrix. Food Funct. 2021, 12, 1097–1110. [Google Scholar] [CrossRef]
- Hejna, A. Coffee Silverskin as a Potential Bio-Based Antioxidant for Polymer Materials: Briew Review. Proceedings 2020, 69, 20. [Google Scholar]
- Nolasco, A.; Squillante, J.; Velotto, S.; D’Auria, G.; Ferranti, P.; Mamone, G.; Errico, M.E.; Avolio, R.; Castaldo, R.; Cirillo, T.; et al. Valorization of coffee industry wastes: Comprehensive physicochemical characterization of coffee silverskin and multipurpose recycling applications. J. Clean. Prod. 2022, 370, 133520. [Google Scholar] [CrossRef]
- Gottstein, V.; Bernhardt, M.; Dilger, E.; Keller, J.; Breitling-Utzmann, C.M.; Schwarz, S.; Kuballa, T.; Lachenmeier, D.W.; Bunzel, M. Coffee Silver Skin: Chemical Characterization with Special Consideration of Dietary Fiber and Heat-Induced Contaminants. Foods 2021, 10, 1705. [Google Scholar] [CrossRef]
- Bessada, S.M.F.; Alves, R.C.; Costa, A.S.G.; Nunes, M.A.; Oliveira, M.B.P.P. Coffea canephora silverskin from different geographical origins: A comparative study. Sci. Total Environ. 2018, 15, 1021–1028. [Google Scholar] [CrossRef]
- Vu, D.C.; Vu, Q.T.; Huynh, L.; Lin, C.H.; Alvarez, S.; Vo, X.T.; Nguyen, T.H.D. Evaluation of fatty acids, phenolics and bioactivities of spent coffee grounds prepared from Vietnamese coffee. Int. J. Food Prop. 2021, 24, 1548–1558. [Google Scholar] [CrossRef]
- Okur, I.; Soyler, B.; Sezer, P.; Oztop, M.H.; Alpas, H. Improving the Recovery of Phenolic Compounds from Spent Coffee Grounds (SCG) by Environmentally Friendly Extraction Techniques. Molecules 2021, 26, 613. [Google Scholar] [CrossRef]
- Konstantinidis, N.; Franke, H.; Schwarz, S.; Lachenmeier, D.W. Risk Assessment of Trigonelline in Coffee and Coffee By-Products. Molecules 2023, 28, 3460. [Google Scholar] [CrossRef] [PubMed]
- Angeloni, S.; Nzekoue, K.K.; Navarini, L.; Sagratini, G.; Torregiani, E.; Vittori, S.; Caprioli, G. An analytical method for the simultaneous quantification of 30 bioactive compounds in spent coffee ground by HPLC-MS/MS. J. Mass Spectrom. 2020, 55, e4519. [Google Scholar] [CrossRef] [PubMed]
- da Costa, D.S.; Albuquerque, T.G.; Costa, H.S.; Bragotto, A.P.A. Thermal Contaminants in Coffee Induced by Roasting: A Review. Int. J. Environ. Res. Public Health 2023, 20, 5586. [Google Scholar] [CrossRef] [PubMed]
- Iriondo-DeHond, A.; Rodríguez Casas, A.; del Castillo, M.D. Interest of Coffee Melanoidins as Sustainable Healthier Food Ingredients. Front. Nutr. 2021, 8, 730343. [Google Scholar] [CrossRef]
- Alves, G.; Xavier, P.; Limoeiro, R.; Perrone, D. Contribution of melanoidins from heat-processed foods. to the phenolic compound intake and antioxidant capacity of the Brazilian diet. J. Food Sci. Technol. 2020, 57, 3119–3131. [Google Scholar] [CrossRef]
- Casas-Junco, P.; Ragazzo-Sánchez, J.A.; Ascencio-Valle, F.J.; Calderón-Santoyo, M. Determination of potentially mycotoxigenic fungi in coffee (Coffea arabica L.) from Nayarit. Food Sci. Biotechnol. 2017, 27, 891–898. [Google Scholar] [CrossRef]
- Yazdanfar, N.; Mahmudiono, T.; Fakhri, Y.; Hossein Mahvi, A.; Sadighara, P.; Mohammadi, A.A.; Yousefi, M. Concentration of ochratoxin A in coffee products and probabilistic health risk assessment. Arab. J. Chem. 2022, 15, 104376. [Google Scholar] [CrossRef]
- Bitwell, C.; Indra, S.S.; Luke, C.; Maseka, K.; Kakoma, K. A review of modern and conventional extraction techniques and their applications for extracting phytochemicals from plants. Sci. Afr. 2023, 19, e01583. [Google Scholar] [CrossRef]
- Sentkowska, A.; Ivanova-Petropulos, V.; Pyrzynska, K. What Can Be Done to Get More—Extraction of Phenolic Compounds from Plant Materials. Food Anal. Meth. 2024, 17, 594–610. [Google Scholar] [CrossRef]
- Su Kim, Y.; Woo, D.G.; Kim, T.H. Characteristics of direct transesterification using ultrasound on oil extracted from spent coffee grounds. Environ. Eng. Res. 2020, 25, 470–478. [Google Scholar] [CrossRef]
- Solomakou, N.; Loukri, A.; Tsafrakidou, P.; Michaelidou, A.M.; Mourtzinos, I.; Goula, A.M. Recovery of phenolic compounds from spent coffee grounds through optimized extraction processes. Sustain. Chem. Pharm. 2022, 25, 100592. [Google Scholar] [CrossRef]
- Osorio-Arias, J.; Delago-Arias, S.; Cano, L.; Zapata, S.; Quintero, M.; Nuñez, H.; Ramirez, C.; Simpson, R.; Vega-Castro, O. Sustainable Management and Valorization of Spent Coffee Grounds Through the Optimization of Thin Layer Hot Air-Drying desirability Process. Waste Biomass Valor. 2020, 11, 5015–5026. [Google Scholar] [CrossRef]
- Mastellone, G.; Marengo, A.; Sgorbini, B.; Rubiolo, P.; Cagliero, C. New phases for analytical scale extraction from plants: Current and future trends. TrAC Trends Anal. Chem. 2021, 141, 116288. [Google Scholar] [CrossRef]
- Nakilcioğlu-Taş, E.; Ötleş, S. Influence of extraction solvents on the polyphenol contents, compositions, and antioxidant capacities of fig (Ficus carica L.) seeds. An. Acad. Bras. Ciênc. 2020, 93, e20190526. [Google Scholar] [CrossRef] [PubMed]
- Lawag, L.L.; Nolden, E.S.; Schaper, A.A.M.; Lim, L.Y. Modified Folin-Ciocalteu assay for the determination of total phenolics content in honey. Appl. Sci. 2023, 13, 2135. [Google Scholar] [CrossRef]
- Pérez, M.; Dominguez-López, I.; Lamuela-Raventós, R.M. The Chemistry Behind the Folin–Ciocalteu Method for the Estimation of (Poly)phenol Content in Food: Total Phenolic Intake in a Mediterranean Dietary Pattern. J. Agric. Food Chem. 2023, 71, 17543–17553. [Google Scholar] [CrossRef]
- Munteanu, I.G.; Apetrei, C. Analytical Methods Used in Determining Antioxidant Activity: A Review. Inter. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef]
