Packed-Nanofiber Solid-Phase Extraction Coupled with High-Performance Liquid Chromatography Fluorescence for Determining Gut Microbiota–Host Cometabolites and Indoleamines in Human Urine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals
2.2. Characterization
2.3. Sample Preparation
2.4. Sample Pretreatment and Packed-Nanofiber SPE of Indoleamines
2.5. Chromatographic Analysis
3. Results
3.1. Morphology of PS and PPy Nanofibers
3.2. Optimization of Extraction Parameters
3.2.1. Effect of Salt Concentration on the Extraction
3.2.2. Effect of Different Batches on the Extraction
3.2.3. Effect of the Concentration of Methanol in Eluent on the Extraction
3.2.4. Effect of the Amount of Nanofibers on the Extraction
3.3. Method Validation
3.4. Sample Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Melania, M. Gut Microbiota and Developmental Programming of the Brain: From Evidence in Behavioral Endophenotypes to Novel Perspective in Obesity. Front. Cell. Infect. Microbiol. 2012, 13, 701–712. [Google Scholar]
- Cryan, J.F.; O’Mahony, S.M. The microbiome-gut-brain axis: From bowel to behavior. Neurogastroenterol. Motil. 2011, 23, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Cryan, J.F.; Dinan, T.G. Mind-altering microorganisms: The impact of the gut microbiota on brain and behavior. Nat. Rev. Neurosci. 2012, 13, 701–712. [Google Scholar] [CrossRef]
- Gill, S.R.; Pop, M.; DeBoy, R.T.; Eckburg, P.B.; Turnbaugh, P.J.; Samuel, B.S.; Gordon, J.I.; Relman, D.A.; Liggett, C.M.F.; Nelson, K.E. Metagenomic analysis of the human distal gut microbiome. Science 2006, 312, 1355–1359. [Google Scholar] [CrossRef] [PubMed]
- O’Hara, A.M.; Shanahan, F. The gut flora as a forgotten organ. EMBO Rep. 2006, 7, 688–693. [Google Scholar] [CrossRef] [PubMed]
- Shanahan, F. The colonic microbiota in health and disease. Curr. Opin. Gastroenterol. 2013, 29, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Lyte, M. Microbial endocrinology: Host-microbiota neuroendocrine interactions influencing brain and behavior. Gut Microbes 2014, 5, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Walsh, N.P.; Gleeson, M.; Pyne, D.B.; Nieman, D.C.; Dhabhar, F.S.; Shephard, R.J.; Kajeniene, A. Position statement part two: Maintaining immune health. Exerc. Immunol. Rev. 2011, 17, 64–103. [Google Scholar] [PubMed]
- Allen, J.M.; Miller, M.E.B.; Pence, B.D.; Whitlock, K.; Nehra, V.; Gaskins, H.R.; Woods, J.A. Voluntary and forced exercise differentially alters the gut microbiome in C57BL/6J mice. J. Appl. Physiol. 2015, 118, 1059–1066. [Google Scholar] [CrossRef]
- Mika, A.; Van Treuren, W.; González, A.; Herrera, J.J.; Knight, R.; Fleshner, M. Exercise is more effective at altering gut microbial composition and producing stable changes in lean mass in juvenile versus adult male F344 rats. PLoS ONE 2015, 10, e0125889. [Google Scholar] [CrossRef]
- Choi, J.J.; Eum, S.Y.; Rampersaud, E.; Daunert, S.; Abreu, M.T.; Toborek, M. Exercise attenuates PCB-induced changes in the mouse gut microbiome. Environ. Health Perspect. 2013, 121, 725–730. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, M.; Inoue, R.; Tsukahara, T.; Ushida, K.; Chiji, H.; Matsubara, N.; Hara, H. Voluntary running exercise alters microbiota composition and increases n-butyrate concentration in the rat cecum. Biosci. Biotechnol. Biochem. 2008, 72, 572–576. [Google Scholar] [CrossRef] [PubMed]
