Feasibility of Different Methods for Separating n-Hexane and Ethanol
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Characterization of DESs and n-Hexane–Ethanol Mixtures
2.3. Solvent Screening
2.3.1. Mutual Solubility of DESs and n-Hexane
2.3.2. Initial Extraction Experiments
2.4. Reduced Pressure and Extractive Distillation
2.5. Liquid–Liquid Equilibrium
2.6. Extraction
2.7. Regeneration
3. Results and Discussion
3.1. Physical Properties of DESs
3.2. Solvent Screening
3.2.1. Mutual Solubility of n-Hexane and DESs
3.2.2. Solubility of DESs in the Feed Mixture
3.3. Reduced Pressure Distillation and Extractive Distillation
3.4. Liquid–Liquid Equilibrium
3.5. Extraction
3.6. Regeneration
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oliveira, F.S.; Pereiro, A.B.; Rebelo, L.P.N.; Marrucho, I.M. Deep Eutectic Solvents as Extraction Media for Azeotropic Mixtures. Green Chem. 2013, 15, 1326–1330. [Google Scholar] [CrossRef]
- Gouveia, A.S.L.; Oliveira, F.S.; Kurnia, K.A.; Marrucho, I.M. Deep Eutectic Solvents as Azeotrope Breakers: Liquid-Liquid Extraction and COSMO-RS Prediction. ACS Sustain. Chem. Eng. 2016, 4, 5640–5650. [Google Scholar] [CrossRef]
- Sharepour, F.; Bakhshi, H.; Rahimnejad, M. Separation of Ethanol Azeotropic Mixture Using Deep Eutectic Solvents in Liquid- Liquid Extraction Process. J. Mol. Liq. 2021, 338, 116637. [Google Scholar] [CrossRef]
- Sa, E.J.; Lee, B.S.; Park, B.H. Extraction of Ethanol from Mixtures with N-Hexane by Deep Eutectic Solvents of Choline Chloride + Levulinic Acid, + Ethylene Glycol, or + Malonic Acid. J. Mol. Liq. 2020, 316, 113877. [Google Scholar] [CrossRef]
- Vuksanović, J.; Kijevčanin, M.L.; Radović, I.R. Effect of Water Addition on Extraction Ability of Eutectic Solvent Choline Chloride+ 1,2-Propanediol for Separation of Hexane/Heptane+ethanol Systems. Korean J. Chem. Eng. 2018, 35, 1477–1487. [Google Scholar] [CrossRef]
- Domańska, U.; Zołek-Tryznowska, Z.; Pobudkowska, A. Separation of Hexane/Ethanol Mixtures. LLE of Ternary Systems (Ionic Liquid or Hyperbranched Polymer + Ethanol + Hexane) at T = 298.15 K. J. Chem. Eng. Data 2009, 54, 972–976. [Google Scholar] [CrossRef]
- Ma, Y.; Xu, X.; Wen, G.; Xu, D.; Shi, P.; Wang, Y.; Gao, J. Separation of Azeotropes Hexane + Ethanol/1-Propanol by Ionic Liquid Extraction: Liquid-Liquid Phase Equilibrium Measurements and Thermodynamic Modeling. J. Chem. Eng. Data 2017, 62, 4296–4300. [Google Scholar] [CrossRef]
- Rodriguez, N.R.; Molina, B.S.; Kroon, M.C. Aliphatic+ethanol Separation via Liquid-Liquid Extraction Using Low Transition Temperature Mixtures as Extracting Agents. Fluid. Phase Equilib. 2015, 394, 71–82. [Google Scholar] [CrossRef]
- Samarov, A.A.; Smirnov, M.A.; Sokolova, M.P.; Popova, E.N.; Toikka, A.M. Choline Chloride Based Deep Eutectic Solvents as Extraction Media for Separation of N-Hexane–Ethanol Mixture. Fluid. Phase Equilib. 2017, 448, 123–127. [Google Scholar] [CrossRef]