- Kıran, T.R.; Otlu, O.; Karabulut, A.B. Oxidative stress and antioxidants in health and disease. J. Lab. Med. 2023, 47, 1–11. [Google Scholar] [CrossRef]
- Reddy, V.P. Oxidative Stress in Health and Disease. Biomedicines 2023, 11, 2925. [Google Scholar] [CrossRef]
- Shi, L.; Zhao, W.; Yang, Z.; Subbiah, V.; Suleria, H.A.R. Extraction and characterization of phenolic compounds and their potential antioxidant activities. Environ. Sci. Pollut. Res. 2022, 29, 81112–81129. [Google Scholar] [CrossRef]
- Zengin, G.; Sinan, K.I.; Mahomoodally, M.F.; Angeloni, S.; Mustafa, A.M.; Vittori, S.; Maggi, F.; Caprioli, G. Chemical Composition, Antioxidant and Enzyme Inhibitory Properties of Different Extracts Obtained from Spent Coffee Ground and Coffee Silverskin. Foods 2020, 9, 713. [Google Scholar] [CrossRef] [PubMed]
- da Silva, A.; Cimercati, C.; Costa, W.; Levate, M.L.; Pimenta, C.J. Effect of solvent, method, time and temperature of extraction on the recovery of phenolic compounds and antioxidants from spent coffee grounds. Int. J. Food Eng. 2022, 18, 325–336. [Google Scholar] [CrossRef]
- Šilarová, P.; Boulekbache-Makhlouf, L.; Pellati, F.; Česlová, L. Monitoring of Chlorogenic Acid and Antioxidant Capacity of Solanum melongena L. (Eggplant) under Different Heat and Storage Treatments. Antioxidants 2019, 20, 234. [Google Scholar] [CrossRef] [PubMed]
- Delgado, S.R.; Alzate Arbelaez, A.F.; Rojano, B. Antioxidant capacity, bioactive compounds in coffee pulp and implementation in the production of infusions. Acta Sci. Pol. Technol. Aliment. 2019, 18, 235–248. [Google Scholar]
- Serna-Jiménez, J.A.; Torres-Valenzuela, L.S.; Sanín Villarreal, A.; Roldan, C.; Martín, M.A.; Siles, J.A.; Chica, A.F. Advanced extraction of caffeine and polyphenols from coffee pulp: Comparison of conventional and ultrasound-assisted methods. LWT 2023, 177, 114571. [Google Scholar] [CrossRef]
- Silva, M.d.O.; Honfoga, J.N.B.; Medeiros, L.L.; Madruga, M.S.; Bezerra, T.K.A. Obtaining Bioactive Compounds from the Coffee Husk (Coffea arabica L.) Using Different Extraction Methods. Molecules 2021, 26, 46. [Google Scholar] [CrossRef]
- Myo, H.; Khatudomkir, N. Optimization of ultrasound-assisted extraction of bioactive compounds from coffee pulp using propylene glycol as a solvent and their antioxidant activities. Ultrason. Sonochem. 2022, 89, 106127. [Google Scholar] [CrossRef]
- Yoo, D.E.; Jeong, K.M.; Han, S.Y.; Kim, E.M.; Jin, Y.; Lee, J. Deep eutectic solvent-based valorization of spent coffee grounds. Food Chem. 2018, 255, 357–364. [Google Scholar] [CrossRef]
- Taweekayujan, S.; Somngam, S.; Pinnara, T. Optimization and kinetics modelling of phenolics extraction from coffee silverskin in deep eutectic solvent using ultrasound-assisted extraction. Heliyon 2023, 9, e17942. [Google Scholar] [CrossRef]
- Ijardar, S.P.; Singh, V.; Gardas, R.L. Revisiting the physicochemical properties and applications of deep eutectic solvents. Molecules 2022, 27, 1368. [Google Scholar] [CrossRef]
- Ruesgas-Ramón, M.; Suarez-Quiroz, M.L.; González-Rios, O.; Baréa, B.; Cazals, G.; Figueroa-Espinoza, M.C.; Durand, E. Biomolecles extraction from coffee and cacao by-products using deep eutectic solvents. J. Sci. Food Agric. 2020, 100, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Coelho, P.; Robalo, M.P.; Boyadzhieva, S.; Stateva, R.P. Microwave-Assisted Extraction of Phenolic Compounds from Spent Coffee Grounds. Process Optimization Applying Design of Experiments. Molecules 2021, 26, 7320. [Google Scholar] [CrossRef] [PubMed]
- Pettinato, M.; Alberto, A.; Perego, P. The role of heating step in microwave-assisted extraction of polyphenols from spent coffee grounds. Food Bioprod. Process. 2019, 114, 227–234. [Google Scholar] [CrossRef]
- Tyśkiewicz, K.; Konkol, M.; Rój, E. The Application of Supercritical Fluid Extraction in Phenolic Compounds Isolation from Natural Plant Materials. Molecules 2018, 23, 2625. [Google Scholar] [CrossRef]
- Coelho, J.P.; Filipe, R.M.; Robalo, M.P.; Boyadzhieva, S.; Cholakov, G.S.; State, R.P. Supercritical CO2 extraction of spent coffee grounds. Influence of co-solvents and characterization of the extracts. J. Supercrit. Fluids 2020, 161, 104825. [Google Scholar] [CrossRef]
- Vandeponseele, A.; Draye, M.; Piot, C.; Chatel, G. Subcritical water and supercritical carbon dioxide: Efficient and selective eco-compatible solvents for coffee and coffee by-product valorization. Green Chem. 2020, 22, 8544–8571. [Google Scholar] [CrossRef]
- Andrade, K.S.; Gonçalvez, R.T.; Maraschin, M.; Ribeiro-do-Valle, R.M.; Martínez, J.; Ferreira, S.R.S. Supercritical fluid extraction from spent coffee grounds and coffee husks: Antioxidant activity and effect of operational variables on extract composition. Talanta 2021, 88, 544–552. [Google Scholar] [CrossRef]
- Wang, Z.; Li, S.; Ge, S.; Lin, S. Review of Distribution, Extraction Methods, and Health Benefits of Bond Phenolics in Food Plants. J. Agric. Food Chem. 2020, 68, 3330–3343. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, Y.; Li, H.; Deng, Z.; Tsao, R. A review on insoluble-bound phenolics in plant-based food matrix and their contribution to human health with future perspectives. Trends Food Sci. Technol. 2020, 105, 347–362. [Google Scholar] [CrossRef]
- Monente, C.; Ludwig, I.A.; Irigoyen, A.; De Peña, M.P.; Cid, C. Assessment of Total (Free and Bound) Phenolic Compounds in Spent Coffee Extracts. J. Agric. Food Chem. 2015, 63, 4327–4334. [Google Scholar] [CrossRef]
- Çelik, E.E.; Gökmen, V. Interactions between free and bound antioxidants under different conditions in food systems. Crit. Rev. Food Sci. Nutr. 2022, 62, 5766–5782. [Google Scholar] [CrossRef] [PubMed]
