Efficient Removal of Tetracycline by Metal–Organic Framework ZIF-67 and Its Mechanism
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials and Instruments
2.2. Synthesis of ZIF-67W
2.3. Characterization
2.4. Adsorption Experimental Studies
2.4.1. Batch Experiments
2.4.2. Effect of the TC Solution pH
2.4.3. Adsorption Isothermal Analysis
2.4.4. Adsorption Kinetics
2.4.5. Statistical Analyses
3. Results and Discussion
3.1. Morphology of the Material
3.2. Chemical Analyses
3.2.1. FTIR Spectroscopy and XRD Assessment
3.2.2. SSA and PS Analysis
3.3. Study of TC Adsorption Properties
3.3.1. Influence of pH on the AC of ZIF-67
3.3.2. Study of the Impacts of Contact Time and Adsorption Kinetics
3.3.3. Impact of Initial Content and Study of Adsorption Isotherms
3.3.4. Effect of Temperature on TC Adsorption Properties
3.4. Mechanism Analysis
3.4.1. SEM Analysis
3.4.2. Infrared Spectra of ZIF-67
3.4.3. XPS Infrared Spectrograms
3.4.4. Pore Size Adsorption
3.5. Evaluation of Cycling Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nguyen, V.-T.; Nguyen, T.-B.; Chen, C.-W.; Hung, C.-M.; Hien Vo, T.-D.; Chang, J.-H.; Dong, C.-D. Influence of pyrolysis temperature on polycyclic aromatic hydrocarbons production and tetracycline adsorption behavior of biochar derived from spent coffee ground. Bioresour. Technol. 2019, 284, 197–203. [Google Scholar] [CrossRef]
- Polubesova, T.; Zadaka, D.; Groisman, L.; Nir, L. Water remediation by micelle–clay system: Case study for tetracycline and sulfonamide antibiotics. Water Res. 2006, 40, 2369–2374. [Google Scholar] [CrossRef]
- Cao, J.; Lai, L.; Lai, B.; Yao, G.; Chen, X.; Song, L. Degradation of tetracycline by peroxymonosulfate activated with zero-valent iron: Performance, intermediates, toxicity and mechanism. Chem. Eng. J. 2019, 364, 45–56. [Google Scholar] [CrossRef]
- Chen, J.; Gao, Q.; Zhang, X.; Liu, Y.; Wang, P.; Jiao, Y.; Yang, Y. Nanometer mixed-valence silver oxide enhancing adsorption of ZIF-8 for removal of iodide in solution. Sci. Total Environ. 2019, 646, 634–644. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Liu, Y.; Zhou, C.; Luo, G.; Zhang, S.; Chen, J. A novel porous carbon derived from hydrothermal carbon for efficient adsorption of tetracycline. Carbon 2014, 77, 627–636. [Google Scholar] [CrossRef]
- Wang, C.; Lin, C.-Y.; Liao, G.-Y. Degradation of antibiotic tetracycline by ultrafine-bubble ozonation process. J. Water Process Eng. 2020, 37, 101463. [Google Scholar] [CrossRef]
- Pulicharla, K.H.R.; Brar, S.K.; Surampalli, R.Y. Tetracyclines metal complexation: Significance and fate of mutual existence in the environment. Environ. Pollut. 2017, 221, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Shamsudin, M.S.; Azha, S.F.; Sellaoui, L.; Badawi, M.; Al-Ghamdi, Y.; Petriciolet, A.B.; Ismail, S. Fabrication and characterization of a thin coated adsorbent for antibiotic and analgesic adsorption: Experimental investigation and statistical physical modelling. Chem. Eng. J. 2020, 401, 126007. [Google Scholar] [CrossRef]
- Luo, J.; Ning, X.; Zhan, L.; Zhou, X. Facile construction of a fascinating Z-scheme AgI/Zn3V2O8 photocatalyst for the photocatalytic degradation of tetracycline under visible light irradiation. Sep. Purif. Technol. 2021, 255, 117691. [Google Scholar] [CrossRef]