- Cai, F.; Zhao, M.; Wang, Y.; Wang, F.; Xiao, G. Phosphoric-Based Ionic Liquids as Solvents to Separate the Azeotropic Mixture of Ethanol and Hexane. J. Chem. Thermodyn. 2015, 81, 177–183. [Google Scholar] [CrossRef]
- Medina-Herrera, N.; Grossmann, I.E.; Mannan, M.S.; Jiménez-Gutiérrez, A. An Approach for Solvent Selection in Extractive Distillation Systems Including Safety Considerations. Ind. Eng. Chem. Res. 2014, 53, 12023–12031. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, Q.; Wang, Y.; Sun, C.; Xue, K.; Guo, C.; Zhu, Z.; Wang, Y.; Cui, P. Phase Equilibria and Mechanism Analysis of Separating Ethanol from Fuel Additives by Chord Chloride-Deep Electrochemical Solvents. J. Mol. Liq. 2023, 392, 123434. [Google Scholar] [CrossRef]
- Petračić, A.; Sander, A.; Vuković, J.P. Deep Eutectic Solvents for Deacidification of Waste Biodiesel Feedstocks: An Experimental Study. Biomass Convers. Biorefin 2021, 11, 3–23. [Google Scholar] [CrossRef]
- Sander, A.; Petračić, A.; Vrsaljko, D.; Parlov Vuković, J.; Hršak, P.; Jelavić, A. Continuous Purification of Biodiesel with Deep Eutectic Solvent in a Laboratory Karr Column. Separations 2024, 11, 71. [Google Scholar] [CrossRef]
- Rogošić, M.; Sander, A.; Pantaler, M. Application of 1-Pentyl-3-Methylimidazolium Bis(Trifluoromethylsulfonyl) Imide for Desulfurization, Denitrification and Dearomatization of FCC Gasoline. J. Chem. Thermodyn. 2014, 76, 1–15. [Google Scholar] [CrossRef]
- Al-Risheq, D.I.M.; Nasser, M.S.; Qiblawey, H.; Ba-Abbad, M.M.; Benamor, A.; Hussein, I.A. Destabilization of Stable Bentonite Colloidal Suspension Using Choline Chloride Based Deep Eutectic Solvent: Optimization Study. J. Water Process. Eng. 2021, 40, 101885. [Google Scholar] [CrossRef]
- Mulia, K.; Krisanti, E.; Terahadi, F.; Putri, S. Selected Natural Deep Eutectic Solvents for the Extraction of α-Mangostin from Mangosteen (Garcinia mangostana L.) Pericarp. Int. J. Technol. 2015, 6, 1211–1220. [Google Scholar] [CrossRef]
- Haghbakhsh, R.; Raeissi, S. A Study of Non-Ideal Mixtures of Ethanol and the (1 Choline Chloride +2 Ethylene Glycol) Deep Eutectic Solvent for Their Volumetric Behaviour. J. Chem. Thermodyn. 2020, 150, 106219. [Google Scholar] [CrossRef]
- Petris, P.C.; Anogiannakis, S.D.; Tzounis, P.-N.; Theodorou, D.N. Thermodynamic Analysis of n-Hexane–Ethanol Binary Mixtures Using the Kirkwood–Buff Theory. J. Phys. Chem. B 2019, 123, 247–257. [Google Scholar] [CrossRef]
- Jukić, I.; Požar, M.; Lovrinčević, B. Comparative Analysis of Ethanol Dynamics in Aqueous and Non-Aqueous Solutions. Phys. Chem. Chem. Phys. 2020, 22, 23856–23868. [Google Scholar] [CrossRef]
- Published Parameters UNIFAC—DDBST GmbH. Available online: https://www.ddbst.com/published-parameters-unifac.html (accessed on 10 May 2024).