- Bouhzam, I.; Cantero, R.; Margallo, M.; Aldaco, R.; Bala, A.; Fullana-i-Palmer, P.; Puig, R. Extraction of Bioactive Compounds from Spent Coffee Grounds Using Ethanol and Acetone Aqueous Solutions. Foods 2023, 12, 4400. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.T.; Agrawal, D.C.; Huang, W.Y.; Hsu, H.C.; Yang, S.J.; Huang, S.L.; Lin, Y.S. Functionality Analysis of Spent Coffee Ground Extracts Obtained by the Hydrothermal Method. J. Chem. 2019, 2019, 4671438. [Google Scholar] [CrossRef]
- Wong, J.C.J.; Nillian, E. Microwave-assisted extraction of bioactive compounds from Sarawak Liberica sp. coffee pulp: Statistical optimization and comparison with conventional methods. Food Sci. Nutr. 2023, 11, 5364–5378. [Google Scholar] [CrossRef]
- Sumedha Reddy, V.; Shiva, S.; Manikantan, S.; Ramakrishna, S. Pharmacology of caffeine and its effects on the human body. Eur. J. Med. Chem. 2024, 10, 100138. [Google Scholar]
- Ősz, B.E.; Jîtcă, G.; Ștefănescu, R.E.; Pușcaș, A.A.; Tero-Vescan, A.; Vari, C.E. Caffeine and Its Antioxidant Properties—It Is All about Dose and Source. Int. J. Mol. Sci. 2022, 28, 13074. [Google Scholar] [CrossRef]
- Singh Watts, K.; Pal, K.; Asthana, N.; Bhattu, M.; Verma, M. Green synthesis by extraction of caffeine for cosmeceutical application: A review. J. Mol. Struct. 2024, 1305, 137733. [Google Scholar] [CrossRef]
- Bouhzam, I.; Cantero, R.; Balcells, M.; Margallo, M.; Aldaco, R.; Bala, A.; Fullana-i-Palmer, P.; Puig, R. Environmental and Yield Comparison of Quick Extraction Methods for Caffeine and Chlorogenic Acid from Spent Coffee Grounds. Foods 2023, 12, 779. [Google Scholar] [CrossRef]
- Rodrigues da Silva, M.; Sanchez Bragagnolo, F.S.; Carneiro, R.L.; de Oliveira Carvalho, P.L.; Aquino Ribeiro, J.A.; Martins Rodrigues, C.; Jelley, R.E.; Fedrizzi, B.; Soleo Funari, C. Metabolite characterization of fifteen by-products of the coffee production chain: From farm to factory. Food Chem. 2022, 369, 30753. [Google Scholar] [CrossRef]
- Walia, V.; Kumar Chaudhary, S.; Kumar Sethiya, N. Therapeutic potential of mangiferin in the treatment of various neuropsychiatric and neurodegenerative disorders. Neurochem. Int. 2021, 143, 104939. [Google Scholar] [CrossRef]
- Dutta, T.; Das, T.; Gopalakrishnan, A.V.; Saha, S.C.; Ghorai, M.; Nandy, S.; Kumar, M.; Radha, M.; Ghosh, A.; Mukherjee, N.; et al. Mangiferin: The miraculous xanthone with diverse pharmacological properties. Naunyn Schmiedebergs Arch Pharmacol. 2023, 396, 851–863. [Google Scholar] [CrossRef] [PubMed]
- Saeed, M.; Naveed, M.; BiBi, J.; Ali Kamboh, A.; Phil, L.; Chao, S. Potential nutraceutical and food additive properties and risks of coffee: A comprehensive overview. Crit. Rev. Food Sci. Nutr. 2019, 59, 3293–3319. [Google Scholar] [CrossRef] [PubMed]
- Bondam, A.F.; Silveira, D.D.; Pozzada dos Santos, J.; Hoffmann, F.F. Phenolic compounds from coffee by-products: Extraction and application in the food and pharmaceutical industries. Trends Food Sci. Technol. 2022, 123, 172–186. [Google Scholar] [CrossRef]
- Gemechu, F.C. Embracing nutritional qualities, biological activities and technological properties of coffee byproducts in functional food formulation. Trends Food Sci. Technol. 2020, 104, 235–261. [Google Scholar] [CrossRef]
- Lestari, W.; Hasballah, K.; Listiawan, M.Y.; Sofia, S. Coffee by-products as the source of antioxidants: A systematic review. F1000Research 2022, 11, 220. [Google Scholar] [CrossRef]
- Bessada, S.M.F.; Alves, R.C.; Oliveira, M.B.P.P. Coffee Silverskin: A Review on Potential Cosmetic Applications. Cosmetics 2018, 5, 5. [Google Scholar] [CrossRef]
- Rodrigues, R.; Oliveira, M.B.P.P.; Alves, R.C. Chlorogenic Acids and Caffeine from Coffee By-Products: A Review on Skincare Applications. Cosmetics 2023, 10, 12. [Google Scholar] [CrossRef]
- Erskine, E.; Subaş, B.G.; Vahapoglu, B.; Capanoglu, E. Coffee Phenolics and Their Interaction with Other Food Phenolics: Antagonistic and Synergistic Effects. ASC Omega 2022, 7, 1595–1601. [Google Scholar] [CrossRef]
- Acosta-Otálvaro, E.; Domínguez-Perles, R.; Mazo-Rivas, J.C.; García-Viguera, G. Bioavailability and radical scavenging power of phenolic compounds of cocoa and coffee mixtures. Food Sci. Technol. Int. 2022, 28, 514–523. [Google Scholar] [CrossRef]
- Goh, B.H.H.; Ong, H.C.; Chong, C.T.; Chen, C.T.; Leong, W.H.; Tan, K.Y.; Lee, X.J. Ultrasonic Assisted Oil Extraction and Biodiesel Synthesis of Spent Coffee Ground. Fuel 2020, 261, 116121. [Google Scholar] [CrossRef]
- Leow, Y.; Yew, P.Y.M.; Chee, P.L.; Loh, X.J.; Kai, D. Recycling of spent coffee grounds for useful extracts and green composites. RSC Adv. 2021, 11, 2682. [Google Scholar] [CrossRef] [PubMed]
- Philipp-Dormston, W.G. Melasma: A Step-by-Step Approach Towards a Multimodal Combination Therapy. Clin. Cosmet. Investig. Dermatol. 2024, 22, 1203–1216. [Google Scholar] [CrossRef] [PubMed]
- Efthyminopoulos, I.; Hellier, P.; Ladommatos, N.; Kay, A.; Mills-Lamptey, B. Effect of Solvent Parameters on the Recovery of Oil From Spent Coffee Grounds for Biofuel Production. Waste Biomass Valor. 2019, 10, 253–264. [Google Scholar] [CrossRef] [PubMed]
- Cubas, A.L.V.; Machado, M.; Bianchet, R.T.; da Costa Hermann, K.A.; Borka, J.A.; Debacher, N.A.; Linsa, E.F.; Maraschind, M.; Sousa Coelho, D.; Siegel, E.H.; et al. Oil Extraction from Spent Coffee Grounds Assisted by Non-thermal Plasma. Sep. Purif. Technol. 2020, 250, 117171. [Google Scholar] [CrossRef]
- Erdawati; Dianhar, H.; Khairunnisa, H. Effect of Pretreatment Spent Coffee Ground with Natural Deep Eutectic Solvent (NADES) on Coffee Oil Yield. J. Phys. Conf. Ser. 2020, 2309, 01200. [Google Scholar]