- Xu, S.; Lv, Y.; Zhang, Y. 3D hydrangea-like Mn3O4@(PSS/PDDA/Pt)n with ultrafine Pt nanoparticles modified anode for electrochemical oxidation of tetracycline. J. Taiwan Inst. Chem. Eng. 2020, 112, 240–250. [Google Scholar] [CrossRef]
- Xing, H.; Gao, S.; Zhang, J.; Xu, Y.; Du, H.; Zhu, Z.; Wang, J.; Yao, Y.; Zhang, S.; Ren, L. Ultrasound-assisted synthesized BiFeO3 as FeOH+ promoted peroxymonosulfate activator for highly efficient degradation of tetracycline. J. Alloys Compd. 2021, 854, 157281. [Google Scholar] [CrossRef]
- Saitoh, T.; Shibata, K.; Fujimori, K.; Ohtani, Y. Rapid removal of tetracycline antibiotics from water by coagulation-flotation of sodium dodecyl sulfate and poly(allylamine hydrochloride) in the presence of Al(III) ions. Sep. Purif. Technol. 2017, 187, 76–83. [Google Scholar] [CrossRef]
- Wang, J.; Lei, S.; Liang, L. Preparation of porous activated carbon from semi-coke by high temperature activation with KOH for the high-efficiency adsorption of aqueous tetracycline. Appl. Surf. Sci. 2020, 530, 147187. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, K.; Kang, R.; Xia, J.; Yu, G.; Deng, S. A comparative study of rigid and flexible MOFs for the adsorption of pharmaceuticals: Kinetics, isotherms and mechanisms. J. Hazard. Mater. 2018, 359, 248–257. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Zhang, X.; Zhu, X.; Li, Y. Removal of Intermediate Aromatic Halogenated DBPs by Activated Carbon Adsorption: A New Approach to Controlling Halogenated DBPs in Chlorinated Drinking Water. Environ. Sci. Technol. 2017, 51, 3435–3444. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The Chemistry and Applications of Metal-Organic Frameworks. Science 2013, 341, 1230444. [Google Scholar] [CrossRef]
- Si, Y.; Li, Y.; Zou, J.; Xiong, X.; Zeng, X.; Zhou, J. Photocatalytic Performance of a Novel MOF/BiFeO3 Composite. Materials 2017, 10, 1161. [Google Scholar] [CrossRef]
- Challagulla, S.; Payra, S.; Rameshan, R.; Roy, S. Low temperature catalytic reduction of NO over porous Pt/ZIF-8. J. Environ. Chem. Eng. 2020, 8, 103815. [Google Scholar] [CrossRef]
- Liu, X.; Wang, M.; Zhou, S.; Wang, J.; Xin, H.; Wei, S.; Liu, S.; Wang, Z.; Lu, X. Tracking CO2 capture and separation over N2 in a flexible metal–organic framework: Insights from GCMC and DFT simulations. J. Mater. Sci. 2021, 56, 10414–10423. [Google Scholar] [CrossRef]
- Cychosz, K.A.; Wong-Foy, A.G.; Matzger, A.J. Liquid Phase Adsorption by Microporous Coordination Polymers: Removal of Organosulfur Compounds. J. Am. Chem. Soc. 2008, 130, 6938–6939. [Google Scholar] [CrossRef]
- Feng, X.; Wu, T.; Carreon, M.A. Synthesis of ZIF-67 and ZIF-8 crystals using DMSO (Dimethyl Sulfoxide) as solvent and kinetic transformation studies. J. Cryst. Growth 2016, 455, 152–156. [Google Scholar] [CrossRef]
- Qian, J.; Sun, F.; Qin, L. Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals. Mater. Lett. 2012, 82, 220–223. [Google Scholar] [CrossRef]
- Dong, Y.; Zheng, J. Environmentally friendly synthesis of Co-based zeolitic imidazolate framework and its application as H2O2 sensor. Chem. Eng. J. 2020, 392, 123690. [Google Scholar] [CrossRef]
- Hu, Y.; Li, W.; Wei, Z.; Yang, H.; Li, S. Advances in electrochemical sensing with ZIF-67 and related materials. Int. J. Electrochem. Sci. 2023, 18, 100180. [Google Scholar] [CrossRef]
- Sohouli, E.; Karimi, M.S.; Khosrowshahi, E.M.; Rahimi-Nasrabadi, M.; Ahmadi, F. Fabrication of an electrochemical mesalazine sensor based on ZIF-67. Measurement 2020, 165, 108140. [Google Scholar] [CrossRef]
