Content of Acidic Compounds in the Bean of Coffea arabica L., Produced in the Department of Cesar (Colombia), and Its Relationship with the Sensorial Attribute of Acidity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Coffee Samples and Origin
2.2. Chemical Analysis
2.2.1. Chemicals and Solvents
2.2.2. Sample Preparation
2.2.3. Extraction, Analysis and Quantification of Chemical Compounds
- Organic acids (OAs)
- 2.
- Phosphoric acid
- 3.
- Chlorogenic acid isomers
2.3. Sensory Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Acid Composition in Green Coffee Beans
3.2. Sensory Analysis
3.3. Relationship between Acid Composition in Green Coffee Beans and the Sensory Attribute of Acidity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Federación Nacional de Cafeteros. Producción Anual de Café de Colombia; FNC: Bogotá, Colombia, 2023. [Google Scholar]
- Ministerio de Agricultura y Desarrollo Rural. Agronet Reporte: Área, Producción y Rendimiento Nacional Por Cultivo; Agronet: Bogotá, Colombia, 2021. [Google Scholar]
- Giraldo-Jaramillo, M.; Montoya, E.C.; Sarmiento-Herrera, N.; Mosquera, A.Q.; Espinosa-Osorio, J.C.; García-López, J.C.; Orrego, H.D.; Machado, P.B. Vulnerabilidad de la caficultura de los departamentos de Cesar, La Guajira y Bolívar a la broca del café en diferentes eventos climáticos. Av. Técnicos Cenicafé 2021, 527, 1–8. [Google Scholar] [CrossRef]
- Barbosa, J.N.; Borem, F.M.; Cirillo, M.A.; Malta, M.R.; Alvarenga, A.A.; Alves, H.M.R. Coffee Quality and Its Interactions with Environmental Factors in Minas Gerais, Brazil. JAS 2012, 4, 181. [Google Scholar] [CrossRef]
- Bunn, C.; Läderach, P.; Ovalle Rivera, O.; Kirschke, D. A Bitter Cup: Climate Change Profile of Global Production of Arabica and Robusta Coffee. Clim. Change 2015, 129, 89–101. [Google Scholar] [CrossRef]
- Figueiredo, L.P.; Borém, F.M.; Ribeiro, F.C.; Giomo, G.S.; Henrique da Silva Taveira, J.; Malta, M.R. Fatty Acid Profiles and Parameters of Quality of Specialty Coffees Produced in Different Brazilian Regions. Afr. J. Agric. Res. 2015, 10, 3484–3493. [Google Scholar] [CrossRef]
- Arcila Pulgarín, J. Densidad de Siembra y Productividad de Los Cafetales. In Sistemas de producción de café en Colombia; Arcila Pulgarín, J., Farfan, F., Moreno., A., Salazar, L., Hincapie, E., Eds.; Cenicafé: Manizales, Colombia, 2007; pp. 131–144. [Google Scholar]
- Ramirez, V.H.; Jaramillo, A.; Arcila, J. Rangos Adecuados de Lluvia Para El Cultivo de Café En Colombia. Av. Técnicos Cenicafé 2013, 395, 1–8. [Google Scholar]
- Flórez, C.P.; Arias, J.C.; Orrego, H.D. Guía para la caracterización de las variedades de café: Claves para su identificación. Av. Técnicos Cenicafé 2017, 476, 1–12. [Google Scholar] [CrossRef]
- Alvarado, G.; Moreno, E.; Montoya, E.C.; Alarcon, R. Calidad física y En Taza de Los Componentes de La Variedad Castillo® y Sus Derivadas Regionales. Rev. Cenicafé 2009, 60, 210–228. Available online: https://www.cenicafe.org/es/publications/arc060%2803%29210-228.pdf (accessed on 23 July 2023).
- Cheng, B.; Furtado, A.; Smyth, H.E.; Henry, R.J. Influence of Genotype and Environment on Coffee Quality. Trends Food Sci. Technol. 2016, 57, 20–30. [Google Scholar] [CrossRef]
- dos Santos Scholz, M.B.; de Figueiredo, V.R.G.; da Silva, J.V.N.; Kitzberger, C.S.G. Sensory Atributes and Physico-Chemical Characteristics of the Coffee Beverage from the IAPAR Cultivars. Coffee Sci. 2013, 8, 6–16. [Google Scholar]
- Peñuela-Martínez, A.E.; Sanz-Uribe, J.R. Obtenga café de calidad en el proceso de beneficio. In Guía Más Agronomia, Más Productividad, Más Calidad; Cenicafé: Manizales, Colombia, 2021; pp. 189–218. Available online: https://coffeescience.ufla.br/index.php/Coffeescience/article/view/297 (accessed on 23 July 2023).