- Toda, T.A.; Santana, A.J.M.; Ferreira, J.A.; Pallone, E.M.; Aguiar, C.I.; Rodrigues, C.F. Evaluation of Techniques for Intensifying the Process of the Alcoholic Extraction of Coffee Ground Oil Using Ultrasound and a Pressurized Solvent. Foods 2022, 11, 584. [Google Scholar] [CrossRef]
- Chemat, A.; Ravi, H.K.; Hostequin, A.C.; Burney, H.; Tomao, V.; Fabiano-Tixier, A.S. Valorization of spent coffee grounds by 2-methyloxolane as bio-based solvent extraction. Viable pathway towards bioeconomy for lipids and biomaterials. OCL-Oilseeds Fats Crops Lipids 2022, 29, 7. [Google Scholar] [CrossRef]
- Araújo, M.N.; Azevedo, A.Q.P. Hamerski, F.; Pedersen Voll, F.A.; Corazza, M.L. Enhanced extraction of spent coffee grounds oil using high-pressure CO2 plus ethanol solvents. Ind. Crops Prod. 2019, 141, 111723. [Google Scholar] [CrossRef]
- Muangrat, R.; Pongsirikul, I. Recovery of spent coffee grounds oil using supercritical CO2: Extraction optimization and physicochemical properties of oil. CYTA—J. Food 2019, 17, 334–346. [Google Scholar] [CrossRef]
- Nasti, R.; Galeazzi, A.; Marzorati, S.; Zaccheria, F.; Ravasia, N.; Bozzano, G.L.; Manenti, F.; Verotta, L. Valorisation of Coffee Roasting By-Products: Recovery of Silverskin Fat By Supercritical CO2 Extraction. Waste Biomass Valorization 2021, 12, 6021–6033. [Google Scholar] [CrossRef]
- Romano, R.; De Luca, L.; Basile, G.; Nitride, C.; Pizzolongo, F.; Masi, P. The Use of Carbon Dioxide as a Green Approach to Recover Bioactive Compounds from Spent Coffee Grounds. Foods 2023, 12, 1958. [Google Scholar] [CrossRef] [PubMed]
- Muharam, Y.; Ramadhany, M.A. Simulation of supercritical carbon dioxide extraction of lipid from spent coffee grounds. AIP Conf. Proc. 2021, 2376, 020010. [Google Scholar]
- Vandeponseele, A.; Draye, M.; Piot, C.; Bernard, D.; Fanget, P.; Chatel, G. Supercritical Carbon Dioxide in Presence of Water for the Valorization of Spent Coffee Grounds: Optimization by Response Surface Methodology and Investigation of Caffeine Extraction Mechanism. Foods 2022, 11, 4089. [Google Scholar] [CrossRef] [PubMed]
- Bitencourt, R.G.; Mello, M.P.A.; Cabral, F.A.; Meirelles, A.J.A. High-pressure fractionation of spent coffee grounds oil using green solvents. J. Supercrit. Fluids 2019, 157, 104689. [Google Scholar] [CrossRef]
- Go, A.W.; Pham, Y.N.T.; Ju, Y.H.; Agapay, R.C.; Angkawijaya, A.E.; Quijote, K.L. Extraction of lipids from post-hydrolysis spent coffee grounds for biodiesel production with hexane as solvent: Kinetic and equilibrium data. Biomass Bioenergy 2020, 140, 105704. [Google Scholar] [CrossRef]
- Banafi, A.; Wee, S.K.; Tze Tiong, A.N.; Kong, Z.Y.; Saptoro, A.; Sunarso, J. Modeling of supercritical fluid extraction bed: A critical review. Chem. Eng. Res. Des. 2023, 193, 685–712. [Google Scholar] [CrossRef]
- Hibbert, S.; Welham, K.; Zein, S.H. An innovative method of extraction of coffee oil using an advanced microwave system: In comparison with conventional Soxhlet extraction method. SN Appl. Sci. 2019, 1, 1467. [Google Scholar] [CrossRef]
- Araújo, M.N.; dos Santos, K.C.; do Carmo Diniz, N.; de Carvalho, J.C.; Corazza, M.L. A biorefinery approach for spent coffee grounds valorization using pressurized fluid extraction to produce oil and bioproducts: A systematic review. Bioresour. Technol. Rep. 2022, 18, 10101. [Google Scholar] [CrossRef]
- Banu, J.R.; Kavitha, S.; Kannah, R.Y.; Kumar, M.D.; Atabani, A.E.; Kumar, G. Biorefinery of spent coffee grounds waste: Viable pathway towards circular bioeconomy. Bioresour. Technol. 2020, 302, 122821. [Google Scholar]
- Gil-Gómez, J.A.; Florez-Pardo, L.M.; Leguizamón-Vargas, Y.C. Valorization of coffee by-products in the industry, a vision towards circular economy. Discov. Appl. Sci. 2024, 6, 480134. [Google Scholar] [CrossRef]
- Martins Strieder, M.; Velásquez Piñas, J.A.; Castro Ampese, L.; Martins Costa, J.; Forster Carneiro, T.; Rostagno, M.A. Coffee biorefinery: The main trends associated with recovering valuable compounds from solid coffee residues. J. Clean. Prod. 2023, 415, 137716. [Google Scholar] [CrossRef]
- Atabani, A.E.; Mahmoud, E.; Aslam, M.; Naqvi, S.R.; Juchelková, D.; Bhatia, S.K.; Badruddin, I.A.; Khan, T.M.Y.; Hoang, A.T.; Palacky, P. Emerging potential of spent coffee ground valorization for fuel pellet production in a biorefinery. Environ. Dev. Sustain. 2023, 25, 7585–7623. [Google Scholar] [CrossRef] [PubMed]
- Cervera-Mata, A.; Navarro-Alarcón, M.; Rufián-Henares, J.A.; Pastoriza, S.; Montilla-Gómez, J.; Delgado, G. Phytotoxicity and chelating capacity of spent coffee grounds: Two contrasting faces in its use as soil organic amendment. Sci. Total Environ. 2020, 717, 137247. [Google Scholar] [CrossRef] [PubMed]
- Tun, M.M.; Raclavská, H.; Juchelková, D.; Růžičková, J.; Šafář, M.; Štrbová, K.; Gikas, P. Spent coffee ground as renewable energy source: Evaluation of the drying processes. J. Environ. Manag. 2020, 275, 111204. [Google Scholar] [CrossRef] [PubMed]
- Chanakaewsomboon, I.; Moollakorn, A. Soap formation in biodiesel production: Effect of water content on saponification reaction. Int. J. Chem. Environ. Sci. 2021, 2, 28–36. [Google Scholar] [CrossRef]
- Kafková, V.; Kubinec, R.; Mikulec, J.; Ondrejíčková, M.P.; Brisudová, A.A. Integrated Approach to Spent Coffee Grounds Valorization in Biodiesel Biorefinery. Sustainability 2023, 15, 5612. [Google Scholar] [CrossRef]
- Bui, H.N.; Do, H.Q.; Duong, H.T.G.; Peng, Y.S.; Dam, V.N.; Nguyen, V.T.; Bui, H.M. Taguchi optimization and life cycle assessment of biodiesel production from spent ground coffee. Environ. Dev. Sustain. 2022, 24, 12900–12916. [Google Scholar] [CrossRef]