- Renon, H.; Prausnitz, J.M. Local Compositions in Thermodynamic Excess Functions for Liquid Mixtures. AIChE J. 1968, 14, 135–144. [Google Scholar] [CrossRef]
- Abrams, D.S.; Prausnitz, J.M. Statistical Thermodynamics of Liquid Mixtures: A New Expression for the Excess Gibbs Energy of Partly or Completely Miscible Systems. AIChE J. 1975, 21, 116–128. [Google Scholar] [CrossRef]
- Magnussen, T.; Rasmussen, P.; Fredenslund, A. UNIFAC Parameter Table for Prediction of Liquid-Liquid Equilibriums. Ind. Eng. Chem. Process. Des. Dev. 1981, 20, 331–339. [Google Scholar] [CrossRef]
- Rogošić, M.; Zagajski Kučan, K. Modelling of Liquid–Liquid Equilibria in Quasi-Seven-Component Systems with Deep Eutectic Solvents as Extraction Media. Kem. Ind. 2018, 67, 385–402. [Google Scholar] [CrossRef]
- Casal, M.F. Desulfurization of Fuel Oils by Solvent Extraction with Ionic Liquids. PhD Thesis, University of Santiago de Compostela, Santiago de Compostela, Spain, 2010. [Google Scholar]
- Marcilla, A.; Reyes-Labarta, J.A.; Olaya, M.M. Should We Trust All the Published LLE Correlation Parameters in Phase Equilibria? Necessity of Their Assessment Prior to Publication. Fluid. Phase Equilib. 2017, 433, 243–252. [Google Scholar] [CrossRef]
- Sa, E.J.; Lee, B.S.; Park, B.H. Separation of N-Hexane-Ethanol Azeotropic Mixture Using Choline Chloride +1,4-Butanediol Deep Eutectic Solvents. Chem. Eng. Res. Des. 2023, 192, 1–11. [Google Scholar] [CrossRef]
System | Solvent | Performance Characteristics | Literature |
---|---|---|---|
n-hexane + ethanol | Choline chloride, benzylcholinium chloride and tetrabutylammonium chloride as HBA and levulinic acid as HBD; mole ratio of 1 HBA:2 HBD | Discussed azeotrope-breaking ability, distribution coefficients, and selectivities. | [2] |
n-hexane + ethanol | Choline chloride + malic acid, malonic acid; Ratio: 1:1 and 1:1:1 | Detailed distribution coefficients and selectivities; data fitted with NRTL model | [3] |
n-hexane + ethanol | Choline chloride + levulinic acid (1:2); choline chloride + ethylene glycol (1:2); choline chloride + malonic acid (1:1) | Detailed distribution coefficients and selectivities; data predicted by COSMO-SAC model | [4] |
n-heptane + ethanol | Choline chloride + glycerol, levulinic acid, ethylene glycol; Choline chloride: HBD (1:2) | High selectivities and distribution coefficients compared to traditional solvents. | [1] |
n-hexane/ n-heptane + ethanol | Choline chloride + 1,2-propanediol; Choline chloride: HBD (1:2) | Evaluated effect of water addition on extraction ability, enhancing understanding of DES performance. | [5] |
n-hexane + ethanol | Hexyl(2-hydroxyethyl)dimethylammonium tetrafluoroborate or a hyperbranched polymer | High selectivity for separation of ethanol and hexane with the ammonium ionic liquid; data fitted with NRTL model | [6] |
n-hexane + ethanol/ 1-propanol | [HMIM][BF4] and [HMIM][OTf] | Evaluated separation performance, distribution coefficients, and selectivity; data fitted with NRTL, UNIQUAC and UNIFAC models | [7] |
