Rapid Determination of Taraxacum kok-saghyz Rubber Content Using a Pyrolyzer Hyphenated with a Miniaturized Mass Spectrometer
Abstract
:1. Introduction
Method | Equipment | Detection Capability | Sample Type Suitability | References |
---|---|---|---|---|
Chemical Extraction Method | Grinding, stirring | Flow method (99.5%) and Blender method (approximately 75%) can be obtained using the purity of latex | TKS, Scorzonera tau-saghyz, Scorzonera Uzbekistanica | [12] |
Soxhlet Extractor Method | Soxhlet extractor | Estimate of the variance for each variety with a mean of 0.069% rubber | Guayule | [13] |
Accelerated Solvent Extraction | Ball mill grinding, evaporative light scattering | Linear range from 0 to 2 mg/mL R2 = 0.995 | Guayule | [14] |
Alkali Boiling Method | Alkali boiling and water milling | Rough estimate with <10% variance | TKS | [31] |
Bromination Method | Spectrophotometric analysis with brominating solution | Variance within 3% | Natural rubber latex | [32] |
Viscometry Method | Viscometry with temperature control | Linear correlation with weight (R2 = 0.94) and IR (R2 = 0.99) methods | Guayule plant material | [33] |
Refractive Index Method | Refractive index measurement | Average deviation of 0.29% | Natural rubber latex | [34] |
Gel Chromatography | Size exclusion chromatography | LOD is 0.58 mg/mL for leaves and 0.47 mg/mL for fruit; the linear range is 2–10 mg/mL for leaves and 0.5–10 mg/mL for fruit | Eucommia leaves and fruits | [35] |
IR Method | Fourier transform infrared spectroscopy | LOD = 12.5 µg; linear range 25–200 µg | Eucommia rubber | [16] |
NIR Method | Portable fiber optic NIR spectrometer | R2 = 0.95; ratio of performance to deviation (RPD) = 5.54 | TKS fresh roots | [17] |
NMR Method | Carbon-13 nuclear magnetic resonance | ±1.0% absolute accuracy, LOD 0.5% by weight | Guayule | [15] |
PY-GC-MS Method | Pyrolysis–gas chromatography–mass spectrometry detection | LOD = 2.603 mg/g Linear range from 1.20% ± 0.20% to 8.61% ± 0.28% | TKS | [30] |
PY-MS Method | Pyrolysis and mass spectrometry | LOD = 0.639 µg Linear range of 12–494 µg RSD ≤ 3.93% | TKS and theoretically other rubber-producing plants | This article |
2. Materials and Methods
2.1. Materials
2.2. Preparation of TKS Rubber Reference Samples
2.3. Experimental Apparatus
2.4. Vehicle Modification for PY-MS
3. Results and Discussion
3.1. Principles of Detection Using the PY-MS Method
3.2. Establishing Standard Quantitative Curves for the PY-MS Method
3.3. Assessment of Detection Limits and Recovery in TKS Dry Weight Samples
3.4. Qualitative Analysis Results of TKS Seeds via PY-MS
3.5. Quantitative Analysis of NR Content in TKS Fresh Root Samples Using Vehicle-Mounted PY-MS
3.6. Comparison with Other Methods
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cornish, K. Similarities and Differences in Rubber Biochemistry among Plant Species. Phytochemistry 2001, 57, 1123–1134. [Google Scholar] [CrossRef] [PubMed]
