Modulating Interfacial Charge Transfer Behavior through the Construction of a Hetero-Interface for Efficient Photoelectrochemical Water Splitting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Reagents
2.2. Materials Preparation
2.2.1. Preparation of BiVO4 (BV) Films
2.2.2. Preparation of BV/MnOx/CoOx and BV/CeOx/CoOx
2.2.3. Preparation of BV/MnOx/CoOx/FeNiOOH and BV/CeOx/CoOx/FeNiOOH Photoanodes
2.2.4. Preparation of BV/FeNiOOH Photoanodes
2.3. Structural Characterization
2.4. Electrochemical Measurements
2.5. Photoelectrochemical (PEC) Measurements
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Holmes-Gentle, I.; Tembhurne, S.; Suter, C.; Haussener, S. Kilowatt-scale solar hydrogen production system using a concentrated integrated photoelectrochemical device. Nat. Energy 2023, 8, 586–596. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, N.; Li, Y.; Fan, R.; Wang, W.; Feng, J.; Liu, C.; Wang, J.; Hao, W.; Li, Z.; et al. Long-term durability of metastable β-Fe2O3 photoanodes in highly corrosive seawater. Nat. Commun. 2023, 14, 4266. [Google Scholar] [CrossRef]
- Xiao, Y.; Kong, X.; Vanka, S.; Dong, W.J.; Zeng, G.; Ye, Z.; Sun, K.; Navid, I.A.; Zhou, B.; Toma, F.M.; et al. Oxynitrides enabled photoelectrochemical water splitting with over 3,000 hrs stable operation in practical two-electrode configuration. Nat. Commun. 2023, 14, 2047. [Google Scholar] [CrossRef]
- Hilbrands, A.M.; Zhang, S.; Zhou, C.; Melani, G.; Wi, D.H.; Lee, D.; Xi, Z.; Head, A.R.; Liu, M.; Galli, G.; et al. Impact of Varying the Photoanode/Catalyst Interfacial Composition on Solar Water Oxidation: The Case of BiVO4(010)/FeOOH Photoanodes. J. Am. Chem. Soc. 2023, 145, 23639–23650. [Google Scholar] [CrossRef]
- Corby, S.; Rao, R.R.; Steier, L.; Durrant, J.R. The kinetics of metal oxide photoanodes from charge generation to catalysis. Nat. Rev. Mater. 2021, 6, 1136–1155. [Google Scholar] [CrossRef]
- Zhang, K.; Jin, B.; Park, C.; Cho, Y.; Song, X.; Shi, X.; Zhang, S.; Kim, W.; Zeng, H.; Park, J.H. Black phosphorene as a hole extraction layer boosting solar water splitting of oxygen evolution catalysts. Nat. Commun. 2019, 10, 2001. [Google Scholar] [CrossRef]
- Zhang, B.; Yu, S.; Dai, Y.; Huang, X.; Chou, L.; Lu, G.; Dong, G.; Bi, Y. Nitrogen-incorporation activates NiFeOx catalysts for efficiently boosting oxygen evolution activity and stability of BiVO4 photoanodes. Nat. Commun. 2021, 12, 6969. [Google Scholar] [CrossRef]
- Kim, T.W.; Choi, K.-S. Nanoporous BiVO4 Photoanodes with Dual-Layer Oxygen Evolution Catalysts for Solar Water Splitting. Science 2014, 343, 990–994. [Google Scholar] [CrossRef]
- Wu, Z.; Liu, X.; Li, H.; Sun, Z.; Cao, M.; Li, Z.; Fang, C.; Zhou, J.; Cao, C.; Dong, J.; et al. A semiconductor-electrocatalyst nano interface constructed for successive photoelectrochemical water oxidation. Nat. Commun. 2023, 14, 2574. [Google Scholar] [CrossRef]
- Liu, W.; Liu, H.; Dang, L.; Zhang, H.; Wu, X.; Yang, B.; Li, Z.; Zhang, X.; Lei, L.; Jin, S. Amorphous Cobalt–Iron Hydroxide Nanosheet Electrocatalyst for Efficient Electrochemical and Photo-Electrochemical Oxygen Evolution. Adv. Funct. Mater. 2017, 27, 1603904. [Google Scholar] [CrossRef]
- Ning, X.; Du, P.; Han, Z.; Chen, J.; Lu, X. Insight into the Transition-Metal Hydroxide Cover Layer for Enhancing Photoelectrochemical Water Oxidation. Angew. Chem. Int. Ed. 2021, 60, 3504–3509. [Google Scholar] [CrossRef]