- Tang, J.; Hui, Z.-Z.; Hu, T.; Cheng, X.; Guo, J.-H.; LI, Z.-R.; Yu, H. A sensitive acetaminophen sensor based on Co metal–organic framework (ZIF-67) and macroporous carbon composite. Rare Met. 2022, 41, 189–198. [Google Scholar] [CrossRef]
- Yang, L.; Li, H.; Yu, Y.; Wu, Y.; Zhang, L. Assembled 3D MOF on 2D Nanosheets for Self-boosting Catalytic Synthesis of N-doped Carbon Nanotube Encapsulated Metallic Co Electrocatalysts for Overall Water Splitting. Appl. Catal. B Environ. 2020, 271, 118939. [Google Scholar] [CrossRef]
- Khan, A.; Ali, M.; Ilyas, A.; Naik, P.; Vankelecom, I.F.; Gilani, M.A.; Bilad, M.R.; Sajjad, Z.; Khan, A.L. ZIF-67 filled PDMS mixed matrix membranes for recovery of ethanol via pervaporation. Sep. Purif. Technol. 2018, 206, 50–58. [Google Scholar] [CrossRef]
- Chen, G.; He, S.; Shi, G.; Ma, Y.; Ruan, C.; Jin, X.; Chen, Q.; Liu, X.; Dai, H.; Chen, X.; et al. In-situ immobilization of ZIF-67 on wood aerogel for effective removal of tetracycline from water. Chem. Eng. J. 2021, 423, 130184. [Google Scholar] [CrossRef]
- Xue, Y.; Xiang, P.; Wang, H.; Jiang, Y.; Long, Y.; Lian, H.; Shi, W. Mechanistic insights into selective adsorption and separation of multi-component anionic dyes using magnetic zeolite imidazolate framework-67 composites. J. Mol. Liq. 2019, 296, 111990. [Google Scholar] [CrossRef]
- Song, M.; Wei, Y.; Yu, L.; Tang, X. The application of prepared porous carbon materials: Effect of different components on the heavy metal adsorption. Waste Manag. Res. 2016, 34, 534–541. [Google Scholar] [CrossRef]
- Liu, Y.; Gonçalves, A.A.; Zhou, Y.; Jaroniec, M. Importance of surface modification of γ-alumina in creating its nanostructured composites with zeolitic imidazolate framework ZIF-67. J. Colloid Interface Sci. 2018, 526, 497–504. [Google Scholar] [CrossRef]
- Yinan, W.J.L. Novel functionalization of ZIF-67 for an efficient broad-spectrum photocatalyst: Formaldehyde degradation at room temperature. New J. Chem. 2022, 46, 2962–2970. [Google Scholar]
- Li, Y.; Jin, Z.; Zhao, T. Performance of ZIF-67—Derived fold polyhedrons for enhanced photocatalytic hydrogen evolution. Chem. Eng. J. 2020, 382, 123051. [Google Scholar] [CrossRef]
- Qiang, Z.; Adams, C. Potentiometric determination of acid dissociation constants (pKa) for human and veterinary antibiotics. Water Res. 2004, 38, 2874–2890. [Google Scholar] [CrossRef]
- Guo, Y.; Yan, C.; Wang, P.; Rao, L.; Wang, C. Doping of carbon into boron nitride to get the increased adsorption ability for tetracycline from water by changing the pH of solution. Chem. Eng. J. 2020, 387, 124136. [Google Scholar] [CrossRef]
- Guixia, Z. Removal of Pb(ii) ions from aqueous solutions on few-layered graphene oxide nanosheets. Dalton Trans. 2011, 40, 10945–10952. [Google Scholar]
- Zhong, X.; Lu, Z.; Liang, W.; Hu, B. The magnetic covalent organic framework as a platform for high-performance extraction of Cr(VI) and bisphenol a from aqueous solution. J. Hazard. Mater. 2020, 393, 122353. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Ma, C.; Tao, J.; Li, J.; Du, K.; Wei, Z.; Chen, C.; Wang, Z.; Zhao, C.; Ma, M. Optimization of polyvinylamine-modified nanocellulose for chlorpyrifos adsorption by central composite design. Carbohydr. Polym. 2020, 245, 116542. [Google Scholar] [CrossRef] [PubMed]