- Boonmahitthisud, A.; Boonkerd, K. Sustainable Development of Natural Rubber and Its Environmentally Friendly Composites. Curr. Opin. Green Sustain. Chem. 2021, 28, 100446. [Google Scholar] [CrossRef]
- Mooibroek, H.; Cornish, K. Alternative Sources of Natural Rubber. Appl. Microbiol. Biotechnol. 2000, 53, 355–365. [Google Scholar] [CrossRef] [PubMed]
- Olsen, K.M.; Li, L.-F. Rooting for New Sources of Natural Rubber. Natl. Sci. Rev. 2018, 5, 89. [Google Scholar] [CrossRef]
- Krotkov, G. A Review of Literature on Taraxacum koksaghyz Rod. Bot. Rev. 1945, 11, 417–461. [Google Scholar] [CrossRef]
- Whalen, M.; McMahan, C.; Shintani, D. Development of Crops to Produce Industrially Useful Natural Rubber. In Isoprenoid Synthesis in Plants and Microorganisms: New Concepts and Experimental Approaches; Bach, T.J., Rohmer, M., Eds.; Springer: New York, NY, USA, 2013; pp. 329–345. ISBN 978-1-4614-4063-5. [Google Scholar]
- Lin, T.; Xu, X.; Ruan, J.; Liu, S.; Wu, S.; Shao, X.; Wang, X.; Gan, L.; Qin, B.; Yang, Y.; et al. Genome Analysis of Taraxacum kok-saghyz Rodin Provides New Insights into Rubber Biosynthesis. Natl. Sci. Rev. 2018, 5, 78–87. [Google Scholar] [CrossRef]
- Arias, M.; Herrero, J.; Ricobaraza, M.; Hernández, M.; Ritter, E. Evaluation of Root Biomass, Rubber and Inulincontents in Nine Taraxacum koksaghyz Rodin Populations. Ind. Crops Prod. 2016, 83, 316–321. [Google Scholar] [CrossRef]
- Kreuzberger, M.; Hahn, T.; Zibek, S.; Schiemann, J.; Thiele, K. Seasonal Pattern of Biomass and Rubber and Inulin of Wild Russian Dandelion (Taraxacum koksaghyz L. Rodin) under Experimental Field Conditions. Eur. J. Agron. 2016, 80, 66–77. [Google Scholar] [CrossRef]
- Hodgson-Kratky, K.J.; Stoffyn, O.M.; Wolyn, D.J. Recurrent Selection for Rubber Yield in Russian Dandelion. J. Am. Soc. Hortic. Sci. 2017, 142, 470–475. [Google Scholar] [CrossRef]
- Stolze, A.; Wanke, A.; van Deenen, N.; Geyer, R.; Prüfer, D.; Schulze Gronover, C. Development of Rubber-enriched Dandelion Varieties by Metabolic Engineering of the Inulin Pathway. Plant Biotechnol. J. 2017, 15, 740–753. [Google Scholar] [CrossRef] [PubMed]
- Buranov, A.U.; Elmuradov, B.J. Extraction and Characterization of Latex and Natural Rubber from Rubber-Bearing Plants. J. Agric. Food Chem. 2010, 58, 734–743. [Google Scholar] [CrossRef] [PubMed]
- Nurthen, E.J.; McCleary, B.V.; Milthorpe, P.L.; Whitworth, J.W. Modified Soxhlet Procedure for the Quantification of Resin and Rubber Content of Guayule. Anal. Chem. 1986, 58, 448–453. [Google Scholar] [CrossRef]
- Salvucci, M.E.; Coffelt, T.A.; Cornish, K. Improved Methods for Extraction and Quantification of Resin and Rubber from Guayule. Ind. Crops Prod. 2009, 30, 9–16. [Google Scholar] [CrossRef]
- Visintainer, J.; Beebe, D.H.; Myers, J.W.; Hirst, R.C. Determination of the Rubber Content in Guayule Bushes by Carbon-13 Nuclear Magnetic Resonance Spectrometry. Anal. Chem. 1981, 53, 1570–1572. [Google Scholar] [CrossRef]