- O’Mahony, S.M.; Clarke, G.; Borre, Y.E.; Dinan, T.G.; Cryan, J.F. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav. Brain Res. 2015, 277, 32–48. [Google Scholar] [CrossRef] [PubMed]
- Keszthelyi, D.; Troost, F.J.; Masclee, A.A.M. Understanding the role of tryptophan and serotonin metabolism in gastrointestinal function. Neurogastroenterol. Motil. 2009, 21, 1239–1249. [Google Scholar] [CrossRef] [PubMed]
- Moffett, J.R.; Namboodiri, M.A. Tryptophan and the immune response. Immunol. Cell Biol. 2003, 81, 247–265. [Google Scholar] [CrossRef] [PubMed]
- Bansal, T.; Alaniz, R.C.; Wood, T.K.; Jayaraman, A. The bacterial signal indole increases epithelial-cell tight-junction resistance and attenuates indicators of inflammation. Proc. Natl. Acad. Sci. USA 2010, 107, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Wikoff, W.R.; Anfora, A.T.; Liu, J.; Schultz, P.G.; Lesley, S.A.; Peters, E.C.; Siuzdak, G. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc. Natl. Acad. Sci. USA 2009, 106, 3698–3703. [Google Scholar] [CrossRef] [PubMed]
- Crumeyrolle-Arias, M.; Tournaire, M.C.; Rabot, S.; Malpaux, B.; Thiéry, J.C. 5-hydroxyoxindole, an indole metabolite, is present at high concentrations in brain. J. Neurosci. Res. 2008, 86, 202–207. [Google Scholar] [CrossRef] [PubMed]
- Upadhyaya, S.; Banerjee, G. Type 2 diabetes and gut microbiome: At the intersection of known and unknown. Gut Microbes 2015, 6, 85–92. [Google Scholar] [CrossRef]
- Medvedev, A.; Buneeva, O.; Glover, V. Biological targets for isatin and its analogues: Implications for therapy. Biol. Targets Ther. 2007, 1, 151–162. [Google Scholar]
- Engbaek, F.; Voldby, B. Radioimmunoassay of serotonin (5-hydroxytryptamine) in cerebrospinal fluid, plasma, and serum. Clin. Chem. 1982, 28, 624–628. [Google Scholar] [CrossRef] [PubMed]
- Kanu, S.; Dakora, F.D. Thin-layer chromatographic analysis of lumichrome, riboflavin and indole acetic acid in cell-free culture filtrate of Psoralea nodule bacteria grown at different pH, salinity and temperature regimes. Symbiosis 2009, 48, 173–181. [Google Scholar] [CrossRef]
- Paik, M.J.; Nguyen, D.T.; Kim, Y.J.; Shin, J.Y.; Shim, W.; Cho, E.Y.; Ahn, Y.H. Simultaneous GC–MS analysis of melatonin and its precursors as ethoxycarbonyl/pentafluoropropionyl derivatives in rat urine. Chromatographia 2010, 72, 1213–1217. [Google Scholar] [CrossRef]
- Verplanken, K.; Wauters, J.; Vercruysse, V.; Aluwé, M.; Vanhaecke, L. Development and validation of a UHPLC-HR-Orbitrap-MS method for the simultaneous determination of androstenone, skatole and indole in porcine meat and meat products. Food Chem. 2016, 190, 944–951. [Google Scholar] [CrossRef] [PubMed]
- Dias, N.C.; Poole, C.F. Mechanistic study of the sorption properties of OASIS® HLB and its use in solid-phase extraction. Chromatographia 2002, 56, 269–275. [Google Scholar] [CrossRef]
- Deng, L.; Zhen, Q.; Gao, J.; Jin, M.; Ding, M.; Xu, B. Simultaneous determination of plasma indole and skatole in pregnant women with hepatitis B virus infection by high performance liquid chromatography. Se pu = Chin. J. Chromatogr. 2017, 35, 735–740. [Google Scholar] [CrossRef]
- Pavlova, T.; Vidova, V.; Bienertova-Vasku, J.; Janku, P.; Almasi, M.; Klanova, J.; Spacil, Z. Urinary intermediates of tryptophan as indicators of the gut microbial metabolism. Anal. Chim. Acta 2017, 987, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, H.; Mohammadi, A.; Salemi, A. On-line trace enrichment of phenolic compounds from water using a pyrrole-based polymer as the solid-phase extraction sorbent coupled with high-performance liquid chromatography. Anal. Chim. Acta 2004, 513, 445–449. [Google Scholar] [CrossRef]
