Research Progress in the Separation of Chemical Components from Essential Oils by High-Speed Countercurrent Chromatography
Abstract
:1. Introduction
2. HSCCC Solvent System for EO Separation
2.1. Classical Solvent Systems
2.2. Selective Reagent Solvent Systems
2.2.1. Metal Ion Solvent Systems
2.2.2. Ionic Liquid Solvent Systems
2.2.3. Cyclodextrin Solvent Systems
3. HSCCC Elution Mode for EO Separation
3.1. Elution–Extrusion Mode
3.2. Gradient Elution Mode
4. Common HSCCC Detectors for EO Separation
5. Use of HSCCC to Separate the Active Compounds of EOs
5.1. Separation of Antioxidant Active Ingredients by HSCCC
5.2. Separation of Antimicrobial Active Components in the EOs by HSCCC
5.3. Separation of the Anti-Inflammatory and Antitumor Active Components in EOs by HSCCC
6. Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Kubeczka, K.H. Sources of essential oils. In Handbook of ESSENTIAL OILS Science, Technology, and Applications; Baser, K.H.C., Buchbauer, G., Eds.; CRC Press: New York, NY, USA, 2020; pp. 3–6. [Google Scholar]
- Kant, R.; Kumar, A. Review on essential oil extraction from aromatic and medicinal plants: Techniques, performance and economic analysis. Sustain. Chem. Pharm. 2022, 30, 100829. [Google Scholar] [CrossRef]
- Raut, J.S.; Karuppayil, S.M. A status review on the medicinal properties of essential oils. Ind. Crops Prod. 2014, 62, 250–264. [Google Scholar] [CrossRef]
- Bhavaniramya, S.; Vishnupriya, S.; Al-Aboody, M.S.; Vijayakumar, R.; Baskaran, D. Role of essential oils in food safety: Antimicrobial and antioxidant applications. Grain Oil Sci. Technol. 2019, 2, 49–55. [Google Scholar] [CrossRef]
- Dong, W.; Huang, X.Y.; Tang, X.L.; Li, Q.X.; Zhao, G.W.; Liang, X.L.; Yang, M. Research progress on effect of essential oils on cardiovascular diseases. Chin. Tradit. Herb. Drugs 2021, 52, 7668–7679. [Google Scholar]
- Caputo, L.; Nazzaro, F.; Souza, L.F.; Aliberti, L.; De Martino, L.; Fratianni, F.; Coppola, R.; De Feo, V. Laurus nobilis: Composition of Essential Oil and Its Biological Activities. Molecules 2017, 22, 930. [Google Scholar] [CrossRef] [PubMed]
- Falleh, H.; Ben Jemaa, M.; Saada, M.; Ksouri, R. Essential oils: A promising eco-friendly food preservative. Food Chem. 2020, 330, 127268. [Google Scholar] [CrossRef] [PubMed]
- Elbestawy, M.K.M.; El-Sherbiny, G.M.; Moghannem, S.A. Antibacterial, Antibiofilm and Anti-Inflammatory Activities of Eugenol Clove Essential Oil against Resistant Helicobacter pylori. Molecules 2023, 28, 2448. [Google Scholar] [CrossRef] [PubMed]
- Ez-Zriouli, R.; ElYacoubi, H.; Imtara, H.; Mesfioui, A.; ElHessni, A.; Al Kamaly, O.; Zuhair Alshawwa, S.; Nasr, F.A.; Benziane Ouaritini, Z.; Rochdi, A. Chemical Composition, Antioxidant and Antibacterial Activities and Acute Toxicity of Cedrus atlantica, Chenopodium ambrosioides and Eucalyptus camaldulensis Essential Oils. Molecules 2023, 28, 2974. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Barkauskaite, S.; Jaiswal, A.K.; Jaiswal, S. Essential oils as additives in active food packaging. Food Chem. 2021, 343, 128403. [Google Scholar] [CrossRef]
- Sarkic, A.; Stappen, I. Essential Oils and Their Single Compounds in Cosmetics—A Critical Review. Cosmetics 2018, 5, 11. [Google Scholar] [CrossRef]
- Verma, T.; Aggarwal, A.; Dey, P.; Chauhan, A.K.; Rashid, S.; Chen, K.-T.; Sharma, R. Medicinal and therapeutic properties of garlic, garlic essential oil, and garlic-based snack food: An updated review. Front. Nutr. 2023, 10, 1120377. [Google Scholar] [CrossRef] [PubMed]
- Dantas, T.N.C.; Cabral, T.J.O.; Neto, A.D.; Moura, M.C.P.A. Enrichmnent of patchoulol extracted from patchouli (Pogostemon cablin) oil by molecular distillation using response surface and artificial neural network models. J. Ind. Eng. Chem. 2020, 81, 219–227. [Google Scholar] [CrossRef]