- Zhang, B.; Huang, X.; Zhang, Y.; Lu, G.; Chou, L.; Bi, Y. Unveiling the Activity and Stability Origin of BiVO4 Photoanodes with FeNi Oxyhydroxides for Oxygen Evolution. Angew. Chem. Int. Ed. 2020, 59, 18990–18995. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, L.; Liu, B.; Wang, X.; Wang, T.; Xiao, X.; Wang, S.; Huang, W. Engineering BiVO4 and Oxygen Evolution Cocatalyst Interfaces with Rapid Hole Extraction for Photoelectrochemical Water Splitting. ACS Catal. 2023, 13, 5938–5948. [Google Scholar] [CrossRef]
- Ning, X.; Lu, B.; Zhang, Z.; Du, P.; Ren, H.; Shan, D.; Chen, J.; Gao, Y.; Lu, X. An Efficient Strategy for Boosting Photogenerated Charge Separation by Using Porphyrins as Interfacial Charge Mediators. Angew. Chem. Int. Ed. 2019, 58, 16800–16805. [Google Scholar] [CrossRef]
- Chen, R.; Meng, L.; Xu, W.; Li, L. Cocatalysts-Photoanode Interface in Photoelectrochemical Water Splitting: Understanding and Insights. Small 2024, 20, 2304807. [Google Scholar] [CrossRef]
- Ma, Y.; Kafizas, A.; Pendlebury, S.R.; Le Formal, F.; Durrant, J.R. Photoinduced Absorption Spectroscopy of CoPi on BiVO4: The Function of CoPi during Water Oxidation. Adv. Funct. Mater. 2016, 26, 4951–4960. [Google Scholar] [CrossRef]
- Zhang, X.; Zhai, P.; Zhang, Y.; Wu, Y.; Wang, C.; Ran, L.; Gao, J.; Li, Z.; Zhang, B.; Fan, Z.; et al. Engineering Single-Atomic Ni-N4-O Sites on Semiconductor Photoanodes for High-Performance Photoelectrochemical Water Splitting. J. Am. Chem. Soc. 2021, 143, 20657–20669. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, X.; Zhang, Y.; Zhai, P.; Li, Z.; Jin, D.; Cao, J.; Wang, C.; Zhang, B.; Gao, J. Engineering MoOx/MXene Hole Transfer Layers for Unexpected Boosting of Photoelectrochemical Water Oxidation. Angew. Chem. 2022, 134, e202200946. [Google Scholar] [CrossRef]
- Ren, H.; Dittrich, T.; Ma, H.; Hart, J.N.; Fengler, S.; Chen, S.; Li, Y.; Wang, Y.; Cao, F.; Schieda, M.; et al. Manipulation of Charge Transport by Metallic V13O16 Decorated on Bismuth Vanadate Photoelectrochemical Catalyst. Adv. Mater. 2019, 31, 1807204. [Google Scholar] [CrossRef]
- Yin, H.; Li, D.; Wang, X.; Li, C. Surface Passivation Effect of Ferrihydrite with Hole-Storage Ability in Water Oxidation on BiVO4 Photoanode. J. Phys. Chem. C 2021, 125, 8369–8375. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, X.; Zhang, B.; Bi, Y. High-performance and stable BiVO4 photoanodes for solar water splitting via phosphorus–oxygen bonded FeNi catalysts. Energy Environ. Sci. 2022, 15, 2867–2873. [Google Scholar] [CrossRef]
- Yang, N.; Zhang, S.; Xiao, Y.; Qi, Y.; Bao, Y.; Xu, P.; Jin, S.; Zhang, F. Insight into the Key Restriction of BiVO4 Photoanodes Prepared by Pyrolysis Method for Scalable Preparation. Angew. Chem. Int. Ed. 2023, 62, e202308729. [Google Scholar] [CrossRef]
- Ning, X.; Yin, D.; Fan, Y.; Zhang, Q.; Du, P.; Zhang, D.; Chen, J.; Lu, X. Plasmon-Enhanced Charge Separation and Surface Reactions Based on Ag-Loaded Transition-Metal Hydroxide for Photoelectrochemical Water Oxidation. Adv. Energy Mater. 2021, 11, 2100405. [Google Scholar] [CrossRef]
- Zhong, M.; Hisatomi, T.; Kuang, Y.; Zhao, J.; Liu, M.; Iwase, A.; Jia, Q.; Nishiyama, H.; Minegishi, T.; Nakabayashi, M.; et al. Surface Modification of CoOx Loaded BiVO4 Photoanodes with Ultrathin p-Type NiO Layers for Improved Solar Water Oxidation. J. Am. Chem. Soc. 2015, 137, 5053–5060. [Google Scholar] [CrossRef]
- Yang, G.; Li, Y.; Pang, H.; Chang, K.; Ye, J. Ultrathin Cobalt–Manganese Nanosheets: An Efficient Platform for Enhanced Photoelectrochemical Water Oxidation with Electron-Donating Effect. Adv. Funct. Mater. 2019, 29, 1904622. [Google Scholar] [CrossRef]