- Suasnabar, E.H.A.; Camarena Taxa, L.P.; Ordonez Galvez, J.J.; Benites Alfaro, E. Oil Extracted from Coffee Grounds to Obtain Biodiesel as Renewable Energy. Chem. Eng. Trans. 2023, 105, 517–522. [Google Scholar]
- Kaur, J.; Kumar Sarma, A.; Kumar Jha, M.; Gera, P. Valorisation of crude glycerol to value-added products: Perspectives of process technology, economics and environmental issues. Biotechnol. Rep. 2020, 27, e00487. [Google Scholar] [CrossRef]
- Supang, W.; Ngamprasertsith, S.; Sakdasri, W.; Sawangkeaw, R. Biodiesel Production from Spent Coffee Grounds by Using Ethanolic Extraction and Supercritical Transesterification. BioEnergy Res. 2024, 17, 2429–2439. [Google Scholar] [CrossRef]
- Uddin, M.N.; Techato, K.; Rasul, M.G.; Hassan, N.M.S.; Mofijur, M. Waste coffee oil: A promising source for biodiesel production. Energy Procedia 2019, 160, 677–682. [Google Scholar] [CrossRef]
- Yeoh, L.; Ng, K.S. Future Prospects of Spent Coffee Ground Valorisation Using a Biorefinery Approach. Resour. Conserv. Recycl. 2022, 179, 196123. [Google Scholar] [CrossRef]
- Kim, J.Y.; Yeom, S.H. Optimization of Biodiesel Production from Waste Coffee Grounds by Simultaneous Lipid Extraction and Transesterification. Biotechnol. Bioproc. E 2020, 25, 320–326. [Google Scholar] [CrossRef]
- Tarigan, J.B.; Ginting, M.; Mubarokah, S.N.; Sebayang, F.; Karo-Karo, J.; Nguyen, T.T.; Ginting, J.; Sitepu, E.K. Direct biodiesel production from wet spent coffee grounds. RSC Adv. 2019, 9, 3510. [Google Scholar] [CrossRef]
- Kusuma, J.; Indartono, Y.S.; Mujahidin, D. Biodiesel and activated carbon from arabica spent coffee grounds. MethodsX 2023, 10, 102285. [Google Scholar] [CrossRef]
- Gu, J.; Lee, A.; Choe, C.; Lim, H. Comparative study of biofuel production based on spent coffee grounds transesterification and pyrolysis: Process simulation, techno-economic, and life cycle assessment. J. Clean. Prod. 2023, 428, 139308. [Google Scholar] [CrossRef]
- Kumar Karmee, S.; Swanepoel, W.; Marx, S. Biofuel production from spent coffee grounds via lipase catalysis. Energ Source Part A 2018, 40, 294–300. [Google Scholar] [CrossRef]
- Alonazi, M.; Al-Diahan, S.K.; Alzahrani, Z.R.A.; Bacha, A.B. Combined immobilized lipases for effective biodiesel production from spent coffee grounds. Saudi J. Biol. Sci. 2023, 30, 103772. [Google Scholar] [CrossRef]
- Khalid, A.; Imran, M.; Javaid, A.; Javaid, A.; Latif, S. Catalyzing Transformation: Organo-Inorganic Materials Based Immobilized Lipases in the Ongoing Quest for Sustainable Biodiesel Production. Top. Catal. 2024. [Google Scholar] [CrossRef]
- Yang, J.; Chen, H.; Niu, H.; McNutt, J.; He, Q. A Comparative Study on Thermochemical Valorization Routes for Spent Coffee Grounds. Energies 2021, 14, 3840. [Google Scholar] [CrossRef]
- Annal, U.N.; Vaithiyanathan, R.; Natarajan, A.; Rajadurai, V.; Kumar, P.S.M.; Li, Y.Y. Electrolytic biodiesel production from spent coffee grounds: Optimization through response surface methodology and artificial neural network. J. Taiwan Inst. Chem. Eng. 2024, 165, 105697. [Google Scholar] [CrossRef]
- Mensah, Q.R.; Tantayotai, P.; Rattanaporn, K.; Chuetor, S.; Kirdponpattara, S.; Kchaou, M.; Show, P.L.; Mussato, S.I.; Sriariyanun, M. Properties and applications of green-derived products from spent coffee grounds—Steps towards sustainability. Bioresour. Technol. Rep. 2024, 26, 101859. [Google Scholar] [CrossRef]
- Beluhan, S.; Mihajlovski, K.; Šantek, B.; Ivančić Šantek, M. The Production of Bioethanol from Lignocellulosic Biomass: Pretreatment Methods, Fermentation, and Downstream Processing. Energies 2023, 16, 7003. [Google Scholar] [CrossRef]
- Prasad, B.R.; Padhi, R.K.; Ghosh, G. A review on key pretreatment approaches for lignocellulosic biomass to produce biofuel and value-added products. Int. J. Environ. Sci. Technol. 2023, 20, 6929–6944. [Google Scholar] [CrossRef]
- Bhaturiwala, R.A.; Modi, H.A. Extraction of oligosaccharides and phenolic compounds by roasting pretreatment and enzymatic hydrolysis from spent coffee ground. J. Appl. Biol. Biotechnol. 2020, 80, 75–81. [Google Scholar]
- Broda, M.; Yelle, D.J.; Serwańska, K. Bioethanol Production from Lignocellulosic Biomass-Challenges and Solutions. Molecules 2022, 27, 8717. [Google Scholar] [CrossRef]
- Parveen, F.; Saxena, A.; Hussain, A.; Giri, B.S.; Ashfaque, M. Facile fractionation of lignocellulosic biomass: A review on promising green technology of deep eutectic solvent for bioethanol production. Biomass Conv. Bioref. 2024. [Google Scholar] [CrossRef]
- Mussatto, I.S.; Machado, E.M.S.; Carneiro, L.M.; Teixeira, J.A. Sugars metabolism and ethanol production by different yeast strains from coffee industry wastes hydrolysates. Appl. Energy 2021, 92, 763–768. [Google Scholar] [CrossRef]
- Mohd Azhar, S.H.; Abdulla, R.; Jambo, S.A.; Marbawi, H.; Gansau, J.A.; Ainol, A.; Faik, M.; Rodrigues, K.F. Yeasts in sustainable bioethanol production: A review. Biochem. Biophys. Rep. 2017, 10, 52–61. [Google Scholar] [CrossRef]
- Vasić, K.; Knez, Ž.; Leitgeb, M. Bioethanol Production by Enzymatic Hydrolysis from Different Lignocellulosic Sources. Molecules 2021, 26, 753. [Google Scholar] [CrossRef]
- Siebenhaller, S.; Kirchhoff, J.; Kirschhöfer, F.; Brenner-Weiß, G.; Muhle-Goll, C.; Luy, B.; Haitz, F.; Hahn, T.; Zibek, S.; Syldatk, C.; et al. Integrated Process for the Enzymatic Production of Fatty Acid Sugar Esters Completely Based on Lignocellulosic Substrates. Front. Chem. 2018, 6, 421. [Google Scholar] [CrossRef] [PubMed]
