Preparation of Polysilsesquioxane-Based CO2 Separation Membranes with Thermally Degradable Succinic Anhydride and Urea Units
Abstract
:1. Introduction
2. Materials and Methods
2.1. General
2.2. Membrane Preparation and Gel Characterization
2.3. Quantum Chemical Calculations
3. Results and Discussion
3.1. Design of CO2-Philic Groups
3.2. Membrane Preparation
3.3. Gas Permeation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Robeson, L.M. The Upper Bound Revisited. J. Membr. Sci. 2008, 320, 390–400. [Google Scholar] [CrossRef]
- Brunetti, A.; Scura, F.; Barbieri, G.; Drioli, E. Membrane Technologies for CO2 Separation. J. Membr. Sci. 2010, 359, 115–125. [Google Scholar] [CrossRef]
- Ma, C.; Wang, M.; Wang, Z.; Gao, M.; Wang, J. Recent Progress on Thin Film Composite Membranes for CO2 Separation. J. CO2 Util. 2020, 42, 101296. [Google Scholar] [CrossRef]
- Dai, Y.; Niu, Z.; Luo, W.; Wang, Y.; Mu, P.; Li, J. A Review on the Recent Advances in Composite Membranes for CO2 Capture Processes. Sep. Purif. Technol. 2023, 307, 122752. [Google Scholar] [CrossRef]
- Tien-Binh, N.; Rodrigue, D.; Kliaguine, S. In-situ Cross Interface Linking of PIM-1 polymer and UiO-66-NH2 for Outstanding Gas Separation and Physical Aging Control. J. Membr. Sci. 2018, 548, 429–438. [Google Scholar] [CrossRef]
- Duan, K.; Wang, J.; Zhang, Y.; Liu, J. Covalent Organic Frameworks (COFs) Functionalized Mixed Matrix Membrane for Effective CO2/N2 Separation. J. Membr. Sci. 2019, 572, 588–595. [Google Scholar] [CrossRef]
- Woo, R.K.; Lee, A.S.; Park, S.-H.; Baek, K.-Y.; Lee, K.B.; Lee, S.-H.; Lee, J.-H.; Hwang, S.S.; Lee, J.S. Free-standing, Polysilsesquioxane-based Inorganic/organic Hybrid Membranes for Gas Separations. J. Membr. Sci. 2015, 475, 384–394. [Google Scholar]
- Park, S.; Lee, A.S.; Do, Y.S.; Hwang, S.S.; Lee, Y.M.; Lee, J.-H.; Lee, J.S. Rational Molecular Design of PEOlated Ladder-structured Polysilsesquioxane Membranes for High Performance CO2 Removal. Chem. Commun. 2015, 51, 15308–15311. [Google Scholar] [CrossRef]
- Yu, L.; Kanezashi, M.; Nagasawa, H.; Tsuru, T. Role of Amine Type in CO2 Separation Performance within Amine Functionalized Silica/Organosilica Membranes: A Review. Appl. Sci. 2018, 8, 1032. [Google Scholar] [CrossRef]
- Yu, L.; Kanezashi, M.; Nagasawa, H.; Tsuru, T. Fabrication and CO2 Permeation Properties of Amine-silica Membranes Using a Variety of Amine Types. J. Membr. Sci. 2017, 541, 447–456. [Google Scholar] [CrossRef]
- Karimi, S.; Korelskiy, D.; Mortazavi, Y.; Khodadadi, A.A.; Sardar, K.; Esmaeili, M.; Antzutkin, O.N.; Shah, F.U.; Hedlund, J. High Flux Acetate Functionalized Silica Membranes Based on In-situ Co-condensation for CO2/N2 Separation. J. Membr. Sci. 2016, 520, 574–582. [Google Scholar] [CrossRef]
- Xomeriakis, G.; Tsai, C.-Y.; Brnker, C.J. Microporous Sol–gel Derived Aminosilicate Membrane for Enhanced Carbon Dioxide Separation. Sep. Purif. Technol. 2005, 42, 249–257. [Google Scholar] [CrossRef]
- Paradis, G.G.; Kreiter, R.; van Tuel, M.M.; Nijmeijer, A.; Vente, J.F. Amino-Functionalized Microporous Hybrid Silica Membranes. J. Mater. Chem. 2012, 22, 7258–7264. [Google Scholar] [CrossRef]
- Ohshita, J.; Okonogi, T.; Kajimura, K.; Horata, K.; Adachi, Y.; Kanezashi, M.; Tsuru, T. Preparation of Amine- and Ammonium-containing Polysilsesquioxane Membranes for CO2 Separation. Polym. J. 2022, 54, 875–882. [Google Scholar] [CrossRef]
- Kajimura, K.; Horata, K.; Adachi, Y.; Kanezashi, M.; Tsuru, T.; Ohshita, J. Preparation of Urea- and Isocyanurate-containing Polysilsesquioxane Membranes for CO2 Separation. J. Sol-Gel Sci. Technol. 2023, 106, 149–157. [Google Scholar] [CrossRef]
- Karimi, S.; Mortazavi, Y.; Khodadadi, A.A.; Holmgren, A.; Korelskiy, D.; Hedlund, J. Functionalization of Silica Membranes for CO2 Separation. Sep. Purif. Technol. 2020, 235, 116207. [Google Scholar] [CrossRef]