- Maggi, F.; Barboni, L.; Papa, F.; Caprioli, G.; Ricciutelli, M.; Sagratini, G.; Vittori, S. A forgotten vegetable (Smyrnium olusatrum L., Apiaceae) as a rich source of isofuranodiene. Food Chem. 2012, 135, 2852–2862. [Google Scholar] [CrossRef] [PubMed]
- Padalia, R.C.; Verma, R.S.; Chauhan, A.; Singh, V.R.; Goswami, P.; Singh, S.; Verma, S.K.; Luqman, S.; Chanotiya, C.S.; Darokar, M.P. Zingiber zerumbet (L.) Roscoe ex Sm. from northern India: Potential source of zerumbone rich essential oil for antiproliferative and antibacterial applications. Ind. Crops Prod. 2018, 112, 749–754. [Google Scholar] [CrossRef]
- Silvestre, W.P.; Livinalli, N.F.; Baldasso, C.; Tessaro, I.C. Pervaporation in the separation of essential oil components: A review. Trends Food Sci. Technol. 2019, 93, 42–52. [Google Scholar] [CrossRef]
- Lu, M.X.; Wang, X.P.; Bu, Z.S.; Lv, L.Q.; Tong, S.Q. Silver ion coordination countercurrent chromatography: Separation of β-elemene from the volatile oil of Curcumae Rhizoma. J. Sep. Sci. 2017, 40, 3740–3747. [Google Scholar] [CrossRef] [PubMed]
- Vetter, W.; Müller, M.; Englert, M.; Hammann, S. Countercurrent Chromatography-When Liquid-Liquid Extraction Meets Chromatography of the chapter. In Liquid-Phase Extraction; Poole, C.F., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 289–325. [Google Scholar]
- Morley, R.; Minceva, M. Operating mode and parameter selection in liquid-liquid chromatography. J. Chromatogr. A 2020, 1617, 460479. [Google Scholar] [CrossRef] [PubMed]
- Khan, B.M.; Liu, Y. High speed counter current chromatography: Overview of solvent-system and elution-mode. J. Liq. Chromatogr. Relat. Technol. 2018, 41, 629–636. [Google Scholar] [CrossRef]
- Gu, M.; Zhang, S.; Su, Z.; Chen, Y.; Ouyang, F. Fingerprinting of Salvia miltiorrhiza Bunge by non-aqueous capillary electrophoresis compared with high-speed counter-current chromatography. J. Chromatogr. A 2004, 1057, 133–140. [Google Scholar] [CrossRef]
- Ren, C.; Lin, Y.; Liu, X.; Yan, D.; Xu, X.; Zhu, D.; Kong, L.; Han, C. Target separation and antitumor metastasis activity of sesquiterpene-based lysine-specific demethylase 1 inhibitors from zedoary turmeric oil. Bioorg. Chem. 2021, 108, 104666. [Google Scholar] [CrossRef]
- Skalicka-Woźniak, K.; Grzegorczyk, A.; Świątek, Ł.; Walasek, M.; Widelski, J.; Rajtar, B.; Polz-Dacewicz, M.; Malm, A.; Elansary, H.O. Biological activity and safety profile of the essential oil from fruits of Heracleum mantegazzianum Sommier & Levier (Apiaceae). Food Chem. Toxicol. 2017, 109, 820–826. [Google Scholar] [PubMed]
- Geng, Y.; Liu, J.; Lv, R.; Yuan, J.; Lin, Y.; Wang, X. An efficient method for extraction, separation and purification of eugenol from Eugenia caryophyllata by supercritical fluid extraction and high-speed counter-current chromatography. Sep. Purif. Technol. 2007, 57, 237–241. [Google Scholar] [CrossRef]
- Shi, X.; Wang, X.; Wang, D.; Geng, Y.; Liu, J. Separation and Purification of α-Cyperone from Cyperus rotundus with Supercritical Fluid Extraction and High-Speed Counter-Current Chromatography. Sep. Sci. Technol. 2009, 44, 712–721. [Google Scholar] [CrossRef]
- Jin, J.; Tong, S.Q. Separation of an Effective Component of Ligustilide from Volatile Oil of Angelica Sinensis by High Speed Countercurrent Chromatography and Its Analysis and identification by GC-MS. PTCA Part B Chem. Anal. 2018, 54, 1163–1167. [Google Scholar]
- Wang, D.J.; Geng, Y.L.; Liu, W.; Wang, X.; Liu, J.H. Chemical constituents in essential oil of Illicium verum (L.) by supercritical CO2 extraction and high speed counter current chromatography. Chem. Ind. For. Prod. 2011, 31, 99–104. [Google Scholar]
- Skalicka-Woźniak, K.; Walasek, M. Preparative separation of menthol and pulegone from peppermint oil (Mentha piperita L.) by high-performance counter-current chromatography. Phytochem. Lett. 2014, 10, xciv–xcviii. [Google Scholar] [CrossRef]