- Osorio, V. La calidad del Café. In Guía Más Agronomia, Más Productividad, Más Calidad; Cenicafé: Manizales, Colombia, 2021; pp. 219–234. [Google Scholar]
- Osorio, V.; Álvarez-Barreto, C.I.; Matallana, L.G.; Acuña, J.R.; Echeverri-Giraldo, L.F.; Imbachí, L.C. Effect of Prolonged Fermentations of Coffee Mucilage with Different Stages of Maturity on the Quality and Chemical Composition of the Bean. Fermentation 2022, 8, 519. [Google Scholar] [CrossRef]
- Osorio, V.; Pabón, J.; Shuler, J.; Fernández-Alduenda, M.R. Efecto de la combinación de procesos de secado en la calidad del café natural obtenido vía seca. Rev. Cenicafé 2022, 73, e73101. [Google Scholar] [CrossRef]
- Puerta-Quintero, G.I. Influencia de los Granos de Café Cosechados Verdes en la Calidad Física y Organoléptica de la Bebida. Rev. Cenicafé 2000, 51, 136–150. Available online: https://www.cenicafe.org/es/publications/arc051(02)136-150.pdf (accessed on 23 July 2023).
- Peñuela-Martínez, A.E.; Guerrero, A.; Sanz-Uribe, J.R. Cromacafé® Herramienta para identificar los estados de madurez de las variedades de café de fruto rojo. Av. Técnicos Cenicafé 2022, 535, 1–8. [Google Scholar] [CrossRef]
- Guerrero, A.; Sanz-Uribe, J.R.; Peñuela-Martínez, A.E.; Ramírez, C.A. Mediverdes®: Un método para medir la calidad de la recolección del café en el campo. Av. Técnicos Cenicafé 2022, 536, 1–8. [Google Scholar] [CrossRef]
- Álvarez, J. Despulpado de Café Sin Agua. Av. Técnicos Cenicafé 1991, 164, 1–6. [Google Scholar]
- Peñuela-Martínez, A.E.; Pabon, J.; Rodriguez, N.; Oliveros, C.E. Evaluación de una enzima pectinolítica para el desmucilaginado del café. Rev. Cenicafé 2010, 61, 241–250. Available online: https://www.cenicafe.org/es/publications/arc061(03)241-251.pdf (accessed on 23 July 2023).
- Oliveros, C.E.; Roa, G. El Desmucilaginado Mecánico Del Café. Av. Técnicos Cenicafé 1995, 216, 1–7. [Google Scholar] [CrossRef]
- Oliveros, C.E.; Sanz, J.R.; Ramirez, C.A.; Tibaduiza, C.A. ECOMILL: Tecnología de bajo impacto ambiental para el lavado del café. Av. Técnicos Cenicafé 2013, 432, 1–8. [Google Scholar] [CrossRef]
- Peñuela-Martínez, A.E.; Pabon, J.; Oliveros, C.E. Enzimas: Una alternativa para remover rápida y eficazmente el mucílago del café. In Av. Técnicos Cenicafé 2011, 406, 1–8. [Google Scholar] [CrossRef]
- Puerta-Quintero, G.I. Influencia del proceso de beneficio en la calidad del café. Rev. Cenicafé 1999, 50, 78–88. Available online: https://biblioteca.cenicafe.org/bitstream/10778/58/1/arc050%2801%29078-088.pdf (accessed on 23 July 2023).