- Takeno, S.; Bamba, T.; Nakazawa, Y.; Fukusaki, E.; Okazawa, A.; Kobayashi, A. Quantification of Trans-1,4-Polyisoprene in Eucommia Ulmoides by Fourier Transform Infrared Spectroscopy and Pyrolysis-Gas Chromatography/Mass Spectrometry. J. Biosci. Bioeng. 2008, 105, 355–359. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Gao, S.-K.; Dong, Y.-Y.; Ma, X.; Li, J.-R.; Guo, M.-M.; Zhang, J.-C. Fast Determination of the Rubber Content in Taraxacum kok-saghyz Fresh Biomass Using Portable Near-Infrared Spectroscopy and Pyrolysis–Gas Chromatography. J. Anal. Test. 2022, 6, 393–400. [Google Scholar] [CrossRef]
- Wang, H.; Fan, X.; Yu, H.; Li, J.; Cui, X.; Xu, X. Characterization of Natural Rubber Concerning Its Components and Molecular Weight in Taraxacum kok-saghyz Rodin Using Pyrolysis Gas Chromatography-Mass Spectrometry. J. Sep. Sci. 2023, 46, 2201041. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Zhang, M.; Gao, S.; Wang, L.; Zhang, J.; Huang, Z.; Dong, Y. Quantitative Detection of Natural Rubber Content in Eucommia Ulmoides by Portable Pyrolysis-Membrane Inlet Mass Spectrometry. Molecules 2023, 28, 3330. [Google Scholar] [CrossRef] [PubMed]
- La Nasa, J.; Biale, G.; Fabbri, D.; Modugno, F. A Review on Challenges and Developments of Analytical Pyrolysis and Other Thermoanalytical Techniques for the Quali-Quantitative Determination of Microplastics. J. Anal. Appl. Pyrolysis 2020, 149, 104841. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, S.; Liu, T.; Yu, J.; Deng, Z.; Jiang, Y.; Zeng, Y. The Pyrolysis Mechanism Analysis of Polystyrene and Phenol–Formaldehyde Resin Microplastics Using Mass Spectrometry. Microchem. J. 2024, 197, 109882. [Google Scholar] [CrossRef]
- Dümichen, E.; Barthel, A.-K.; Braun, U.; Bannick, C.G.; Brand, K.; Jekel, M.; Senz, R. Analysis of Polyethylene Microplastics in Environmental Samples, Using a Thermal Decomposition Method. Water Res. 2015, 85, 451–457. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Liao, Y.; Ma, X. Thermal Behavior of Vehicle Plastic Blends Contained Acrylonitrile-Butadiene-Styrene (ABS) in Pyrolysis Using TG-FTIR. Waste Manag. 2017, 61, 315–326. [Google Scholar] [CrossRef] [PubMed]
- Hermabessiere, L.; Himber, C.; Boricaud, B.; Kazour, M.; Amara, R.; Cassone, A.-L.; Laurentie, M.; Paul-Pont, I.; Soudant, P.; Dehaut, A. Optimization, Performance, and Application of a Pyrolysis-GC/MS Method for the Identification of Microplastics. Anal. Bioanal. Chem. 2018, 410, 6663–6676. [Google Scholar] [CrossRef] [PubMed]
- Peters, C.A.; Hendrickson, E.; Minor, E.C.; Schreiner, K.; Halbur, J.; Bratton, S.P. Pyr-GC/MS Analysis of Microplastics Extracted from the Stomach Content of Benthivore Fish from the Texas Gulf Coast. Mar. Pollut. Bull. 2018, 137, 91–95. [Google Scholar] [CrossRef]
- Fischer, M.; Scholz-Böttcher, B.M. Simultaneous Trace Identification and Quantification of Common Types of Microplastics in Environmental Samples by Pyrolysis-Gas Chromatography–Mass Spectrometry. Environ. Sci. Technol. 2017, 51, 5052–5060. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Shi, K.; Liu, Y.; Chen, Y.; Yu, K.; Wang, Y.; Zhang, H.; Jiang, J. Rapid and Efficient Method for Assessing Nanoplastics by an Electromagnetic Heating Pyrolysis Mass Spectrometry. J. Hazard. Mater. 2021, 419, 126506. [Google Scholar] [CrossRef] [PubMed]