- Qu, J.; Dong, M.; Bi, F.; Tao, Y.; Wang, L.; Jiang, Z.; Zhang, G.; Zhang, B.; Zhang, Y. Microwave-assisted one-pot synthesis of β-cyclodextrin modified biochar for stabilization of Cd and Pb in soil. J. Clean. Prod. 2022, 346, 131165. [Google Scholar] [CrossRef]
- Liu, H.; Xu, G.; Li, G. Preparation of porous biochar based on pharmaceutical sludge activated by NaOH and its application in the adsorption of tetracycline. J. Colloid Interface Sci. 2021, 587, 271–278. [Google Scholar] [CrossRef]
- Yin, Q.; Nie, Y.; Han, Y.; Wang, R.; Zhao, Z. Properties and the Application of Sludge-Based Biochar in the Removal of Phosphate and Methylene Blue from Water: Effects of Acid Treating. Langmuir 2022, 38, 1833–1844. [Google Scholar] [CrossRef]
- Li, C.; Zhang, N.; Chen, J.; Ji, J.; Liu, X.; Wang, J.; Wang, J.; Zhu, J.; Ma, Y.L. Temperature and pH sensitive composite for rapid and effective removal of sulfonylurea herbicides in aqueous solution. Environ. Pollut. 2019, 255, 113150. [Google Scholar] [CrossRef]
- Qu, J.; Wang, S.; Jin, L.; Liu, Y.; Yin, R.; Jiang, Z.; Tao, Y.; Huang, J.; Zhang, Y. Magnetic porous biochar with high specific surface area derived from microwave-assisted hydrothermal and pyrolysis treatments of water hyacinth for Cr(Ⅵ) and tetracycline adsorption from water. Bioresour. Technol. 2021, 340, 125692. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Gao, M.; Cao, M.; Dan, J.; Yang, H. Self-propagating synthesis of Zn-loaded biochar for tetracycline elimination. Sci. Total Environ. 2021, 759, 143542. [Google Scholar] [CrossRef] [PubMed]
- Qu, J.; Zhang, W.; Bi, F.; Yan, S.; Miao, X.; Zhang, B.; Wang, Y.; Ge, C.; Zhang, Y. Two-step ball milling-assisted synthesis of N-doped biochar loaded with ferrous sulfide for enhanced adsorptive removal of Cr(VI) and tetracycline from water. Environ. Pollut. 2022, 306, 119398. [Google Scholar] [CrossRef]
- Guo, Z.; Yang, F.; Yang, R.; Sun, L.; Li, Y.; Xu, J. Preparation of novel ZnO-NP@Zn-MOF-74 composites for simultaneous removal of copper and tetracycline from aqueous solution. Sep. Purif. Technol. 2021, 274, 118949. [Google Scholar] [CrossRef]
- Chen, B.; Li, Y.; Li, M.; Cui, M.; Xu, W.; Li, L.; Sun, Y.; Wang, M.; Zhang, Y.; Chen, K. Rapid adsorption of tetracycline in aqueous solution by using MOF-525/graphene oxide composite. Microporous Mesoporous Mater. 2021, 328, 111457. [Google Scholar] [CrossRef]
- Wu, J.; Gao, Y.; Wei, S.; Chen, P.; Gu, D.; Fu, B.; Chen, M. Plasma modification of Fe-MOF for efficient organic pollutants removal. J. Solid State Chem. 2021, 302, 122350. [Google Scholar] [CrossRef]
- Zhong, U. High-performance and selective adsorption of ZIF-8/MIL-100 hybrids towards organic pollutants. Nanoscale Adv. 2022, 4, 1431–1444. [Google Scholar] [CrossRef] [PubMed]
- Saghir, S.; Xiao, Z. Facile preparation of metal-organic frameworks-8 (ZIF-8) and its simultaneous adsorption of tetracycline (TC) and minocycline (MC) from aqueous solutions. Mater. Res. Bull. 2021, 141, 111372. [Google Scholar] [CrossRef]
- Li, N.; Zhou, L.; Jin, X.; Owens, G.; Chen, Z. Simultaneous removal of tetracycline and oxytetracycline antibiotics from wastewater using a ZIF-8 metal organic-framework. J. Hazard. Mater. 2019, 366, 563–572. [Google Scholar] [CrossRef]
- Yu, R.; Wu, Z. High adsorption for ofloxacin and reusability by the use of ZIF-8 for wastewater treatment. Microporous Mesoporous Mater. 2020, 308, 110494. [Google Scholar] [CrossRef]