- Peñuela-Martínez, A.E.; Pabon, J.; Sanz, J.R. Método Fermaestro: Para Determinar La Finalización de La Fermentación Del Mucílago de Café. Av. Técnicos Cenicafé 2013, 431, 1–8. [Google Scholar] [CrossRef]
- Puerta-Quintero, G.I. La humedad controlada del grano preserva la calidad del café. Av. Técnicos Cenicafé 2006, 352, 1–8. [Google Scholar]
- Oliveros, C.E.; Peñuela-Martínez, A.E.; Jurado, J.M. Controle la humedad del café en el secado solar utilizando el método Gravimet. Av. Técnicos Cenicafé 2009, 387, 1–8. [Google Scholar]
- Oliveros, C.E.; Peñuela-Martínez, A.E.; Pabon, J.P. Gravimet SM: Tecnología para medir la humedad del café en el secado en silos. Av. Técnicos Cenicafé 2013, 433, 1–8. [Google Scholar] [CrossRef]
- Puerta, G.I.; Echeverri-Giraldo, L.F. Relaciones Entre Las Concentraciones de Compuestos Químicos Del Café y Las Temperaturas de Torrefacción. Rev. Cenicafé 2019, 70, 67–80. Available online: https://biblioteca.cenicafe.org/bitstream/10778/4217/1/arc070%283%29067-080.pdf (accessed on 23 July 2023).
- Osorio, V.; Pabón, J.; Gallego, C.P.; Echeverri-Giraldo, L.F. Efecto de las temperaturas y tiempos de tueste en la composición química del café. Rev. Cenicafé 2021, 72, e72103. [Google Scholar] [CrossRef]
- Barbosa, M.d.S.G.; Scholz, M.B.d.S.; Kitzberger, C.S.G.; Benassi, M.d.T. Correlation between the Composition of Green Arabica Coffee Beans and the Sensory Quality of Coffee Brews. Food Chem. 2019, 292, 275–280. [Google Scholar] [CrossRef]
- Ribeiro, D.E.; Borem, F.M.; Cirillo, M.A.; Prado, M.V.B.; Ferraz, V.P.; Alves, H.M.R.; da Silva Taveira, J.H. Interaction of Genotype, Environment and Processing in the Chemical Composition Expression and Sensorial Quality of Arabica Coffee. Afr. J. Agric. Res. 2016, 11, 2412–2422. [Google Scholar] [CrossRef]
- Woodman, J.S. Carboxylic Acids. In Coffee; Springer: Berlin/Heidelberg, Germany, 1985; pp. 266–289. [Google Scholar] [CrossRef]
- Borém, F.M.; Figueiredo, L.P.; Ribeiro, F.C.; Taveira, J.H.; Giomo, G.S.; Salva, T.J. The Relationship between Organic Acids, Sucrose and the Quality of Specialty Coffees. Afr. J. Agric. Res. 2016, 11, 709–717. [Google Scholar] [CrossRef]
- Santiago, W.D.; Teixeira, A.R.; Santiago, J.D.A.; Lopes, A.C.A.; Brandão, R.M.; Caetano, A.R.; Cardoso, M.D.G.; Resende, M.L.V. Development and Validation of Chromatographic Methods to Quantify Organic Compounds in Green Coffee (Coffea arabica) Beans. Aust. J. Crop. Sci. 2020, 1275–1282. [Google Scholar] [CrossRef]
- Yeager, S.E.; Batali, M.E.; Guinard, J.-X.; Ristenpart, W.D. Acids in Coffee: A Review of Sensory Measurements and Meta-Analysis of Chemical Composition. Crit. Rev. Food Sci. Nutr. 2023, 63, 1010–1036. [Google Scholar] [CrossRef]
- Marin, C.; Puerta-Quintero, G.I. Contenido de ácidos clorogénicos en granos de Coffea arabica L y C. canephora según el desarrollo del fruto. Rev. Cenicafé 2008, 59, 7–28. Available online: https://biblioteca.cenicafe.org/bitstream/10778/60/1/arc059%2801%2907-28.pdf (accessed on 23 July 2023).