- Basu, S.; Khan, A.L.; Cano-Odena, A.; Liu, C.; Vankelecom, I.F.J. Membrane-based Technologies for Bbiogas Separations. Chem. Rev. 2010, 39, 750–768. [Google Scholar]
- Tsuru, T.; Nakasuji, T.; Oka, M.; Kanezashi, M.; Yoshioka, T. Preparation of Hydrophobic Nanoporous Methylated SiO2 Membranes and Application to Nanofiltration of Hexane Solutions. J. Membr. Sci. 2011, 384, 149–156. [Google Scholar] [CrossRef]
- Xu, R.; Wang, J.H.; Kanezashi, M.; Yoshioka, T.; Tsuru, T. Reverse Osmosis Performance of Organosilica Membranes and Comparison with the Pervaporation and Gas Permeation Properties. AIChE J. 2013, 59, 1298–1307. [Google Scholar] [CrossRef]
- Raveendran, P.; Wallen, S. Cooperative C-H···O Hydrogen Bonding in CO2-Lewis Base Complexes: Implications for Solvation in Supercritical CO2. J. Am. Chem. Soc. 2001, 124, 12590–12599. [Google Scholar] [CrossRef]
- McNeil, I.C.; Mohammad, M.H. A Comparison of the Thermal Degradation Behavior of Ethylene-ethyl Acrylate Copolymer, Low Density polyethylene and Poly(ethyl acrylate). Polym. Degrad. Stab. 1995, 48, 175–187. [Google Scholar] [CrossRef]
- Schaber, P.M.; Colson, T.; Higgins, S.; Thielen, D.; Anspach, B.; Brauer, J. Thermal Decomposition (Pyrolysis) of Urea in an Open Reaction Vessel. Thermochim. Acta 2004, 424, 131–142. [Google Scholar] [CrossRef]
- Honorien, J.; Fournet, R.; Gaude, P.-A.; Sirjean, B. Theoretical Study of the Thermal Decomposition of Urea Derivatives. J. Phys. Chem. A 2022, 126, 6264–6277. [Google Scholar] [CrossRef] [PubMed]
Run | Precursor /g (/mmol) | BTESE /g (/mmol) | Ethanol /g | Water /g (/mmol) | Reaction Time/h |
---|---|---|---|---|---|
1 | TESPS 0.30 (0.99) | 0.30 (0.85) | 7.43 | 3.30 (183) | 48 |
2 | TESPU 0.31 (1.2) | 0.30 (0.85) | 7.11 | 4.28 (238) | 96 |
Precursor | Calcination Temp/°C | CO2 Permeance /mol m−2·s−1·Pa−1 1 | CO2/N2 1 | Eact/kJmol−1 2 | |
---|---|---|---|---|---|
CO2 | N2 | ||||
TESPS-BTESE (1:1) | 250 | 7.7 × 10−8 | 20.2 | 7.3 | 17.2 |
300 | 8.9 × 10−8 | 19.3 | 6.4 | 14.7 | |
350 | 1.3 × 10−7 | 19.5 | 4.5 | 10.3 | |
TESPU-BTESE (1:1) | 200 | 7.9 × 10−8 | 14.4 | −1.3 | 7.1 |
300 | 1.2 × 10−6 | 8.4 | −6.4 | 0.5 | |
TESPS | 250 | 4.8 × 10−9 | 9.4 | 27.5 | 31.0 |
300 | 6.4 × 10−9 | 2.2 | 24.1 | 21.2 | |
350 | 1.2 × 10−7 | 11.5 | 11.5 | 17.7 | |
BTESPU-BTESE (1:1) 3 | 300 | 2.2 × 10−7 | 13 | 0.3 | 9.1 |
BTESPU-BTESE (1:2) 3 | 300 | 2.0 × 10−7 | 13 | 0.35 | 10.1 |
TTESPI 3 | 300 | 3.2 × 10−7 | 18 | 3.3 | 14.4 |
TTESPI-BTESE (1:1) 3 | 300 | 5.5 × 10−7 | 12 | −2.5 | 4.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horata, K.; Yoshio, T.; Miyazaki, R.; Adachi, Y.; Kanezashi, M.; Tsuru, T.; Ohshita, J. Preparation of Polysilsesquioxane-Based CO2 Separation Membranes with Thermally Degradable Succinic Anhydride and Urea Units. Separations 2024, 11, 110. https://doi.org/10.3390/separations11040110
Horata K, Yoshio T, Miyazaki R, Adachi Y, Kanezashi M, Tsuru T, Ohshita J. Preparation of Polysilsesquioxane-Based CO2 Separation Membranes with Thermally Degradable Succinic Anhydride and Urea Units. Separations. 2024; 11(4):110. https://doi.org/10.3390/separations11040110
Chicago/Turabian StyleHorata, Katsuhiro, Tsubasa Yoshio, Ryuto Miyazaki, Yohei Adachi, Masakoto Kanezashi, Toshinori Tsuru, and Joji Ohshita. 2024. "Preparation of Polysilsesquioxane-Based CO2 Separation Membranes with Thermally Degradable Succinic Anhydride and Urea Units" Separations 11, no. 4: 110. https://doi.org/10.3390/separations11040110
APA StyleHorata, K., Yoshio, T., Miyazaki, R., Adachi, Y., Kanezashi, M., Tsuru, T., & Ohshita, J. (2024). Preparation of Polysilsesquioxane-Based CO2 Separation Membranes with Thermally Degradable Succinic Anhydride and Urea Units. Separations, 11(4), 110. https://doi.org/10.3390/separations11040110