- Ahmadi, F.; Shahsavari, A.A.; Rahimi-Nasrabadi, M. Automated extraction and preconcentration of multiresidue of pesticides on a micro-solid-phase extraction system based on polypyrrole as sorbent and off-line monitoring by gas chromatography–flame ionization detection. J. Chromatogr. A 2008, 1193, 26–31. [Google Scholar] [CrossRef]
- Zhang, Y.; Kang, X.; Chen, L.; Pan, C.; Yao, Y.; Gu, Z.Z. Fiber-packed SPE tips based on electrospun fibers. Anal. Bioanal. Chem. 2008, 391, 2189–2197. [Google Scholar] [CrossRef]
- Tahmasebi, E.; Yamini, Y.; Seidi, S.; Rezazadeh, M. Extraction of three nitrophenols using polypyrrole-coated magnetic nanoparticles based on anion exchange process. J. Chromatogr. A 2013, 1314, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Chu, L.; Wang, Y.; Song, Y.; Liu, P.; Li, C.; Kang, X. Application of packed-fiber solid-phase extraction coupled with GC–MS for the determination of short-chain fatty acids in children's urine. Clin. Chim. Acta 2017, 468, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Clark, A.; Mach, N. Exercise-induced stress behavior, gut-microbiota-brain axis and diet: A systematic review for athletes. J. Int. Soc. Sports Nutr. 2016, 13, 43–48. [Google Scholar] [CrossRef] [PubMed]
Analytes | Calibration Range (ng/mL) | R2 | LOD | LOQ | Recovery (%) ± RSD (n = 5) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Within-day | Between-day | |||||||||
Spiked Concentration (ng/mL) | ||||||||||
10 | 25 | 100 | 10 | 25 | 100 | |||||
MEL | 1–400 | 0.998 | 0.28 | 0.94 | 98.3 ± 4.4 | 99.3 ± 2.2 | 99.5 ± 1.8 | 96.3 ± 3.7 | 98.7 ± 3.1 | 99.1 ± 2.9 |
3-IPA | 1–400 | 0.991 | 0.59 | 1.98 | 97.7 ± 3.3 | 97.3 ± 3.1 | 98.2 ± 2.8 | 97.3 ± 2.3 | 98.2 ± 2.3 | 99.3 ± 2.1 |
IND | 1–400 | 0.996 | 0.55 | 1.84 | 84.3 ± 4.2 | 87.3 ± 3.7 | 91.3 ± 3.2 | 81.3 ± 3.8 | 86.8 ± 3.7 | 89.9 ± 3.0 |
SKT | 1–400 | 0.991 | 0.37 | 1.25 | 91.3 ± 3.8 | 92.3 ± 3.1 | 93.8 ± 2.9 | 89.3 ± 3.2 | 91.4 ± 2.4 | 92.6 ± 1.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, L.; Kang, X. Packed-Nanofiber Solid-Phase Extraction Coupled with High-Performance Liquid Chromatography Fluorescence for Determining Gut Microbiota–Host Cometabolites and Indoleamines in Human Urine. Separations 2024, 11, 153. https://doi.org/10.3390/separations11050153
Wei L, Kang X. Packed-Nanofiber Solid-Phase Extraction Coupled with High-Performance Liquid Chromatography Fluorescence for Determining Gut Microbiota–Host Cometabolites and Indoleamines in Human Urine. Separations. 2024; 11(5):153. https://doi.org/10.3390/separations11050153
Chicago/Turabian StyleWei, Lanlan, and Xuejun Kang. 2024. "Packed-Nanofiber Solid-Phase Extraction Coupled with High-Performance Liquid Chromatography Fluorescence for Determining Gut Microbiota–Host Cometabolites and Indoleamines in Human Urine" Separations 11, no. 5: 153. https://doi.org/10.3390/separations11050153
APA StyleWei, L., & Kang, X. (2024). Packed-Nanofiber Solid-Phase Extraction Coupled with High-Performance Liquid Chromatography Fluorescence for Determining Gut Microbiota–Host Cometabolites and Indoleamines in Human Urine. Separations, 11(5), 153. https://doi.org/10.3390/separations11050153