- Cortés-Macías, E.T.; López, C.F.; Gentile, P.; Girón-Hernández, J.; López, A.F. Impact of Post-Harvest Treatments on Physicochemical and Sensory Characteristics of Coffee Beans in Huila, Colombia. Postharvest Biol. Technol. 2022, 187, 111852. [Google Scholar] [CrossRef]
- Kulapichitr, F.; Borompichaichartkul, C.; Fang, M.; Suppavorasatit, I.; Cadwallader, K.R. Effect of Post-Harvest Drying Process on Chlorogenic Acids, Antioxidant Activities and CIE-Lab Color of Thai Arabica Green Coffee Beans. Food Chem. 2022, 366, 130504. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, D.E.; Borém, F.M.; Nunes, C.A.; Alves, A.P.D.C.; Santos, C.M.D.; Taveira, J.H.D.S.; Dias, L.L.D.C. Profile of Organic Acids and Bioactive Compounds in the Sensory Quality Discrimination of Arabica Coffee. Coffee Sci. 2018, 13, 187–197. Available online: https://coffeescience.ufla.br/index.php/Coffeescience/article/view/1415/PDF1415 (accessed on 23 July 2023). [CrossRef]
- Khapre, Y.; Kyamuhangire, W.; Njoroge, E.K.; Kathurima, C.W. Analysis of the diversity of some arabica and robusta coffee from kenya and uganda by sensory and biochemical components and their correlation to taste. IOSR-JESTFT 2017, 11, 2319–2399. [Google Scholar]
- Farah, A.; Monteiro, M.C.; Calado, V.; Franca, A.S.; Trugo, L.C. Correlation between Cup Quality and Chemical Attributes of Brazilian Coffee. Food Chem. 2006, 98, 373–380. [Google Scholar] [CrossRef]
- Supelco. Application Note 21: Separation of Organic Acids in Beverages Using a SUPELCOGELTM C-610H HPLC Column. Supelco: Bellefonte, Pennsylvania, Estados Unidos. 1995. Available online: https://www.mercklifescienceth.com/product/pdf/59320-U.pdf (accessed on 23 July 2023).
- Carrillo, I.F. Manual de Laboratorio de Suelos; Cenicafe: Manizales, Caldas, 1985; Available online: https://biblioteca.cenicafe.org/handle/10778/803 (accessed on 7 December 2023).
- Schrader, K.; Kiehne, A.; Engelhardt, U.H.; Gerhard Maier, H. Determination of Chlorogenic Acids with Lactones in Roasted Coffee. J. Sci. Food Agric. 1996, 71, 392–398. [Google Scholar] [CrossRef]
- Trugo, L.C.; Macrae, R. Chlorogenic Acid Composition of Instant Coffees. Analyst 1984, 109, 263–266. [Google Scholar] [CrossRef]
- SCA. S/f. SCA Research: Protocols & Best Practices. Separations. Available online: https://sca.coffee/research/protocols-best-practices (accessed on 8 September 2023).
- Peñuela-Martínez, A.E.; Moreno-Riascos, S.; Medina-Rivera, R. Influence of Temperature-Controlled Fermentation on the Quality of Mild Coffee (Coffea arabica L.) Cultivated at Different Elevations. Agriculture 2023, 13, 1132. [Google Scholar] [CrossRef]
- Amalia, F.; Aditiawati, P.; Yusianto; Putri, S.P.; Fukusaki, E. Gas Chromatography/Mass Spectrometry-Based Metabolite Profiling of Coffee Beans Obtained from Different Altitudes and Origins with Various Postharvest Processing. Metabolomics 2021, 17, 69. [Google Scholar] [CrossRef]
- Dong, R.; Zhu, M.; Long, Y.; Yu, Q.; Li, C.; Xie, J.; Huang, Y.; Chen, Y. Exploring Correlations between Green Coffee Bean Components and Thermal Contaminants in Roasted Coffee Beans. Food Res. Int. 2023, 167, 112700. [Google Scholar] [CrossRef] [PubMed]
- SCA. What Is Specialty Coffee? Available online: https://sca.coffee/research/what-is-specialty-coffee (accessed on 8 September 2023).