- Skalicka-Woźniak, K.; Walasek, M.; Ludwiczuk, A.; Głowniak, K. Isolation of terpenoids from Pimpinella anisum essential oil by high-performance counter-current chromatography. J. Sep. Sci. 2013, 36, 2611–2614. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.C.; Sun, B.G.; Wang, S.B.; Ito, Y. Isolation and purification of nootkatone from the essential oil of fruits of Alpinia oxyphylla Miquel by high-speed counter-current chromatography. Food Chem. 2009, 117, 375–380. [Google Scholar] [CrossRef] [PubMed]
- Queiroga, C.L.; Cavalcante, M.Q.; Ferraz, P.C.; Coser, R.N.; Sartoratto, A.; de Magalhães, P.M. High-speed countercurrent chromatography as a tool to isolate nerolidol from the Baccharis dracunculifolia volatile oil. J. Essent. Oil Res. 2014, 26, 334–337. [Google Scholar] [CrossRef]
- Yang, Z.; Guo, P.; Han, R.; Wu, S.H.; Gao, J.M. Gram-scale separation of borneol and camphor from Cinnamomum camphora (L.) Presl by continuous counter-current chromatography. Sep. Sci. Plus 2018, 1, 144–153. [Google Scholar] [CrossRef]
- Yan, J.Z.; Chen, G.; Tong, S.Q.; Feng, Y.P.; Sheng, L.Q.; Lou, J.Z. Preparative isolation and purification of germacrone and curdione from the essential oil of the rhizomes of Curcuma wenyujin by high-speed counter-current chromatography. J. Chromatogr. A 2005, 1070, 207–210. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.Q.; Hu, X.F.; Li, J.M.; Liu, P.; Yang, Y.; Ni, Y.Y. Preparative isolation and purification of cuminaldehyde and p-menta-1,4-dien-7-al from the essential oil of Cuminum cyminum L. by high-speed counter-current chromatography. Anal. Chim. Acta 2011, 689, 149–154. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, B.C.B.; da Silva, J.C.T.; Guerrero, P.G.; Leitão, G.G.; Barata, L.E. Isolation of chavibetol from essential oil of Pimenta pseudocaryophyllus leaf by high-speed counter-current chromatography. J. Chromatogr. A 2009, 1216, 4303–4306. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.X.; Wang, L.X.; Li, C.Y.; Hu, C.; Zhao, S.H. Anti-proliferation activities of three bioactive components purified by high-speed counter-current chromatography in essential oil from ginger. Eur. Food Res. Technol. 2020, 246, 795–805. [Google Scholar] [CrossRef]
- Zhou, Y.Q.; Wang, C.M.; Wang, R.B.; Lin, L.G.; Yin, Z.Q.; Hu, H.; Yang, Q.; Zhang, Q.W. Preparative separation of four sesquiterpenoids from Curcuma longa by high-speed counter-current chromatography. Sep. Sci. Technol. 2016, 52, 497–503. [Google Scholar] [CrossRef]
- Wei, Y.; Du, J.L.; Lu, Y.Y. Preparative separation of bioactive compounds from essential oil of Flaveria bidentis (L.) Kuntze using steam distillation extraction and one step high-speed counter-current chromatography. J. Sep. Sci. 2012, 35, 2608–2614. [Google Scholar] [CrossRef] [PubMed]
- Marques, A.M.; Peixoto, A.C.C.; Provance, D.W.; Kaplan, M.A.C. Separation of Volatile Metabolites from the Leaf-Derived Essential Oil of Piper mollicomum Kunth (Piperaceae) by High-Speed Countercurrent Chromatography. Molecules 2018, 23, 3064. [Google Scholar] [CrossRef]
- Sieniawska, E.; Sawicki, R.; Golus, J.; Swatko-Ossor, M.; Skalica-Wozniak, K. Nigella damascena L. Essential Oil-A Valuable Source of β-Elemene for Antimicrobial Testing. Molecules 2018, 23, 256. [Google Scholar] [CrossRef]
- Xie, J.C.; Wang, S.B.; Sun, B.G.; Zheng, F.P. Preparative Separation and Purification of β-Caryophyllene from Leaf Oil of Vitex negundo L. var. heterophylla (Franch.) Rehd. by High Speed Countercurrent Chromatography. J. Liq. Chromatogr. Relat. Technol. 2008, 31, 2621–2631. [Google Scholar] [CrossRef]
- Marques, A.M.; de Aquino, V.H.C.; Correia, V.G.; Siani, A.C.; Tappin, M.R.R.; Kaplan, M.A.; Figueiredo, M.R. Isolation of two major sesquiterpenes from the leaf essential oil of Eugenia uniflora by preparative-scale high-speed countercurrent chromatography. Sep. Sci. Plus. 2018, 1, 785–792. [Google Scholar] [CrossRef]
- Marques, A.M.; Kaplan, M.A.C. Preparative isolation and characterization of monoterpene isomers present in the citral-rich essential oil of Pectis brevipedunculata. J. Essent. Oil Res. 2013, 25, 210–215. [Google Scholar] [CrossRef]