- Periyasamy, S.; Beula, I.J.; Kavitha, S.; Karthik, V.; Mohamed, B.A.; Gizaw, D.G.; Sivashanmugam, P.; Aminabhavi, T.M. Recent Advances in Consolidated Bioprocessing for Conversion of Lignocellulosic Biomass into Bioethanol—A Review. Chem. Eng. J. 2022, 453, 139783. [Google Scholar] [CrossRef]
- Huang, J.; Li, B.; Xian, X.; Hu, Y.; Lin, X. Efficient Bioethanol Production from Spent Coffee Grounds Using Liquid Hot Water Pretreatment without Detoxification. Fermentation 2024, 10, 436. [Google Scholar] [CrossRef]
- Syahruddin, S.; Hayyun, L.; Erdawati, E. Improving the Value of Spent Coffee Ground by Converting Carbohydrates into Sugars by Saccharomyces cerevisiae to Produce Bioethanol. In Proceedings of the 4th International Seminar on Science and Technology (ISST) 2022; Atlantis Press: Amsterdam, The Netherlands, 2022; pp. 208–214. [Google Scholar]
- Morales-Martínez, J.; Aguilar-Uscanga, M.G.; Bolaños-Reynoso, E.; López-Zamora, E. Optimization of Chemical Pretreatments Using Response Surface Methodology for Second-Generation Ethanol Production from Coffee Husk Waste. Bioenerg. Res. 2021, 14, 815–827. [Google Scholar] [CrossRef]
- Menezes, F.G.; do Carmo, J.R.; Alves, J.G.; Menezes, A.G.; Guimarães, I.C.; Queiroz, F.; Pimenta, C.J. Optimization of alkaline pretreatment of coffee pulp for production of bioethanol. Biotechnol. Prog. 2014, 30, 451–462. [Google Scholar] [CrossRef]
- Anh Nguyen, Q.; Cho, E.; Thi Phi Trinh, L.; Jeong, J.S.; Bae, H.J. Development of an integrated process to produce D-mannose and bioethanol from coffee residue waste. Bioresour. Technol. 2017, 244, 1039–1048. [Google Scholar] [CrossRef]
- Orrego, D.; Zapata-Zapata, A.D.; Kim, D. Optimization and Scale-Up of Coffee Mucilage Fermentation for Ethanol Production. Energies 2018, 11, 786. [Google Scholar] [CrossRef]
- Xiang, H.; Xin, R.; Prasongthum, N.; Natewong, P.; Sooknoi, T.; Wang, J.; Reubroycharoen, P.; Fan, X. Catalytic conversion of bioethanol to value-added chemicals and fuels: A review. Resour. Chem. Mater. 2022, 1, 47–68. [Google Scholar] [CrossRef]
- Atabani, A.E.; Al-Muhtaseb, A.H.; Kumar, G.; Saratale, G.D.; Aslam, M.; Khan, A.; Said, Z.; Mahmoud, E. Valorization of spent coffee grounds into biofuels and value-added products: Pathway towards integrated bio-refinery. Fuel 2019, 254, 11564. [Google Scholar] [CrossRef]
- Tse, T.J.; Wiens, D.J.; Chicilo, F.; Purdy, S.K.; Reaney, M.J.T. Value-Added Products from Ethanol Fermentation—A Review. Fermentation 2021, 7, 267. [Google Scholar] [CrossRef]
- Pereira, J.; de Melo, M.M.R.; Silva, C.M.; Lemos, P.C.; Serafim, L.S. Serafim, Impact of a Pretreatment Step on the Acidogenic Fermentation of Spent Coffee Grounds. Bioengineering 2022, 9, 362. [Google Scholar] [CrossRef] [PubMed]
- Sisti, L.; Celli, A.; Totaro, G.; Cinelli, P.; Signori, F.; Lazzeri, A.; Bikaki, M.; Corvini, P.; Ferri, M.; Tassoni, A.; et al. Monomers, Materials and Energy from Coffee By-Products: A Review. Sustainability 2021, 13, 6921. [Google Scholar] [CrossRef]
- Alam, M.M.; Greco, A.; Rajabimashhadi, Z.; Corcione, C.E. Efficient and environmentally friendly techniques for extracting lignin from lignocellulose biomass and subsequent uses: A review. Clean. Mater. 2024, 13, 100253. [Google Scholar] [CrossRef]
- Kumar, A.K.; Sharma, S. Recent updates on different methods of pretreatment of lignocellulosic feedstocks: A review. Bioresour. Bioprocess. 2017, 4, 7. [Google Scholar] [CrossRef]
- Phuong, D.V.; Nguyen, L.T. Coffee pulp pretreatment methods: A comparative analysis of hydrolysis efficiency. Foods Raw Mater. 2024, 12, 133–141. [Google Scholar] [CrossRef]
- Toles, L.D.; Gupta, B.S.; Lee, M.J. Treatment of Coffee Husk with Ammonium-Based Ionic Liquids: Lignin Extraction, Degradation, and Characterization. ACS Omega 2018, 3, 10866–10876. [Google Scholar] [CrossRef]
- Areeya, S.; Gundupalli, M.P.; Dharmalingam, B.; Paramasivam, B.; Tantayotai, P.; Yasurin, P.; Panakka, E.J. Process Optimization of Deep Eutectic Solvent Pretreatment of Coffee Husk Biomass. E3S Web Conf. 2023, 428, 01010. [Google Scholar] [CrossRef]
- Procentese, A.; Rehmann, L. Fermentable Sugar Production from a Coffee Processing By-product after Deep Eutectic Solvent Pretreatment. Bioresour. Technol. Rep. 2018, 4, 174–180. [Google Scholar] [CrossRef]
- Ravindran, R.; Desmond, C.; Jaiswal, S.; Jaiswal, A.K. Optimisation of organosolv pretreatment for the extraction of polyphenols from spent coffee waste and subsequent recovery of fermentable sugars. Bioresour. Technol. Rep. 2018, 3, 7–14. [Google Scholar] [CrossRef]
- Lee, M.; Yang, M.; Choi, S.; Shin, J.; Park, C.; Cho, S.K.; Kim, Y.M. Sequential Production of Lignin, Fatty Acid Methyl Esters and Biogas from Spent Coffee Grounds. Energies 2019, 12, 2360. [Google Scholar] [CrossRef]
- Singh, S.C.; Murthy, Z.V.P. Study of cellulosic fibres morphological features and their modifications using hemicelluloses. Cellulose 2017, 24, 3119–3130. [Google Scholar] [CrossRef]
- Chopra, L. Extraction of cellulosic fibers from the natural resources: A short review. Mater. Today 2022, 48, 1265–1270. [Google Scholar] [CrossRef]
- Nagarajan, K.J.; Ramanujam, N.R.; Sanjay, M.R.; Siengchin, S.; Rajan, B.S.; Basha, K.S.; Madhu, P.; Raghav, G.R. A comprehensive review on cellulose nanocrystals and cellulose nanofibers: Pretreatment, preparation, and characterization. Polym. Compos. 2021, 42, 1588–1630. [Google Scholar] [CrossRef]
- Collazo-Bigliardi, S.; Ortega-Toro, R.; Chiralt, A. Improving properties of thermoplastic starch films by incorporating active extracts and cellulose fibres isolated from rice or coffee husk. Food Packag. Shelf Life 2019, 22, 100383. [Google Scholar] [CrossRef]