- Tsuge, S.; Ohtani, H.; Watanabe, C. Pyrolysis-GC/MS Data Book of Synthetic Polymers: Pyrograms, Thermograms and MS of Pyrolyzates; Elsevier: Amsterdam, The Netherlands, 2011; ISBN 0-444-53893-3. [Google Scholar]
- Takeno, S.; Bamba, T.; Nakazawa, Y.; Fukusaki, E.; Okazawa, A.; Kobayashi, A. High-Throughput and Highly Sensitive Analysis Method for Polyisoprene in Plants by Pyrolysis-Gas Chromatography/Mass Spectrometry. Biosci. Biotechnol. Biochem. 2010, 74, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Tianyang, G.; Qing, Z.; Qiang, M.; Yiyang, D.; Jichuan, Z. Determination of Natural Rubber Content in Taraxacum kok-saghyz by Pyrolysis Gas Chromatography-Mass Spectrometry. China Pet. Process. Petrochem. Technol. 2020, 22, 43–48. [Google Scholar]
- Li, Z.G.; Cheng, P. Determination of Rubber Content in Qing Rubber Grass by Alkali Boiling Method—Part I: Perennial Grass Roots in Xinjiang. Chin. Chem. World 1954, 04, 168–169. [Google Scholar] [CrossRef]
- Sen Gupla, P.K.; Ghosh, P. Spectrophotometric Method for the Determination of Natural Rubber Hydrocarbon. Anal. Chem. 1966, 38, 505. [Google Scholar] [CrossRef]
- Smith, M.K. Viscometric Method for Determining Rubber Content in Guayule (Parthenium Argentatum Gray). J. Agric. Food Chem. 1985, 33, 928–931. [Google Scholar] [CrossRef]
- Fanning, R.; Bekkedahl, N. Quantitative Determination of Natural Rubber Hydrocarbon by Refractive Index Measurements. Rubber Chem. Technol. 1952, 25, 680–688. [Google Scholar] [CrossRef]
- Guo, T.; Liu, Y.; Wei, Y.; Ma, X.; Fan, Q.; Ni, J.; Yin, Z.; Liu, J.; Wang, S.; Dong, Y.; et al. Simultaneous Qualitation and Quantitation of Natural Trans-1,4-Polyisoprene from Eucommia Ulmoides Oliver by Gel Permeation Chromatography (GPC). J. Chromatogr. B 2015, 1004, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.; Cooks, R.G.; Allen, T.; Cisper, M.; Hemberger, P. Membrane Introduction Mass Spectrometry: Trends and Applications. Mass Spectrom. Rev. 2000, 19, 1–37. [Google Scholar] [CrossRef]
- Ong, Y.K.; Shi, G.M.; Le, N.L.; Tang, Y.P.; Zuo, J.; Nunes, S.P.; Chung, T.-S. Recent Membrane Development for Pervaporation Processes. Prog. Polym. Sci. 2016, 57, 1–31. [Google Scholar] [CrossRef]
- Schuchovski, C.; Meulia, T.; Sant’Anna-Santos, B.F.; Fresnedo-Ramírez, J. Inflorescence Development and Floral Organogenesis in Taraxacum kok-saghyz. Plants 2020, 9, 1258. [Google Scholar] [CrossRef]
- Bonner, J.; Galston, A.W. The Physiology and Biochemistry of Rubber Formation in Plants. Bot. Rev. 1947, 13, 543–596. [Google Scholar] [CrossRef]
- Bates, G.M.; McNulty, S.K.; Amstutz, N.D.; Pool, V.K.; Cornish, K. Planting Density and Growth Cycle Affect Actual and Potential Latex and Rubber Yields in Taraxacum kok-saghyz. HortScience 2019, 54, 1338–1344. [Google Scholar] [CrossRef]
