Comparative Kinetic Analysis of Triclosan Degradation under UV-C and Simulated Solar Irradiation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and TCS Concentration Determination
2.2. UV-C and Solar Photodegradation of the TCS Molecule
2.3. Photodegradation Byproducts Detection
3. Results and Discussions
3.1. Effect of Irradiance Intensity and Time in the Solar Photodegradation
3.2. Triclosan UV-C and Solar Photodegradation
3.3. Determination of Photodegradation Secondary Compounds
3.4. Potential Pathways for TCS Photodegradation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, J.; Dang, Z.; Muddassir, M.; Raza, S.; Zhong, A.; Wang, X.; Jin, J. A New Cd(II)-Based Coordination Polymer for Efficient Photocatalytic Removal of Organic Dyes. Molecules 2023, 28, 6848. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Chandra, R. Pollutants released from the pulp paper industry: Aquatic toxicity and their health hazards. Aquat. Toxicol. 2019, 211, 202–216. [Google Scholar] [CrossRef]
- Vasilachi, I.C.; Asiminicesei, D.M.; Fertu, D.I.; Gavrilescu, M. Occurrence and fate of emerging pollutants in water environment and options for their removal. Water 2021, 13, 181. [Google Scholar] [CrossRef]
- Zheng, M.; Chen, J.; Zhang, L.; Cheng, Y.; Lu, C.; Liu, Y.; Singh, A.; Trivedi, M.; Kumar, A.; Liu, J. Metal organic frameworks as efficient adsorbents for drugs from wastewater. Mater. Today Commun. 2022, 31, 103514. [Google Scholar] [CrossRef]
- Bilal, M.; Barceló, D.; Iqbal, H.M.N. Persistence, ecological risks, and oxidoreductases-assisted biocatalytic removal of triclosan from the aquatic environment. Sci. Total Environ. 2020, 735, 139194. [Google Scholar] [CrossRef]
- Srnovršnik, T.; Virant-Klun, I.; Pinter, B. Polycystic Ovary Syndrome and Endocrine Disruptors (Bisphenols, Parabens, and Triclosan)—A Systematic Review. Life 2023, 13, 138. [Google Scholar] [CrossRef]
- Guo, Y.; Shi, W.; Liu, Z.; Sun, X.; Wu, Y. Cetaceans as bio-indicators revealed the increased risks of triclosan exposure and associated thyroid hormone disruption during the COVID-19 pandemic. J. Hazard. Mater. 2023, 459, 132289. [Google Scholar] [CrossRef] [PubMed]
- Yoon, K.S.; Kwack, S.J. In vitro and in vivo estrogenic activity of triclosan. J. Toxicol. Environ. Health—Part A Curr. Issues 2021, 84, 800–809. [Google Scholar] [CrossRef]
- González-Fernández, L.A.; Medellín-Castillo, N.A.; Ocampo-Pérez, R.; Hernández-Mendoza, H.; Berber-Mendoza, M.S.; Aldama-Aguilera, C. Equilibrium and kinetic modelling of triclosan adsorption on Single-Walled Carbon Nanotubes. J. Environ. Chem. Eng. 2021, 9, 106382. [Google Scholar] [CrossRef]
- Medellín-Castillo, N.A.; González-Fernández, L.A.; Ocampo-Pérez, R.; Leyva-Ramos, R.; Luiz-Dotto, G.; Flores-Ramírez, R.; Navarro-Frómeta, A.E.; Aguilera-Flores, M.M.; Carrasco-Marín, F.; Hernández-Mendoza, H.; et al. Efficient removal of triclosan from water through activated carbon adsorption and photodegradation processes. Environ. Res. 2024, 246, 118162. [Google Scholar] [CrossRef]