- Sieniawska, E.; Świątek, Ł.; Rajtar, B.; Kozioł, E.; Polz-Dacewicz, M.; Skalicka-Woźniak, K. Carrot seed essential oil-Source of carotol and cytotoxicity study. Ind. Crops Prod. 2016, 92, 109–115. [Google Scholar] [CrossRef]
- Wen, W.; Xu, P.; Xiang, H.; Wen, M.; Ye, X.; Chu, C.; Tong, S. Comprehensive two-dimensional countercurrent chromatography × gas chromatography characterization of Artemisia argyi essential oil. Anal. Chim. Acta 2023, 1237, 340614. [Google Scholar] [CrossRef] [PubMed]
- Brent Friesen, J.; Pauli, G.F. GUESS—A Generally Useful Estimate of Solvent Systems for CCC. J. Liq. Chromatogr. Relat. Technol. 2007, 28, 2777–2806. [Google Scholar] [CrossRef]
- Berthod, A.; Hassoun, M.; Ruiz-Angel, M.J. Alkane effect in the Arizona liquid systems used in countercurrent chromatography. Anal. Bioanal. Chem. 2005, 383, 327–340. [Google Scholar] [CrossRef]
- Ito, Y. Golden rules and pitfalls in selecting optimum conditions for high-speed counter-current chromatography. J. Chromatogr. A 2005, 1065, 145–168. [Google Scholar] [CrossRef]
- Oka, F.; Oka, H.; Ito, Y. Systematic search for suitable two-phase solvent systems for high-speed counter-current chromatography. J. Chromatogr. A 1991, 538, 99–108. [Google Scholar] [CrossRef]
- Han, X.; Pathmasiri, W.; Bohlin, L.; Janson, J.C. Isolation of high purity 1-[2′,4′-dihydroxy-3′,5′-di-(3″-methylbut-2″-enyl)-6′-methoxy] phenylethanone from Acronychia pedunculata (L.) Miq. by high-speed counter-current chromatography. J. Chromatogr. A 2004, 1022, 213–216. [Google Scholar] [CrossRef] [PubMed]
- Marques, A.M.; Fingolo, C.E.; Kaplan, M.A.C. HSCCC separation and enantiomeric distribution of key volatile constituents of Piper claussenianum (Miq.) C. DC. (Piperaceae). Food Chem. Toxicol. 2017, 109, 1111–1117. [Google Scholar] [CrossRef]
- Li, C.P.; Lu, C.H.; Tang, L.; Rao, G.W.; Yan, X.P. Application of non-aqueous solvent systems of high-speed counter-current chromatography in purification of natural products. Chin. J. Pharm. Anal. 2014, 34, 201–206. [Google Scholar]
- Li, S.; Li, T.; Hu, X.; Yang, Y.; Huang, Y.; He, K. A Neglected Issue: Stationary Phase Retention Determination of Classic High-Speed Counter-Current Chromatography Solvent Systems. Separations 2022, 9, 357. [Google Scholar] [CrossRef]
- Lu, M.X.; Xiong, Q.; Wang, X.P.; Yan, J.Z.; Tong, S.Q. Progress on Application of Different Selective Reagents in Counter-current Chromatography. J. Instrum. Anal. 2015, 34, 744–748. [Google Scholar]
- Liu, Y.J.; Kuang, P.Q.; Guo, S.F.; Sun, Q.; Xue, T.; Li, H.G. An overview of recent progress in solvent systems, additives and modifiers of counter current chromatography. New J. Chem. 2018, 42, 6584–6600. [Google Scholar] [CrossRef]
- Chen, J.; Chen, S.; Luo, H.; Wan, X.; Wu, W.; Wang, S. The complementary and alternative roles of elemene injection in cancer: An umbrella review. Pharmacol. Res. 2023, 198, 107007. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.F.; Li, Q.Q.; Chu, S.F.; He, W.B. Research progress on the neuropharmacological effects and mechanisms about the main components α- and β-asarone in volatile oils of Acorus tatarrinowii Schott. Nat. Prod. Res. Dev. 2020, 32, 1969–1979. [Google Scholar]
- Zhu, H.; Ali, I.; Hussain, H.; Hussain, M.; Wang, X.B.; Song, X.Y.; Luo, G.; Zhang, Z.F.; Wang, Z.G.; Wang, D.J. Extraction and purification of cis/trans asarone from Acorus tatarinowii Schott: Accelerated solvent extraction and silver ion coordination high-speed counter-current chromatography. J. Chromatogr. A 2021, 1643, 462080. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, X.Y.; Hao, Q.; Di, D.L. Advance in the separation and preparation of natural products for ionic liquids by high-speed counter-current chromatography. Nat. Prod. Res. Dev. 2020, 32, 1161–1667. [Google Scholar]