n-hexane/ n-heptane + ethanol | Choline chloride + glycolic acid (1:1); choline chloride + lactic acid (1:2) | High selectivities and distribution coefficients; data fitted with NRTL model | [8] |
n-hexane + ethanol | Choline chloride + oxalic acid or malonic acid Choline chloride: HBD (1:1) | High selectivities and distribution coefficients; data fitted with NRTL model | [9] |
n-hexane + ethanol | Phosphoric-based ionic liquids | High selectivities and distribution coefficients; data fitted with NRTL model | [10] |
Chemical | Manufacturer | CAS Number |
---|---|---|
n-hexane, p.a. | Carlo Erba | 110-54-3 |
Ethanol absolute, p.a. | Alkaloid Skopje | 64-17-5 |
Choline chloride, 99% | Acros Organics | 67-48-1 |
Ethylene glycol, p.a. | Lach-Ner | 107-21-1 |
Glycerol anhydrous | Lach-Ner | 56-81-5 |
DL-Menthol, >98% | Thermo Scientific | 89-78-1 |
Potassium carbonate, p.a. | Lach-Ner | 584-08-7 |
Tetramethylammonium chloride, >98% | Thermo Scientific | 75-57-0 |
Citric Acid monohydrate, p.a. | TTT | 5949-29-1 |
L(+)-Lactic Acid, 80% | Lach-Ner | 79-33-4 |
Glycolic Acid, >98% | TCI | 79-14-1 |
DL-Malic Acid, >99% | Acros Organics | 6915-15-7 |
Decanoic Acid, >98% | TCI | 334-48-5 |
Dodecanoic Acid, >98% | TCI | 143-07-7 |
DES Type | Label | DES | Water, wt. % |
---|---|---|---|
Hydrophilic DESs | DES 1 | ChCl–EG (1:2.5) | - |
DES 2 | ChCl–Gly (1:2) | - | |
DES 3 | ChCl–CA (2:1) | 30 | |
DES 4 | ChCl–MA (1:1) | 30 | |
DES 5 | ChCl–GA (1:3) | - | |
DES 6 | LA–Gly (2:1) | 10 | |
DES 7 | K2CO3–Gly (1:6) | - | |
DES 8 | K2CO3–EG (1:10) | - | |
DES 9 | TMAC–GA (1:3) | - | |
Hydrophobic DESs | DES 10 | M–DA (2:1) | - |
DES 11 | M–DDA (2:1) | - |
DES | ρ, kg m−3 | η, mPa s | σ, mN m−1 |
---|---|---|---|
DES 1 | 1117.32 | 34.47 | 46.18 |
DES 2 | 1189.60 | 345.61 | 65.52 |
DES 3 | 1150.55 | 15.76 | 50.28 |
DES 4 | 1186.56 | 16.10 | 41.18 |
DES 5 | 1263.55 | 226.48 | 56.85 |
DES 6 | 1188.80 | 29.60 | 47.21 |
DES 7 | 1117.32 | 19,161.15 | 61.97 |
DES 8 | 1256.82 | 131.73 | 43.43 |
DES 9 | 1233.90 | 278.79 | 57.75 |
DES 10 | 896.35 | 20.89 | 23.31 |
DES 11 | 893.90 | 24.71 | 27.65 |
Entrainer | wDES | TD, °C | wD (n-Hexane) | TB, °C |
---|---|---|---|---|
DES 2 | 0.05 | 58.1 | 0.7305 | 59.5 |
0.10 | 57.5 | 0.7370 | 59.0 | |
DES 10 | 0.05 | 56.5 | 0.8735 | 58.6 |
DES 11 | 0.05 | 56.5 | 0.8718 | 58.6 |
p, bar | wB (n-Hexane) | TB, °C | TB, °C | wD (n-Hexane) |
---|---|---|---|---|
Experimental | Experimental | UNIFAC | Experimental | |
1 | 0.2491 | 62.5 | 62.7 | 0.7223 |
0.7 | 0.2525 | 53.0 | 53.2 | 0.7464 |
0.4 | 0.2548 | 40.0 | 39.5 | 0.7556 |
0.2 | 0.2289 | 23.0 | 24.9 | 0.7931 |
r | q | |
---|---|---|
DES 2 | 7.897 | 6.518 |
Ethanol | 2.5755 | 2.588 |
n-Hexane | 4.4998 | 3.856 |
τ12 | τ13 | τ21 | τ23 | τ31 | τ32 | A | |
---|---|---|---|---|---|---|---|
NRTL | −0.3650 | 11.0701 | 2.2939 | 1.8427 | 9.0683 | 0.0632 | 0.0234 |
UNIQUAC | 1.6654 | 0.1392 | 0.4348 | 1.3909 | 0.5903 | 0.4472 | 0.0039 |
Raffinate | ||||||||
---|---|---|---|---|---|---|---|---|