- Marazuela, M.D.; García-Fresnadillo, D. An integrated photosensitizing/adsorbent material for the removal of triclosan from water samples. Sep. Purif. Technol. 2020, 251, 117392. [Google Scholar] [CrossRef]
- Solá-Gutiérrez, C.; Schröder, S.; San-Román, M.F.; Ortiz, I. Critical review on the mechanistic photolytic and photocatalytic degradation of triclosan. J. Environ. Manag. 2020, 260, 110101. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xu, J.; Cao, Z.; Fu, R.; Zhou, C.; Wang, Z.; Xu, X. Adsorption behavior and mechanism of Pb(II) and complex Cu(II) species by biowaste-derived char with amino functionalization. J. Colloid Interface Sci. 2020, 559, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Kaur, H.; Dahake, R.; Maddigapu, P.R.; Hippargi, G.; Pophali, G.R.; Bansiwal, A. Enhanced photocatalytic degradation of antimicrobial triclosan using rGO–TiO2 composite under natural solar illumination. J. Mater. Sci. Mater. Electron. 2020, 31, 6045–6058. [Google Scholar] [CrossRef]
- Schröder, S.; San-Román, M.F.; Ortiz, I. Photocatalytic transformation of triclosan. Reaction products and kinetics. Catalysts 2020, 10, 1468. [Google Scholar] [CrossRef]
- Titchou, F.E.; Zazou, H.; Afanga, H.; El Gaayda, J.; Ait Akbour, R.; Nidheesh, P.V.; Hamdani, M. Removal of organic pollutants from wastewater by advanced oxidation processes and its combination with membrane processes. Chem. Eng. Process.—Process Intensif. 2021, 169, 108631. [Google Scholar] [CrossRef]
- Pandit, C.; Banerjee, S.; Pandit, S.; Lahiri, D.; Kumar, V.; Chaubey, K.K.; Al-Balushi, R.; Al-Bahry, S.; Joshi, S.J. Recent advances and challenges in the utilization of nanomaterials in transesterification for biodiesel production. Heliyon 2023, 9, e15475. [Google Scholar] [CrossRef] [PubMed]
- Othman, Z.; Sinopoli, A.; MacKey, H.R.; Mahmoud, K.A. Efficient Photocatalytic Degradation of Organic Dyes by AgNPs/TiO2/Ti3C2Tx MXene Composites under UV and Solar Light. ACS Omega 2021, 6, 33325–33338. [Google Scholar] [CrossRef] [PubMed]
- Medellin-Castillo, N.A.; Ocampo-Pérez, R.; Leyva-Ramos, R.; Sanchez-Polo, M.; Rivera-Utrilla, J.; Méndez-Díaz, J.D. Removal of diethyl phthalate from water solution by adsorption, photo-oxidation, ozonation and advanced oxidation process (UV/H2O2, O3/H2O2 and O3/activated carbon). Sci. Total Environ. 2013, 442, 26–35. [Google Scholar] [CrossRef]
- Rodríguez-Blanco, L.A.J.; Ocampo-Pérez, R.; Gómez-Durán, C.F.A.; Mojica-Sánchez, J.P.; Razo-Hernández, R.S. Removal of sulfamethoxazole, sulfadiazine, and sulfamethazine by UV radiation and HO• and SO4•− radicals using a response surface model and DFT calculations. Environ. Sci. Pollut. Res. 2020, 27, 41609–41622. [Google Scholar] [CrossRef]
- Prados-Joya, G.; Sánchez-Polo, M.; Rivera-Utrilla, J.; Ferro-garcía, M. Photodegradation of the antibiotics nitroimidazoles in aqueous solution by ultraviolet radiation. Water Res. 2011, 45, 393–403. [Google Scholar] [CrossRef] [PubMed]
- Polo, A.M.S.; López-Peñalver, J.J.; Sánchez-Polo, M.; Rivera-Utrilla, J.; Velo-Gala, I.; Salazar-Rábago, J.J. Oxidation of diatrizoate in aqueous phase by advanced oxidation processes based on solar radiation. J. Photochem. Photobiol. A Chem. 2016, 319, 87–95. [Google Scholar] [CrossRef]