- Li, N. Ionic Liquids Modified Countercurrent Chromatography Systems and the Application in Bio-Separation. Master’s Thesis, Beijing Technology and Business University, Beijing, China, May 2015. [Google Scholar]
- Brown, L.; Earle, M.J.; Gîlea, M.A.; Plechkova, N.V.; Seddon, K.R. Ionic Liquid-Liquid Chromatography: A New General Purpose Separation Methodology. Top. Curr. Chem. 2017, 375, 85–125. [Google Scholar]
- Wang, Q.X.; Zhang, A.W.; Zhu, L.; Yang, X.; Fang, G.; Tang, B. Cyclodextrin-based ocular drug delivery systems: A comprehensive review. Coord. Chem. Rev. 2023, 476, 214919. [Google Scholar] [CrossRef]
- Andrade, T.A.; Freitas, T.S.; Araújo, F.O.; Menezes, P.P.; Dória, G.A.A.; Rabelo, A.S.; Quintans-Júnior, L.J.; Santos, M.R.; Bezerra, D.P.; Serafini, M.R.; et al. Physico-chemical characterization and antibacterial activity of inclusion complexes of Hyptis martiusii Benth essential oil in β-cyclodextrin. Biomed. Pharmacother. 2017, 89, 201–207. [Google Scholar] [CrossRef]
- Tong, S.Q.; Lu, M.X.; Chu, C.; Yan, J.Z.; Huang, J.; Ying, Y.F. Selective isolation of components from natural volatile oil by countercurrent chromatography with cyclodextrins as selective reagent. J. Chromatogr. A 2016, 1444, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.-Y.; Ignatova, S.; Hewitson, P.; Di, D.-L. An overview of recent progress in elution mode of counter current chromatography. TrAC Trends Anal. Chem. 2016, 77, 214–225. [Google Scholar] [CrossRef]
- Sun, X.; Pei, D.; Duan, W.D.; Liu, J.F.; Di, L.D.; Huang, X.Y. Full use of the liquid nature of the stationary phase: The development of elution-extrusion counter current chromatography. J. Sep. Sci. 2020, 43, 3573–3584. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zuo, G.L.; Wang, C.Y.; Kim, H.Y.; Lim, S.S.; Tong, S.Q. An Off-Line DPPH-GC-MS Coupling Countercurrent Chromatography Method for Screening, Identification, and Separation of Antioxidant Compounds in Essential Oil. Antioxidants 2020, 9, 702. [Google Scholar] [CrossRef] [PubMed]
- Ramos Alvarenga, R.F.; Wan, B.J.; Inui, T.; Franzblau, S.G.; Plauli, G.F.; Jaki, B.U. Airborne Antituberculosis Activity of Eucalyptus citriodora Essential Oil. J. Nat. Prod. 2014, 77, 603–610. [Google Scholar] [CrossRef] [PubMed]
- Rehman, R.; Zubair, M.; Bano, A.; Hewitson, P.; Lgnatova, S. Isolation of industrially valuable α-Cedrol from essential oil of Platycladus orientalis (Thuja orientalis) leaves using linear gradient counter current chromatography. Ind. Crops Prod. 2022, 176, 114297. [Google Scholar] [CrossRef]
- Sun, W.L.; Shahrajabian, M.H.; Cheng, Q. Anise (Pimpinella anisum L.), a dominant spice and traditional medicinal herb for both food and medicinal purposes. Cogent Biol. 2019, 5, 1673688. [Google Scholar] [CrossRef]
- Wuillda, A.C.J.d.S.; Costa, F.d.N.; Garrett, R.; Carvalho, M.d.S.d.; Borges, R.M. High-speed countercurrent chromatography with offline detection by electrospray mass spectrometry and nuclear magnetic resonance detection as a tool to resolve complex mixtures: A practical approach using Coffea arabica leaf extract. Phytochem. Anal. 2023, 35, 40–52. [Google Scholar] [CrossRef] [PubMed]
- Gan, Z.; Liang, Z.; Chen, X.; Wen, X.; Wang, Y.; Li, M.; Ni, Y. Separation and preparation of 6-gingerol from molecular distillation residue of Yunnan ginger rhizomes by high-speed counter-current chromatography and the antioxidant activity of ginger oils in vitro. J. Chromatogr. B 2016, 1011, 99–107. [Google Scholar] [CrossRef]
- Gong, Y.; Huang, X.Y.; Pei, D.; Duan, W.D.; Zhang, X.; Sun, X.; Di, D.L. The applicability of high-speed counter current chromatography to the separation of natural antioxidants. J. Chromatogr. A 2020, 1623, 461150. [Google Scholar] [CrossRef]
- Jaramillo-Colorado, B.E.; Stashenko, E.E.; Winterhalter, P. Fractionation of four Colombian essential oils by countercurrent chromatography and evaluation of their antioxidant activity. J. Essent. Oil Res. 2019, 32, 12–22. [Google Scholar] [CrossRef]