- Tian, N.; Jia, Q.; Su, H.; Zhi, Y.; Ma, A.; Wu, J.; Shan, S. The synthesis of mesostructured NH2-MIL-101(Cr) and kinetic and thermodynamic study in tetracycline aqueous solutions. J. Porous Mater. 2016, 23, 1269–1278. [Google Scholar] [CrossRef]
- Xu, L.; Xiong, Y.; Dang, B.; Ye, Z.; Jin, C.; Sun, Q.; Yu, X. In-situ anchoring of Fe3O4/ZIF-67 dodecahedrons in highly compressible wood aerogel with excellent microwave absorption properties. Mater. Des. 2019, 182, 108006. [Google Scholar] [CrossRef]
- Guangli, Y.; Sun, J.; Muhammad, F.; Pengyuan, W.; Zhu, G. Cobalt-based metal organic framework as precursor to achieve superior catalytic activity for aerobic epoxidation of styrene. RSC Adv. 2014, 4, 38804–38811. [Google Scholar]
- Wang, G.; Sun, T.; Sun, Z.; Hu, X. Preparation of copper based metal organic framework materials and its effective adsorptive removal of ceftazidime from aqueous solutions. Appl. Surf. Sci. 2020, 532, 147411. [Google Scholar] [CrossRef]
- Zhao, J.; Gao, F.; Sun, Y.; Fang, W.; Li, X.; Dai, Y. New use for biochar derived from bovine manure for tetracycline removal. J. Environ. Chem. Eng. 2021, 9, 105585. [Google Scholar] [CrossRef]
- Jain, C.K. Adsorption of zinc onto bed sediments of the River Ganga: Adsorption models and kinetics. Hydrol. Sci. J. 2001, 46, 419–434. [Google Scholar] [CrossRef]
Materials | Specific Surface Area (m2·g−1) | Pore Volume (cm3·g−1) | Average Pore Size (nm) | Literature Citation |
---|---|---|---|---|
ZIF-67 | 1245.00 | 0.66 | / | [28] |
ZIF-67 | 1477.00 | 0.71 | / | [32] |
ZIF-67 | 1334.34 | 0.67 | 1.58 | [33] |
ZIF-67 | 1463.00 | 0.04 | / | [34] |
ZIF-67 | 1805.97 ± 15.12 | 0.77 ± 0.08 | 2.18 ± 0.15 nm | This text |
Material | Pseudo-First-Order Kinetic Model | Pseudo-Second-Order Kinetic Model | Elovich Model | ||||||
---|---|---|---|---|---|---|---|---|---|
ZIF-67 | k1 (min−1) | qe (mg·g−1) | R2 | k2 (min−1) | qe (mg·g−1) | R2 | a (mg·g−1) | b (g·mg−1·h−1) | R2 |
0.013 | 1369.738 | 0.783 | 1.200 | 1533.470 | 0.968 | 100.200 | 0.038 | 0.954 |
Material | Langmuir | Freundlich | Temkin | ||||||
---|---|---|---|---|---|---|---|---|---|
ZIF-67 | qm (mg·g−1) | KL (L·mg−1) | R2 | KF (mg1−n·g−1·Ln) | n | R2 | a | b | R2 |
1707.666 | 0.002 | 0.976 | 16.841 | 1.372 | 0.945 | 0.023 | 0.598 | 0.936 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, S.; Xu, Y.; Yao, X.; Wang, C.; Liu, P.; Zhao, H.; Lu, J.; Ju, J. Efficient Removal of Tetracycline by Metal–Organic Framework ZIF-67 and Its Mechanism. Separations 2024, 11, 63. https://doi.org/10.3390/separations11020063
Zheng S, Xu Y, Yao X, Wang C, Liu P, Zhao H, Lu J, Ju J. Efficient Removal of Tetracycline by Metal–Organic Framework ZIF-67 and Its Mechanism. Separations. 2024; 11(2):63. https://doi.org/10.3390/separations11020063
Chicago/Turabian StyleZheng, Shengyang, Yaping Xu, Xu Yao, Chenzhe Wang, Ping Liu, Haitao Zhao, Jianbing Lu, and Jing Ju. 2024. "Efficient Removal of Tetracycline by Metal–Organic Framework ZIF-67 and Its Mechanism" Separations 11, no. 2: 63. https://doi.org/10.3390/separations11020063
APA StyleZheng, S., Xu, Y., Yao, X., Wang, C., Liu, P., Zhao, H., Lu, J., & Ju, J. (2024). Efficient Removal of Tetracycline by Metal–Organic Framework ZIF-67 and Its Mechanism. Separations, 11(2), 63. https://doi.org/10.3390/separations11020063