- Zanin, R.C.; Corso, M.P.; Kitzberger, C.S.G.; Scholz, M.B.D.S.; Benassi, M.D.T. Good Cup Quality Roasted Coffees Show Wide Variation in Chlorogenic Acids Content. LWT 2016, 74, 480–483. [Google Scholar] [CrossRef]
- Rune, C.J.B.; Giacalone, D.; Steen, I.; Duelund, L.; Münchow, M.; Clausen, M.P. Acids in Brewed Coffees: Chemical Composition and Sensory Threshold. Curr. Res. Food Sci. 2023, 6, 100485. [Google Scholar] [CrossRef] [PubMed]
Compound Acid | Retention Time (min) | Equation | Regression Coefficient (R2) | Working Range mg/L | LOD (mg/L) | LOQ (mg/L) |
---|---|---|---|---|---|---|
Acetic | 19.69 | y = 1.42 × 103x − 7.56 × 102 | 0.9958 | 50–500 | 5.00 | 16.67 |
Citric | 11.12 | y = 2.44 × 103x − 7.74 × 103 | 0.9999 | 60–960 | 6.00 | 20.00 |
Lactic | 16.65 | y = 4.47 × 103x + 3.96 × 103 | 0.9955 | 6–96 | 0.60 | 2.00 |
Malic | 13.16 | y = 1.68 × 103x − 6.12 × 103 | 0.9996 | 90–450 | 9.00 | 30.00 |
Quinic | 13.72 | y = 1.09 × 103x − 3.67 × 103 | 0.9994 | 180–900 | 18.00 | 60.00 |
Succinic | 16.29 | y = 1.33 × 103x − 4.94 × 103 | 0.9970 | 20–100 | 4.00 | 12.00 |
Parameter | Harvest 1 (2021) Mean ± Sd | Harvest 2 (2022) Mean ± Sd | General Mean ± Sd |
---|---|---|---|
Phosphoric acid (H3PO4) 1 | 0.53 ± 0.05 | 0.52 ± 0.05 | 0.53 ± 0.05 |
Organic Acids 2 | |||
Acetic | 4 ± 3 | 2.2 ± 0.7 | 3.2 ± 2.6 |
Citric | 12.3 ± 1.6 | 11.9 ± 1.5 | 12.1 ± 1.6 |
Lactic | 0.48 ± 0.11 | 0.27 ± 0.02 | 0.37 ± 0.13 |
Malic | 4.3 ± 0.8 | 4.5 ± 0.8 | 4.4 ± 0.8 |
Quinic | 6.4 ± 0.7 | 5.5 ± 0.5 | 6 ± 0.8 |
Succinic | 1.6 ± 0.8 | 1.7 ± 0.6 | 1.6 ± 0.7 |
Chlorogenic Acids 1 | |||
Caffeoylquinic acid (CQA) | 5.44 ± 0.35 | 5.70 ± 0.33 | 5.57 ± 0.36 |
3-caffeoylquinic acid (3-CQA) | 0.34 ± 0.10 | 0.35 ± 0.08 | 0.35 ± 0.09 |
4-caffeoylquinic acid (4-CQA) | 0.52 ± 0.10 | 0.54 ± 0.08 | 0.53 ± 0.09 |
5-caffeoylquinic acid (5-CQA) | 4.58 ± 0.32 | 4.81 ± 0.29 | 4.70 ± 0.33 |
Dicaffeoylquinic acids (di-CQA) | 0.73 ± 0.09 | 0.73 ± 0.10 | 0.73 ± 0.10 |
3,4-dicaffeoylquinic acid (3,4-diCQA) | 0.13 ± 0.03 | 0.14 ± 0.06 | 0.13 ± 0.05 |
3,5-dicaffeoylquinic acid (3,5-diCQA) | 0.40 ± 0.10 | 0.40 ± 0.12 | 0.40 ± 0.11 |
4,5-dicaffeoylquinic acid (4,5-diCQA) | 0.20 ± 0.04 | 0.19 ± 0.04 | 0.19 ± 0.04 |
Feruloylquinic acids (FQA) | 0.38 ± 0.03 | 0.46 ± 0.14 | 0.40 ± 0.04 |
4-feruloylquinic acid (4-FQA) | 0.03 ± 0.01 | 0.03 ± 0.01 | 0.03 ± 0.01 |
5-feruloylquinic acid (5-FQA) | 0.35 ± 0.03 | 0.39 ± 0.03 | 0.37 ± 0.04 |
Attributes | Mean ± Sd | Minimum | Maximum |
---|---|---|---|
Fragrance/Aroma | 7.57 ± 0.21 | 6.88 | 8.25 |
Flavor | 7.54 ± 0.24 | 7.00 | 8.35 |
Aftertaste | 7.38 ± 0.22 | 7.00 | 8.12 |
Acidity | 7.52 ± 0.2 | 7.00 | 8.25 |
Bodysuit | 7.48 ± 0.19 | 7.00 | 8.13 |