- Banday, J.A.; Rather, Z.-U.; Yatoo, G.N.; Hajam, M.A.; Bhat, S.A.; Santhanakrishnan, V.P.; Farozi, A.; Rather, M.A.; Rasool, S. Gas chromatographic-mass spectrometric analysis, antioxidant, antiproliferative and antibacterial activities of the essential oil of Prangos pabularia. Microb. Pathog. 2022, 166, 105540. [Google Scholar] [CrossRef] [PubMed]
- Sieniawska, E.; Michel, P.; Mroczek, T.; Granica, S.; Skalica-Wozniak, K. Nigella damascena L. essential oil and its main constituents, damascenine and β-elemene modulate inflammatory response of human neutrophils ex vivo. Food Chem. Toxicol. 2019, 125, 161–169. [Google Scholar] [CrossRef]
- Móricz, M.; Häbe, T.T.; Böszörményi, A.; Ott, P.G.; Morlock, G.E. Tracking and identification of antibacterial components in the essential oil of Tanacetum vulgare L. by the combination of high-performance thin-layer chromatography with direct bioautography and mass spectrometry. J. Chromatogr. A 2015, 1422, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.L. Basics of countercurrent chromatography. In High-Speed Counter-Current Chromatography Separation Technology and Applications; Cao, X.L., Ed.; Chemical Industry Press: Beijing, China, 2005; pp. 1–14. [Google Scholar]
- Wang, H.; Gu, D.Y.; Wang, M.; Guo, H.; Wu, H.J.; Tian, G.L.; Li, Q.; Yang, Y.; Tian, J. A strategy based on gas chromatography-mass spectrometry and virtual molecular docking for analysis and prediction of bioactive composition in natural product essential oil. J. Chromatogr. A 2017, 1501, 128–133. [Google Scholar] [CrossRef]
- Nie, J.Y.; Li, R.; Jiang, Z.T.; Wang, Y.; Tan, J.; Tang, S.H.; Zhang, Y. Antioxidant activity screening and chemical constituents of the essential oil from rosemary by ultra-fast GC electronic nose coupled with chemical methodology. J. Sci. Food Agric. 2020, 100, 3481–3487. [Google Scholar] [CrossRef] [PubMed]
- Nie, J.Y.; Zhang, Y.; Li, R.; Jiang, Z.T.; Wang, Y.; Tan, J.; Tang, S.H. Screening of radical scavenging activity and chemical constituents of the essential oil from star anise by ultra-fast GC electronic nose coupled with DPPH, OH, and ABTS assays. J. Food Process Preserv. 2020, 45, 115022. [Google Scholar] [CrossRef]
- Wang, C.; Li, R.; Wu, Y.; Wang, Y.; Tang, S.H.; Tan, J.; Jiang, Z.T. Rapid Screening of Radical Scavengers in Essential Oil from Piper longum L. as Food Seasoning. Food Sci. 2021, 42, 226–231. [Google Scholar]
Method | Separation Principle | Advantages | Disadvantages | Scope of Application | Ref |
---|---|---|---|---|---|
Molecular distillation | Separation based on the different mean free ranges of motion of the components. | Preservation of physiological activity under low-temperature conditions and a high separation efficiency. | High equipment requirements and high energy consumption in vacuum environments. | Suitable for alcohols, aldehydes, sesquiterpenes, and other small-molecule compounds with high boiling points. | [13] |
Low-temperature crystallization | Separation of EOs and their metal salts based on their solubility differences at different temperatures and in different solvents. | Low equipment requirements and preservation of the product’s physiological activity at low temperatures. | High energy consumption, low sample recovery, and low separation purity under low-temperature conditions. | Suitable for components of EOs that are poorly soluble at low temperatures. | [14] |
Column chromatography | Separation of EOs based on their different partition coefficients between the stationary and mobile phases. | Fast and efficient, easy to operate, and can be used for large-scale production. | Difficulties in separate structurally similar components; large-scale injection leads to a reduced resolution. | Suitable for structurally differentiated high-content EO fractions. | [15] |