- Rodríguez, J.E.H.; Rincón, D.E.; Rojas, D.F.H.; Orjuela, I.G.C.; Socolovsky, L.M.; Rondón, D.G.E.; Calderón, C.L.L. Effects of hydrolysis and bleaching conditions on the efficiency of cellulose microfibrils extraction from coffee parchment through a design of experiments. Cellulose 2023, 30, 10715–10731. [Google Scholar] [CrossRef]
- Malarat, S.; Khongpun, D.; Limtong, K.; Sinthuwong, N.; Soontornapaluk, P.; Sakdaronnarong, C.; Posoknistakul, P. Preparation of Nanocellulose from Coffee Pulp and Its Potential as a Polymer Reinforcement. ACS Omega 2023, 8, 25122–25133. [Google Scholar] [CrossRef]
- Frost, B.A.; Foster, E.J. Isolation of Thermally Stable Cellulose Nanocrystals from Spent Coffee Grounds via Phosphoric Acid Hydrolysis. J. Renew. Mater. 2020, 8, 187–203. [Google Scholar] [CrossRef]
- Dao, D.N.; Le, P.H.; Dang, T.M.Q.; Nguyen, S.K.; Nguyen, V. Pectin and cellulose extracted from coffee pulps and their potential in formulating biopolymer films. Biomass Convers. Biorefinery 2023, 13, 13117–13125. [Google Scholar] [CrossRef]
- Kanai, N.; Honda, T.; Yoshihara, N.; Oyama, T.; Naito, A.; Ueda, K.; Kawamura, I. Structural characterization of cellulose nanofibers isolated from spent coffee grounds and their composite films with poly(vinyl alcohol): A new non-wood source. Cellulose 2020, 27, 5017–5028. [Google Scholar] [CrossRef]
- Verdía Barbará, P.; Rafat, A.A.; Hallett, J.P.; Brandt-Talbot, A. Purifying Cellulose from Major Waste Streams Using Ionic Liquids and Deep Eutectic Solvents. Curr. Opin. Green Sustain. Chem. 2023, 41, 100783. [Google Scholar] [CrossRef]
- Magalhães, S.; Fernandes, C.; Pedrosa, J.F.S.; Alves, L.; Medronho, B.; Ferreira, P.J.T.; Rasteiro, M.d.G. Eco-Friendly Methods for Extraction and Modification of Cellulose: An Overview. Polymers 2023, 15, 3138. [Google Scholar] [CrossRef] [PubMed]
- Panyamao, P.; Charumanee, S.; Ruangsuriya, J.; Saenjum, C. Efficient Isolation of Cellulosic Fibers from Coffee Parchment via Natural Acidic Deep Eutectic Solvent Pretreatment for Nanocellulose Production. ACS Sustain. Chem. Eng. 2023, 11, 13962–13973. [Google Scholar] [CrossRef]
- Kim, S.; Kim, J.C.; Kim, Y.Y.; Yang, J.E.; Lee, H.M.; Hwang, I.M.; Park, H.W.; Kim, H.M. Utilization of coffee waste as a sustainable feedstock for high-yield lactic acid production through microbial fermentation. Sci. Total Environ. 2024, 912, 169521. [Google Scholar] [CrossRef] [PubMed]
- Gizatie, D.; Chandran, M.; Mesfin, T. Screening of Acetic Acid-Producing Bacteria from Coffee Pulping Process and Their Efficiency in Malt Vinegar Production. J. Chem. 2024, 2024, 9931310. [Google Scholar]
- Núñez Pérez, J.; Chávez Arias, J.C.; de la Vega Quintero, J.C.; Zárate Baca, S.; Pais-Chanfrau, J.M. Multi-Objective Statistical Optimization of Pectinolytic Enzymes Production by an Aspergillus sp. on Dehydrated Coffee Residues in Solid-State Fermentation. Fermentation 2022, 8, 170. [Google Scholar] [CrossRef]
- Kang, B.-J.; Jeon, J.-M.; Bhatia, S.K.; Kim, D.-H.; Yang, Y.-H.; Jung, S.; Yoon, J.-J. Two-Stage Bio-Hydrogen and Polyhydroxyalkanoate Production: Upcycling of Spent Coffee Grounds. Polymers 2023, 15, 68. [Google Scholar] [CrossRef]
- Machado, M.; Ferreira, H.; Oliveira, M.B.P.P.; Alves, R.C. Coffee by-products: An underexplored source of prebiotic ingredients. Crit. Rev. Food Sci. Nutr. 2024, 64, 7181–7200. [Google Scholar] [CrossRef]
- Tripathi, S.; Murthy, P.S. Coffee oligosaccharides and their role in health and wellness. Food Res. Int. 2023, 173, 113288. [Google Scholar] [CrossRef]
- Lee, Y.G.; Cho, E.J.; Maskey, S.; Nguyen, D.T.; Bae, H.J. Value-Added Products from Coffee Waste: A Review. Molecules 2023, 28, 3562. [Google Scholar] [CrossRef]
- Arias, S.M.A.; Ioannidou, N. Giannakis, G. Feijoo, M.T. Moreira, A. Koutinas, Review of potential and prospective strategies for the valorization of coffee grounds within the framework of a sustainable and circular bioeconomy. Ind. Crops Prod. 2023, 205, 117504. [Google Scholar] [CrossRef]
- Zhao, N.; Liu, Z.; Yu, T.; Yan, F. Spent coffee grounds: Present and future of environmentally friendly applications on industries-A review. Trends Food Sci. Technol. 2024, 14, 104312. [Google Scholar] [CrossRef]
- Rathnakumar, K.; Osorio-Arias, J.C.; Krishnan, P.; Martínez-Monteagudo, S.I. Fractionation of spent coffee ground with tertiary amine extraction. Sep. Purif. Technol. 2021, 274, 119111. [Google Scholar] [CrossRef]
- Almeida, F.S.; Dias, F.F.G.; Sato, A.C.K.; Leite, J.M.; de Moura Bell, N. Scaling up the Two-Stage Countercurrent Extraction of Oil and Protein from Green Coffee Beans: Impact of Proteolysis on Extractability, Protein Functionality, and Oil Recovery. Food Bioprocess Technol. 2022, 15, 1794–1809. [Google Scholar] [CrossRef]
- Tinoco-Caicedoa, D.L.; Mero-Benavidesa, M.; Córdova-Molinaa, K.; Estrada-Ordoñeza, D.; Blanco-Marigorta, A.M. Oil Extraction from Spent Coffee Grounds: Experimental Studies and Exergoeconomic Analysis. Chem. Eng. Trans. 2023, 102, 295–300. [Google Scholar]
- Van Keulen, M.; Kirchherr, J. The implementation of the Circular Economy: Barriers and enablers in the coffee value chain. J. Clean. Prod. 2021, 281, 125033. [Google Scholar] [CrossRef]
- Peluso, M. Coffee By-Products: Economic Opportunities for Sustainability and Innovation in the Coffee Industry. Proceedings 2023, 89, 6. [Google Scholar] [CrossRef]
Coffee By-Products | Extraction Conditions | Total Phenolic Content (mg GAE/g) | Antioxidant Activity | Ref. |
---|---|---|---|---|
Spent coffee ground | Water, 20 mL/g, 80 °C, 30 min | 61.49 ± 1.36 mg GAE/g | 324.51 ± 13.58 µmol TE/g (DPPH) 735.47 ± 0.60 µmol TE/g (ABTS) | [32] |