Balance | 7.45 ± 0.2 | 7.00 | 8.00 |
Overall | 7.49 ± 0.27 | 7.00 | 9.00 |
Score Range | Quality Classification |
---|---|
≥7.00–<7.25 | Good |
≥7.25–<7.75 | Very good |
≥7.75 | Excellent |
Acid Group | Acidity Classification | ||
---|---|---|---|
Good | Very Good | Excellent | |
≥7.00–<7.25 | ≥7.25–<7.75 | ≥7.75 | |
Phosphoric acid (H3PO4) 2 | 0.52 ± 0.04 b | 0.53 ± 0.05 b | 0.56 ± 0.05 a |
Organic acids 1 | |||
Citric | 12.4 ± 1.5 a | 11.7 ± 1.5 a | 12 ± 1.5 a |
Lactic | 0.37 ± 0.13 b | 0.32 ± 0.11 b | 0.45 ± 0.13 a |
Malic | 4.5 ± 0.8 a | 4.5 ± 0.8 a | 3.8 ± 0.8 b |
Quinic | 6 ± 0.7 ab | 5.7 ± 0.7 b | 6.1 ± 0.8 a |
Succinic | 1.7 ± 0.6 a | 1.6 ± 0.7 a | 1.6 ± 0.7 a |
Isomers of CGA 2 | |||
3-CQA | 0.36 ± 0.09 a | 0.32 ± 0.08 a | 0.26 ± 0.07 b |
4-CQA | 0.55 ± 0.09 a | 0.51 ± 0.09 a | 0.45 ± 0.08 b |
5-CQA | 4.69 ± 0.31 a | 4.81 ± 0.31 a | 4.81 ± 0.30 a |
3,4-di-CQA | 0.14 ± 0.04 a | 0.13 ± 0.06 a | 0.12 ± 0.03 a |
3,5-di-CQA | 0.40 ± 0.10 b | 0.42 ± 0.11 b | 0.51 ± 0.10 a |
4,5-di-CQA | 0.20 ± 0.04 a | 0.18 ± 0.04 b | 0.17 ± 0.03 b |
4-FQA | 0.03 ± 0.01a | 0.03 ± 0.01 a | 0.03 ± 0.01 a |
5-FQA | 0.37 ± 0.03 a | 0.37 ± 0.04 a | 0.36 ± 0.03 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Echeverri-Giraldo, L.F.; Osorio Pérez, V.; Tabares Arboleda, C.; Vargas Gutiérrez, L.J.; Imbachi Quinchua, L.C. Content of Acidic Compounds in the Bean of Coffea arabica L., Produced in the Department of Cesar (Colombia), and Its Relationship with the Sensorial Attribute of Acidity. Separations 2024, 11, 52. https://doi.org/10.3390/separations11020052
Echeverri-Giraldo LF, Osorio Pérez V, Tabares Arboleda C, Vargas Gutiérrez LJ, Imbachi Quinchua LC. Content of Acidic Compounds in the Bean of Coffea arabica L., Produced in the Department of Cesar (Colombia), and Its Relationship with the Sensorial Attribute of Acidity. Separations. 2024; 11(2):52. https://doi.org/10.3390/separations11020052
Chicago/Turabian StyleEcheverri-Giraldo, Luz Fanny, Valentina Osorio Pérez, Claudia Tabares Arboleda, Lady Juliet Vargas Gutiérrez, and Luis Carlos Imbachi Quinchua. 2024. "Content of Acidic Compounds in the Bean of Coffea arabica L., Produced in the Department of Cesar (Colombia), and Its Relationship with the Sensorial Attribute of Acidity" Separations 11, no. 2: 52. https://doi.org/10.3390/separations11020052
APA StyleEcheverri-Giraldo, L. F., Osorio Pérez, V., Tabares Arboleda, C., Vargas Gutiérrez, L. J., & Imbachi Quinchua, L. C. (2024). Content of Acidic Compounds in the Bean of Coffea arabica L., Produced in the Department of Cesar (Colombia), and Its Relationship with the Sensorial Attribute of Acidity. Separations, 11(2), 52. https://doi.org/10.3390/separations11020052