Osmotic evaporation | Separation of EOs based on the different diffusion rates of the components across the permeable membrane. | High selectivity, low energy consumption, no other reagents required. | High costs of the permeable membranes; limited availability of different permeable membrane types. | Suitable for EO components that are highly soluble with high diffusion rates on the permeable membrane surface. | [16] |
High-speed countercurrent chromatography | Separation of EOs based on different partition coefficients in the solvent system. | Retained product activity, high recovery, and easy-to-scale production. | Difficulty in performing solvent system screening for separation. | Suitable for the separation of almost all EOs, especially structurally similar compounds. | [17] |
No | EO Source | Type | Solvent System Composition | Compound and Purity | K-Value | Elution Mode | Flow Rate (mL/min) | Detector | Ref. |
---|---|---|---|---|---|---|---|---|---|
1 | Eugenia caryophyllata L. | Arizona | n-hexane/ethyl acetate/methanol/water (1:0.5:1:0.5, v/v) | Eugenol (98.5%) | 0.92 | tail-to-head | 2.0 | HPLC-DAD, GC-MS, 1H-NMR, and 13C-NMR | [24] |
2 | Cyperus rotundus L. | Arizona | n-hexane/ethyl acetate/methanol/water (1:0.2:1.1:0.2, v/v) | α-Cyperone (98.8%) | 1.20 | head-to-tail | 2.0 | HPLC-DAD and MS | [25] |
3 | Angelica sinensis (oliv.) Diels. | Arizona | n-hexane/ethyl acetate/ethanol/water (1:1:1:1, v/v) | Ligustilide (98.5%) | 1.16 | head-to-tail | 1.5 | HPLC-UV and GC-MS | [26] |
4 | Illicium verum Hook. f. | Arizona | n-hexane/ethyl acetate/methanol/water (1:0.2:1:0.1, v/v) | Anisaldehyde (98.9%) | 1.42 | tail-to-head | 2.0 | HPLC-DAD and MS | [27] |
(Z)-Methyl isoeugenol (96.8%) | 1.95 | ||||||||
(E)-Anethol (99.7%) | 6.30 | ||||||||
5 | Mentha piperita L. | Arizona | n-hexane/ethyl acetate/methanol/water (4:1:4:1, v/v) | Menthol (99%) | 0.78 | tail-to-head | 6.0 | GC-MS and UV | [28] |
Isomenthone (99%) | 3.59 | ||||||||
Menthone (98%) | 2.61 | ||||||||
Terpinen-4-ol (96.5%) | 0.92 | ||||||||
Neomenthol (94.8%) | 1.29 | ||||||||
n-hexane/methanol (1:1, v/v) | Pulegone (94%) | 0.93 | |||||||
6 | Pimpinella anisum L. | Ito + Arizona | n-heptane/ethyl acetate/methanol/water (5:5:2:2, v/v) n-heptane/methanol (1:1, v/v) | (Z)-Anethole (93%) | 1.27 | gradient elution | 6.0 | UV and GC-MS | [29] |
(E)-Foeniculin (93.6%) | 2.30 | ||||||||
Linalool (99%) | 1.70 | ||||||||
Terpinen-4-ol (98%) | 2.01 | ||||||||
α-Terpineol (94%) | 1.12 | ||||||||
p-Anisaldehyde (93.54%) | 0.46 | ||||||||
7 | Alpiniaoxyphylla Miquel | Ito | n-hexane/methanol/water (5:4:1, v/v) | Nootkatone (92.3%) | 1.25 | head-to-tail | 1.5 | UV, GC-MS, and 1H-NMR | [30] |
8 | Baccharis dracunculifolia L. | Ito | n-hexane/methanol/water (5:4:1, v/v) | (E)-Nerolidol (93.7%) | \ | tail-to-head | 2.0 | HPLC and GC-MS | [31] |
9 | Cinnamomum camphora (L.) Presl. | Ito | n-heptane/methanol/water (10:7:3, v/v) | Borneol (99.9%) | 1.01 | continuous injections | 4.0 | GC-MS | [32] |
Camphor (99.9%) | 2.64 | ||||||||
10 | Curcuma wenyujin L. | Ito | petroleum ether/ethanol/ether/water (5:4:0.5:1, v/v) | Germacrone (97.0%) | \ | tail-to-head | 1.0 | HPLC-UV, MS, and 1H-NMR | [33] |
Curdione (95.0%) | \ | ||||||||
11 | Cuminum cyminum L. | Ito | n-hexane/methanol/water (5:4:1, v/v) | Cuminaldehyde (95.42%) | 1.29 | head-to-tail | 2.0 | UV, GC-MS, 1H-NMR, and 1H-1H COSY | [34] |
p-Menta-1,4-dien-7-al (97.21%) | 1.63 | ||||||||
12 | Pimenta pseudocaryophyllus L. | Ito | n-hexane/butanol/methanol/water (12:4:4:3, v/v) | Chavibetol (98%) | 1.22 | tail-to-head | 2.0 | HPLC-DAD and GC-MS | [35] |
Methyleugenol (96%) | 0.57 | ||||||||
13 | Zingiber officinale L. | Ito | n-hexane/ethyl acetate/methanol/water (7:3:5:5, v/v) | 6-Gingerol (98.6%) | 0.89 | head-to-tail | 2.0 | HPLC-DAD, UV, and GC-MS | [36] |
Ito | n-hexane/methanol/water (3:2:1, v/v) | Zingerone (99.4%) | 0.76 | ||||||
HBAW | n-hexane/chloroform/acetonitrile (6:2:5, v/v) | Sesquiterpenes (99.2%) | 0.59 | ||||||