- Liu, B.; Wang, X.; Zhang, Y.; Xu, L.; Wang, T.; Xiao, X.; Wang, S.; Wang, L.; Huang, W. A BiVO4 Photoanode with a VOx Layer Bearing Oxygen Vacancies Offers Improved Charge Transfer and Oxygen Evolution Kinetics in Photoelectrochemical Water Splitting. Angew. Chem. Int. Ed. 2023, 62, e202217346. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, L.; Zhang, Y.; Ding, Y.; Bi, Y. Ultrathin FeOOH nanolayers with abundant oxygen vacancies on BiVO4 photoanodes for efficient water oxidation. Angew. Chem. Int. Ed. 2018, 57, 2248–2252. [Google Scholar] [CrossRef]
- Song, Y.; Ren, Y.; Cheng, H.; Jiao, Y.; Shi, S.; Gao, L.; Xie, H.; Gao, J.; Sun, L.; Hou, J. Metal-Organic Framework Glass Catalysts from Melting Glass-Forming Cobalt-Based Zeolitic Imidazolate Framework for Boosting Photoelectrochemical Water Oxidation. Angew. Chem. Int. Ed. 2023, 62, e202306420. [Google Scholar] [CrossRef]
- Wang, J.; Zuo, L.; Guo, Z.; Yang, C.; Jiang, Y.; Huang, X.; Wu, L.; Tang, Z. Al2O3-coated BiVO4 Photoanodes for Photoelectrocatalytic Regioselective C−H Activation of Aromatic Amines. Angew. Chem. Int. Ed. 2023, 135, e202315478. [Google Scholar] [CrossRef]
- Zhang, R.; Ning, X.; Wang, Z.; Zhao, H.; He, Y.; Han, Z.; Du, P.; Lu, X. Significantly Promoting the Photogenerated Charge Separation by Introducing an Oxygen Vacancy Regulation Strategy on the FeNiOOH Co-Catalyst. Small 2022, 18, 2107938. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, L.; Du, A.; Irani, R.; van de Krol, R.; Abdi, F.F.; Ng, Y.H. Low-bias photoelectrochemical water splitting via mediating trap states and small polaron hopping. Nat. Commun. 2022, 13, 6231. [Google Scholar] [CrossRef]
- Li, F.; Yang, H.; Zhuo, Q.; Zhou, D.; Wu, X.; Zhang, P.; Yao, Z.; Sun, L. A Cobalt@Cucurbit[5]uril Complex as a Highly Efficient Supramolecular Catalyst for Electrochemical and Photoelectrochemical Water Splitting. Angew. Chem. Int. Ed. 2021, 60, 1976–1985. [Google Scholar] [CrossRef]
- Yu, F.; Li, F.; Yao, T.; Du, J.; Liang, Y.; Wang, Y.; Han, H.; Sun, L. Fabrication and Kinetic Study of a Ferrihydrite-Modified BiVO4 Photoanode. ACS Catal. 2017, 7, 1868–1874. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, L.; Quan, J.; Xu, L.; Li, M.; Li, C.; Mujtaba, S.; Ning, X.; Chen, P.; Weng, Q.; An, Z.; et al. Modulating Interfacial Charge Transfer Behavior through the Construction of a Hetero-Interface for Efficient Photoelectrochemical Water Splitting. Separations 2024, 11, 109. https://doi.org/10.3390/separations11040109
Xu L, Quan J, Xu L, Li M, Li C, Mujtaba S, Ning X, Chen P, Weng Q, An Z, et al. Modulating Interfacial Charge Transfer Behavior through the Construction of a Hetero-Interface for Efficient Photoelectrochemical Water Splitting. Separations. 2024; 11(4):109. https://doi.org/10.3390/separations11040109
Chicago/Turabian StyleXu, Li, Jingjing Quan, Li Xu, Meihua Li, Chenglong Li, Saqib Mujtaba, Xingming Ning, Pei Chen, Qiang Weng, Zhongwei An, and et al. 2024. "Modulating Interfacial Charge Transfer Behavior through the Construction of a Hetero-Interface for Efficient Photoelectrochemical Water Splitting" Separations 11, no. 4: 109. https://doi.org/10.3390/separations11040109
APA StyleXu, L., Quan, J., Xu, L., Li, M., Li, C., Mujtaba, S., Ning, X., Chen, P., Weng, Q., An, Z., & Chen, X. (2024). Modulating Interfacial Charge Transfer Behavior through the Construction of a Hetero-Interface for Efficient Photoelectrochemical Water Splitting. Separations, 11(4), 109. https://doi.org/10.3390/separations11040109