MeOH, 100 mL/30 g, room temp., 24 h | 109–181 mg GAE/g of extracts | EC50 8.5–44.9 µg/mL (DPPH) | [50] | |
80% MeOH, water bath, 50 °C, 30 min | 6.40 ± 0.18 mg GAE/g | DPPH inhibition: ~58% | [51] | |
UAE (25 kHz) 80% MeOH, 15 min | 9.51 ± 0.12 mg GAE/g | ~89% | ||
PLE (50 MPa, 60% amplitude), 15 min | 9.42 ± 0.10 mg GAE/g | ~87% | ||
Room temp., 1 min—water | 3.83 ± 0.19 mg GAE/g | |||
20% ETOH | 3.93 ± 0.15 mg GAE/g | [93] | ||
40% EtOH | 3.93 ± 0.16 mg GAE/g | |||
20% acetone | 4.40 ± 0.19 mg GAE/g | |||
40% acetone | 4.37 ± 0.14 mg GAE/g | |||
UAE, 10 g/50 mL, 20 °C, 120 min. | ||||
water | 56.86 ± 0.16 mg GAE/g | ABTS: 164.70 ± 1.56 mg TE/g | [72] | |
MeOH | 62.25 ± 0.10 mg GAE/g | 136.11 ± 13.35 mg TE/g | ||
50% MeOH | 93.26 ± 0.14 mg GAE/g | 218.75 ± 6.88 mg TE/g | ||
70% EtOH | 93.35 ± 0.65 mg GAE/g | 276.19 ± 9.65 mg TE/g | ||
5 g/150 mL, 6 h, boiling temp. EtOH | 119.5 ± 2.1 mg GAE/g | Inhibition DPPH: 46.5% | [88] | |
EtOAc | 182.6 ± 28.2 mg GAE/g | 93.5% | ||
7 g/210 mL, 2 h, room temp., UAE—EtOH | 587.7 ± 46.6 mg GAE/g | Inhibition DPPH: 32.2% | ||
EtOAc | 553.4 ± 59.8 mg GAE/g | 29.1% | ||
SFE (200 bars), 50 °C, 4.3 h: SFE-CO2 | 24.1 ± 0.8 mg GAE/g | Inhibition DPPH: 11.7% | ||
SFE-CO2+ 4% EtOH | 57 ± 3 mg GAE/g | 47.9% | ||
Hydrothermal method, 5 g/35 mL, 150 °C, 3 h | 9.44 ± 0.90 mg GAE/g | [94] | ||
DES (lactic acid with choline chloride, 1:2 molar ratio), 1 h, 60 °C | 44.21 ± 1.09 g GAE/100 g | [82] | ||
Cascara | Water bath, 60 °C, 1 h: | Inhibition: | [77] | |
water | 42.51 ± 0.72 mg CE/g | 37.2% (DPPH); 76.1% (ABTS) | ||
100% EtOH | 31.35 ± 1.90 mg CE/g | 14.2% (DPPH) 52.6% (ABTS) | ||
50% EtOH | 95.00 ± 1.39 mg CE/g | 67.5% (DPPH) 91.5% (ABTS) | ||
USE, 35 °C, 1 h: water | 34.10 ± 3.78 mg CE/g | |||
100% EtOH | 16.54 ± 2.18 mg CE/g | |||
50% EtOH | 77.57 ± 0.44 mg CE/g | |||
Pulp | Water, 25 g/250 mL 75 °C, 5.5 min | 128.3 ± 4.3 mg GAE/L | [76] | |
Water, 25 g/250 mL, USE, 75 °C, 5.5 min, | 164.9 ± 1.2 mg GAE/L | |||
Water, 25 g/60 mL, 5 min, room temp. | 284.1 ± 6.5 mg GAE/100 g | 38.1 mmol TE/100 g (ORAC) | [75] | |
424.0 ± 3.2 mg GAE/100 g | 57.1 mmol TE/100 g (ORAC) | |||
MeOH, 5 g/350 mL, room temp. 10 h | 4.84 ± 0.17 mg GAE/g | [95] | ||
Soxhlet, MeOH, 65 °C, 10 h | 16.49 ± 0.75 mg GAE/g | |||
MeOH, MAE (700 W), 3 min | 12.94 ± 2.25 mg GAE/g | |||
46.7% propylene glycol—maceration 24 h | 8.50 ± 0.02 mg GAE/g | 5.63 ± 0.10 g TE/g (DPPH) | [78] | |
USE 7.65 min | 9.20 ± 0.14 mg GAE/g | 7.56 ± 0.27 g TE/g (DPPH) | ||
Silverskin | 70% MeOH, 1 g/10 mL 1 min (soluble fraction) | 538 ± 64 mg GAE/100 g | 1.57 mmol TE/100 g (ABTS) | [28] |
Residue with 10 mL of MeOH:/water/HCl (70:29.1:0.9), 1 min (insoluble fraction) | 467 ± 29 mg GAE/100 g | 1.11 mmol TE/100 g (ABTS) | ||
10 g/50 mL, USE, 20 °C, 120 min: | [72] | |||
water | 20.49 ± 0.27 mg GAE/g | 73.66 ± 1.43 mg TE/g (ABTS) | ||
MeOH | 35.68 ± 1.80 mg GAE/g | 95.05 ± 0.04 mg TE/g (ABTS) | ||
50% MeOH | 25.02 ± 0.37 mg GAE/g | 63.50 ± 1.65 mg TE/g (ABTS) | ||
70% EtOH | 25.34 ± 0.44 mg GAE/g | 54.41 ± 0.76 mg TE/g (ABTS) | ||
DES (1,6-hexanediol/choline chloride, 7:1 molar ratio), UAE, 85 °C, 90 min | 22.29 mg GAE/g | 24.06 ± 1.78 mg GAE/g (DPPH) 59.13 ±4.55 mg Fe(II)/g (FRAP) | [80] | |
Water, USE (42 kHz), 25 °C, 30 min: | 266.17 ± 2.90 mg GAE/g | Inhibition: 96.1% (DPPH) 90.3% ABTS | [96] |
Condition of Extraction | Maximum Oil Yield (%, goil/100 gdry SCG) | Ref. |
---|---|---|
Solid/solvent = 1:17, hexane | [27] | |
Maceration, room temp. 1 h/3 h | 12.9/13.1 | |
Maceration, 60 °C, 1 h/3 h | 8.6/10.7 | |
Soxhlet, 1 h/3 h | 12.1/15.2 | |
Reflux 1 h/3 h | 10.1/10.3 | |
Soxhlet, chloroform, 1 g/12.5 mL, 7 h | 12.3 ± 0.33 | [111] |
Soxhlet, hexane, 1 g/12.5 mL, 3 h | 12.5 ± 0.15 | |
Soxhlet, methanol, 1 g/12.5 mL, 12 h | 11.9 ± 0.47 | |
UAE (30% amplitude), hexane, 1 g/4 mL, 0.5 h | 14.55 | |
Soxhlet, hexane 1 g/9 mL, 1 h | 17.3 | [114] |
Soxhlet, hexane 1 g/9 mL, 8 h | 24.6 | |
Soxhlet, hexane, 4 h, | 9.41 | [115] |
UAE pretreatment (10 min) | 14.38 | |
NTP pretreatment (30 W, 10 min) | 19.25 | |
UAE (37 kHz), hexane, 10 g, 60 °C, 45 min with NADES pretreatment (1:10 ratio, 55 °C, 6 min) | 13.55 | [116] |
Soxhlet, ethanol, 5 g/150 mL, 40 °C, 145 min | 15.64 ± 0.52 | [117] |
Soxhlet, ethyl acetate, 5 g/150 mL, 40 °C, 145 min | 15.04 ± 0.60 | |
Soxhlet, hexane, 5 g150 mL, 40 °C, 145 min | 14.52 ± 0.52 | |
PLE, ethanol, 80 °C, 200 bars, 35 min | 15.29 | |
SC-CO2, 40 °C, 200 bars, 295 min | 12.19 ± 0.21 | |
SC-CO2 + ethanol, SCG/solvent ratio = 1:2, 80 °C, 25 min | 15.9 | |
Soxhlet, propanol, 10 g/180 mL, 6 h | 13.75 ± 0.35 | [120] |
PLE, 103 bars, propanol, 120 °C, 5 min | 14.02 ± 0.31 | |
SC-CO2, flow rate 110–170 L/h, 200 bars, 50 °C, 2 h | 12.11 ± 1.33 | |
Soxhlet, hexane, 5 g, 5 h | 16.35 ± 1.71 | [122] |
Soxhlet, ethanol, 5 g, 5 h | 15.95 ± 0.11 | |
SC-CO2 + 5% ethanol, 14 g, flow rate 10 mL/min, | 15.45± 0.09 | |
300 bars, 60 °C, 1 h | ||
Soxhlet, hexane, 6 g/260 mL, 4 h | 8.6 | [126] |
MAE (190 W), hexane, 6 g/40 mL, 95 °C, 10 min | 11.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pyrzynska, K. Useful Extracts from Coffee By-Products: A Brief Review. Separations 2024, 11, 334. https://doi.org/10.3390/separations11120334
Pyrzynska K. Useful Extracts from Coffee By-Products: A Brief Review. Separations. 2024; 11(12):334. https://doi.org/10.3390/separations11120334
Chicago/Turabian StylePyrzynska, Krystyna. 2024. "Useful Extracts from Coffee By-Products: A Brief Review" Separations 11, no. 12: 334. https://doi.org/10.3390/separations11120334
APA StylePyrzynska, K. (2024). Useful Extracts from Coffee By-Products: A Brief Review. Separations, 11(12), 334. https://doi.org/10.3390/separations11120334