- Tata, S.K.; Hong, S.B.; Bae, S.W.; Park, J.-C.; Ryu, S.B. Seasonal Variation of Rubber Production in Russian Dandelion, Taraxacum kok-saghyz, Grown in Korea. Korean J. Plant Resour. 2022, 35, 399–404. [Google Scholar] [CrossRef]
TKS Spiked Amount, µg | Confidence Interval for Peak Area Mean, 95% | Quantity Recovered, µg | Recovery, % | RSD, % |
---|---|---|---|---|
50.00 | 1.60 ± 0.11 | 53.92 ± 7.36 | 107.83 | 2.70 |
150.00 | 2.86 ± 0.28 | 139.82 ± 19.14 | 93.21 | 3.93 |
250.00 | 4.60 ± 0.27 | 259.08 ± 18.68 | 103.63 | 2.39 |
Number | Dandelions | Growth Time | Cultivation Sites | Rubber Content, % | Average Rubber Content, % | Standard Deviation |
---|---|---|---|---|---|---|
1 | TO | half-year-old | field | 2.88 | 2.82 | 0.35 |
2 | TO | half-year-old | field | 2.36 | ||
3 | TO | half-year-old | field | 2.87 | ||
4 | TO | half-year-old | field | 3.19 | ||
5 | TO | one-year-old | field | 3.25 | 4.00 | 1.07 |
6 | TO | one-year-old | field | 4.76 | ||
7 | TO | half-year-old | greenhouse | 5.35 | 4.67 | 0.96 |
8 | TO | half-year-old | greenhouse | 3.98 | ||
9 | TO | one-year-old | greenhouse | 5.88 | 6.08 | 0.29 |
10 | TO | one-year-old | greenhouse | 6.29 | ||
11 | TKS | half-year-old | field | 4.48 | 5.48 | 1.40 |
12 | TKS | half-year-old | field | 6.47 | ||
13 | TKS | one-year-old | field | 10.18 | 9.83 | 0.67 |
14 | TKS | one-year-old | field | 9.06 | ||
15 | TKS | one-year-old | field | 10.26 | ||
16 | TKS | half-year-old | greenhouse | 7.51 | 7.80 | 0.91 |
17 | TKS | half-year-old | greenhouse | 6.78 | ||
18 | TKS | half-year-old | greenhouse | 8.96 | ||
19 | TKS | half-year-old | greenhouse | 7.95 | ||
20 | TKS | one-year-old | greenhouse | 17.00 | 10.65 | 4.60 |
21 | TKS | one-year-old | greenhouse | 11.26 | ||
22 | TKS | one-year-old | greenhouse | 12.31 | ||
23 | TKS | one-year-old | greenhouse | 7.73 | ||
24 | TKS | one-year-old | greenhouse | 4.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, S.; Guo, M.; Gao, J.; Huang, Z.; Gan, M.; Zhang, J.; Dong, Y. Rapid Determination of Taraxacum kok-saghyz Rubber Content Using a Pyrolyzer Hyphenated with a Miniaturized Mass Spectrometer. Separations 2024, 11, 103. https://doi.org/10.3390/separations11040103
Gao S, Guo M, Gao J, Huang Z, Gan M, Zhang J, Dong Y. Rapid Determination of Taraxacum kok-saghyz Rubber Content Using a Pyrolyzer Hyphenated with a Miniaturized Mass Spectrometer. Separations. 2024; 11(4):103. https://doi.org/10.3390/separations11040103
Chicago/Turabian StyleGao, Shunkai, Minmin Guo, Jiaqi Gao, Zejian Huang, Min Gan, Jichuan Zhang, and Yiyang Dong. 2024. "Rapid Determination of Taraxacum kok-saghyz Rubber Content Using a Pyrolyzer Hyphenated with a Miniaturized Mass Spectrometer" Separations 11, no. 4: 103. https://doi.org/10.3390/separations11040103
APA StyleGao, S., Guo, M., Gao, J., Huang, Z., Gan, M., Zhang, J., & Dong, Y. (2024). Rapid Determination of Taraxacum kok-saghyz Rubber Content Using a Pyrolyzer Hyphenated with a Miniaturized Mass Spectrometer. Separations, 11(4), 103. https://doi.org/10.3390/separations11040103