14 | Curcuma longa L. | HBAW | n-heptane/ethyl acetate/ acetonitrile/water (9.5:0.5:9:1, v/v) | ar-Turmerone (99.39%) | 0.78 | head-to-tail | 6.0 | HPLC-DAD, 1H-NMR, and 13C NMR | [37] |
β-Turmerone (99.53%) | 1.66 | ||||||||
α-Turmerone (99.25%) | 1.92 | ||||||||
α-Atlantone (98.56%) | 2.77 | ||||||||
15 | Flaveria bidentis L. | HBAW | n-hexane/acetonitrile/ethanol (5:4:3, v/v) | Caryophyllene oxide (92.6%) | 1.15 | head-to-tail | 1.5 | HPLC-DAD, GC-MS, 1H-NMR, and 13C NMR | [38] |
7,11-Dimethyl-3-methylene-1,6,10-dodecatriene (99.1%) | 2.49 | ||||||||
Caryophyllene (98.9%) | 2.93 | ||||||||
16 | Piper mollicomum Kunth. | HBAW | n-hexane/acetonitrile/ethyl acetate (1:1:0.4, v/v) | Camphene (82.0%) | 0.37 | tail-to-head | 2.0 | GC-FID, GC-MS, 1H-NMR, and 13C NMR | [39] |
Camphor (98.5%) | 1.47 | ||||||||
Bornyl acetate (91.2%) | 0.73 | ||||||||
(E)-Nerolidol (92.8%) | 2.06 | ||||||||
17 | Nigella damascena L. | HBAW | petroleum ether/acetonitrile/acetone (2:1.5:0.5, v/v) | β-Elemene (96%) | 2.58 | tail-to-head | 6.0 | GC-MS, 1H-NMR, and 13C NMR | [40] |
18 | Vitex negundo L. var. heterophylla Franch. Rehd. | HBAW | n-hexane/dichloromethane/acetonitrile (10:3:7, v/v) | β-Caryophyllene (95.0%) | 2.56 | tail-to-head | 2.0 | ELSD, GC-FID, and GC-MS, | [41] |
n-hexane/chloroform/acetonitrile (6:2:5, v/v) | β-Caryophyllene (95.3%) | 1.84 | 1.5 | ||||||
19 | Eugenia uniflora L. | HBAW | n-hexane/acetonitrile (1:1, v/v) | Selina-1,3,7(11)-trien-8-one (92.5%) | 0.91 | head-to-tail | 2.0 | GC-FID, GC-MS, 1H-NMR, and 13C NMR | [42] |
Selina-1,3,7(11)-trien-8-one epoxide (93.1%) | 1.55 | ||||||||
Selina-1,3,7(11)-trien-8-one(92%) | 1.09 | tail-to-head | |||||||
Selina-1,3,7(11)-trien-8-one epoxide (97.5%) | 0.65 | ||||||||
20 | Pectis brevipedunculata L. | HBAW | n-hexane/acetonitrile (1:1, v/v) | Citral (98.7%) | \ | tail-to-head | 2.0 | GC-FID, GC-MS, 1H-NMR, and 13C NMR | [43] |
Geraniol (86.0%) | \ | ||||||||
Neral (87.5%) | \ | ||||||||
Geranial (91.0%) | \ | ||||||||
Citral (100.0%) | \ | 1.0 | |||||||
21 | Daucus carota L. ssp. carota | HBAW | n-hexane/acetonitrile/ methyl tert-butyl ether (1:1:0.1, v/v) | Daucol (80.0%) | 0.78 | head-to-tail | 6.0 | GC-MS and UV | [44] |
Geranyl acetate (84.0%) | 0.93 | ||||||||
Caryophyllene oxide (85.0%) | 1.44 | ||||||||
Carotol (95.0%) | 2.00 | ||||||||
Sabinene (97.0%) | 4.20 | ||||||||
D-Limonene (84.0%) | 6.17 | ||||||||
α-Pinene (91.0%) | 9.70 | ||||||||
HBAW | n-hexane/acetonitrile/ methyl tert-butyl ether (2:1:0.1, v/v) | Daucol (90.0%) | 0.67 | ||||||
Geranyl acetate (82.0%) | 0.84 | ||||||||
Caryophyllene oxide (85.0%) | 1.27 | ||||||||
Carotol (99.0%) | 1.50 | ||||||||
Sabinene (99.0%) | 3.99 | ||||||||
D-Limonene (82.0%) | 5.29 | ||||||||
α-Pinene (89.0%) | 8.07 | ||||||||
22 | Artemisia argyi | HBAW | n-hexane/acetonitrile/methanol (2:2:1, v/v/v) | Eucalyptol (81.93%) | head-tail | GC-MS and UV | [45] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, L.; Zhong, Z.; Zhang, L.; Bai, X. Research Progress in the Separation of Chemical Components from Essential Oils by High-Speed Countercurrent Chromatography. Separations 2024, 11, 152. https://doi.org/10.3390/separations11050152
He L, Zhong Z, Zhang L, Bai X. Research Progress in the Separation of Chemical Components from Essential Oils by High-Speed Countercurrent Chromatography. Separations. 2024; 11(5):152. https://doi.org/10.3390/separations11050152
Chicago/Turabian StyleHe, Linhong, Zihao Zhong, Lijuan Zhang, and Xi Bai. 2024. "Research Progress in the Separation of Chemical Components from Essential Oils by High-Speed Countercurrent Chromatography" Separations 11, no. 5: 152. https://doi.org/10.3390/separations11050152
APA StyleHe, L., Zhong, Z., Zhang, L., & Bai, X. (2024). Research Progress in the Separation of Chemical Components from Essential Oils by High-Speed Countercurrent Chromatography. Separations, 11(5), 152. https://doi.org/10.3390/separations11050152