experimental | NRTL | UNIQUAC | ||||||
w1 | w2 | w3 | w1 | w2 | w3 | w1 | w2 | w3 |
0.9743 | 0.0256 | 0.0001 | 0.9474 | 0.0522 | 0.0003 | 0.9683 | 0.0314 | 0.0003 |
0.8900 | 0.1089 | 0.0011 | 0.8450 | 0.1523 | 0.0027 | 0.8899 | 0.1087 | 0.0014 |
0.7705 | 0.2235 | 0.0060 | 0.7311 | 0.2590 | 0.0099 | 0.7769 | 0.2169 | 0.0062 |
0.6669 | 0.3160 | 0.0171 | 0.6290 | 0.3486 | 0.0224 | 0.6560 | 0.3247 | 0.0193 |
0.4950 | 0.4544 | 0.0506 | 0.5002 | 0.4496 | 0.0502 | 0.4957 | 0.4489 | 0.0553 |
0.4029 | 0.5060 | 0.0911 | 0.4118 | 0.5075 | 0.0807 | 0.4078 | 0.5049 | 0.0873 |
Extract | ||||||||
experimental | NRTL | UNIQUAC | ||||||
w1 | w2 | w3 | w1 | w2 | w3 | w1 | w2 | w3 |
0 | 0.0760 | 0.9239 | 0.0002 | 0.0531 | 0.9467 | 0.0006 | 0.0712 | 0.9282 |
0 | 0.1939 | 0.8061 | 0.0035 | 0.1541 | 0.8425 | 0.0041 | 0.1937 | 0.8022 |
0.0175 | 0.2947 | 0.6878 | 0.0136 | 0.2616 | 0.7247 | 0.0137 | 0.3006 | 0.6857 |
0.0290 | 0.3822 | 0.5888 | 0.0296 | 0.3513 | 0.6192 | 0.0275 | 0.3749 | 0.5977 |
0.0500 | 0.4444 | 0.5056 | 0.0605 | 0.4489 | 0.4906 | 0.0520 | 0.4495 | 0.4986 |
0.0780 | 0.4866 | 0.4354 | 0.0795 | 0.4859 | 0.4347 | 0.0717 | 0.4876 | 0.4407 |
Experimental | UNIQUAC | ||||||
---|---|---|---|---|---|---|---|
w2 | βn-hexane | βethanol | S | w2 | βn-hexane | βethanol | S |
0.0256 | 0 | 2.9696 | 0.0314 | 0.0006 | 2.2709 | 3831.43 | |
0.1089 | 0 | 1.7811 | 0.1087 | 0.0046 | 1.7818 | 386.01 | |
0.2235 | 0.0227 | 1.3186 | 58.05 | 0.2169 | 0.0176 | 1.3858 | 78.61 |
0.3160 | 0.0435 | 1.2096 | 27.82 | 0.3247 | 0.0419 | 1.1544 | 27.56 |
0.4544 | 0.1010 | 0.9780 | 9.68 | 0.4489 | 0.1048 | 1.0012 | 9.55 |
0.5060 | 0.1936 | 0.9617 | 4.97 | 0.5049 | 0.1758 | 0.9659 | 5.49 |
Raffinate | Extract | |||||
---|---|---|---|---|---|---|
Mass Ratio | w1 | w2 | w3 | w1 | w2 | w3 |
0.25 | 0.7399 | 0.2600 | 0.0001 | 0.0220 | 0.3370 | 0.6410 |
0.50 | 0.8029 | 0.1970 | 0.0001 | 0.0140 | 0.2800 | 0.7060 |
0.75 | 0.8460 | 0.1520 | 0.0019 | 0.0090 | 0.2350 | 0.7560 |
1.00 | 0.8788 | 0.1200 | 0.0012 | 0.0010 | 0.2060 | 0.7930 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sander, A.; Petračić, A.; Rogošić, M.; Župan, M.; Frljak, L.; Cvetnić, M. Feasibility of Different Methods for Separating n-Hexane and Ethanol. Separations 2024, 11, 151. https://doi.org/10.3390/separations11050151
Sander A, Petračić A, Rogošić M, Župan M, Frljak L, Cvetnić M. Feasibility of Different Methods for Separating n-Hexane and Ethanol. Separations. 2024; 11(5):151. https://doi.org/10.3390/separations11050151
Chicago/Turabian StyleSander, Aleksandra, Ana Petračić, Marko Rogošić, Mirela Župan, Leonarda Frljak, and Matija Cvetnić. 2024. "Feasibility of Different Methods for Separating n-Hexane and Ethanol" Separations 11, no. 5: 151. https://doi.org/10.3390/separations11050151
APA StyleSander, A., Petračić, A., Rogošić, M., Župan, M., Frljak, L., & Cvetnić, M. (2024). Feasibility of Different Methods for Separating n-Hexane and Ethanol. Separations, 11(5), 151. https://doi.org/10.3390/separations11050151