- Mar-Ortiz, A.F.; Salazar-Rábago, J.J.; Sánchez-Polo, M.; Rozalen, M.; Cerino-Córdova, F.J.; Loredo-Cancino, M. Photodegradation of antihistamine chlorpheniramine using a novel iron-incorporated carbon material and solar radiation. Environ. Sci. Water Res. Technol. 2020, 6, 2607–2618. [Google Scholar] [CrossRef]
- Fernández-Perales, M.; Rozalen, M.; Sánchez-Polo, M.; Rivera-Utrilla, J.; López-Ramón, M.V.; Álvarez, M.A. Solar degradation of sulfamethazine using rGO/Bi composite photocatalysts. Catalysts 2020, 10, 573. [Google Scholar] [CrossRef]
- Liu, Y.; Mekic, M.; Carena, L.; Vione, D.; Gligorovski, S.; Zhang, G.; Jin, B. Tracking photodegradation products and bond-cleavage reaction pathways of triclosan using ultra-high resolution mass spectrometry and stable carbon isotope analysis. Environ. Pollut. 2020, 264, 114673. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yuan, Z.; Huang, Z.; Koso, A.; Li, J.; Xie, B.; Ni, Z.; Xia, S. The photodegradation property and mechanism of tetracycline by persulfate radical activated In2O3@ LDHs Z−scheme heterojunction. Sep. Purif. Technol. 2022, 302, 122077. [Google Scholar] [CrossRef]
- House, D.A. Kinetics and mechanism of oxidations by peroxydisulfate. Chem. Rev. 1962, 62, 185–203. [Google Scholar] [CrossRef]
- Honarmandrad, Z.; Sun, X.; Wang, Z.; Naushad, M.; Boczkaj, G. Activated persulfate and peroxymonosulfate based advanced oxidation processes (AOPs) for antibiotics degradation–A review. Water Resour. Ind. 2023, 29, 100194. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, X.; Sun, K.; Lin, C.; Ma, J.; He, M.; Ouyang, W. Persulfate-based advanced oxidation processes (AOPs) for organic-contaminated soil remediation: A review. Chem. Eng. J. 2019, 372, 836–851. [Google Scholar] [CrossRef]
- Khan, I.; Liu, W.; Zada, A.; Raziq, F.; Ali, S.; Shah, M.I.A.; Ateeq, M.; Khan, M.; Alei, D.; Fazil, P. Recent progress in emerging materials and hybrid nanocomposites for peroxymonosulfate and peroxydisulfate activation towards solar light-driven photocatalytic degradation of emerging pollutants. Coord. Chem. Rev. 2024, 499, 215466. [Google Scholar] [CrossRef]
- Conte, L.O.; Cotillas, S.; Lorenzo, D.; Bahamonde, A.; Santos, A. Solar-assisted oxidation of organochlorine pesticides in groundwater using persulfate and ferrioxalate. Environ. Pollut. 2024, 343, 123205. [Google Scholar] [CrossRef]
- Türk, O.K.; Adalar, G.; Yazici Guvenc, S.; Can-Güven, E.; Varank, G.; Demir, A. Photodegradation of oxytetracycline by UV-assisted persulfate and percarbonate processes: Kinetics, influencing factors, anion effect, and radical species. Environ. Sci. Pollut. Res. 2023, 30, 869–883. [Google Scholar] [CrossRef]
- Xu, Z.; Liu, Z.; Li, S.; Li, F.; Gao, P.; Wang, S.; Lin, Y.; Xiong, G.; Li, Z.; Peng, H. Degradation of triclosan by peroxydisulfate/peroxomonosulfate binary oxidants activation under thermal conditions: Efficiency and mechanism. J. Environ. Manag. 2024, 354, 120211. [Google Scholar] [CrossRef]
- Wang, L.; Feng, J.; Chen, Q.; Jiang, H.; Zhao, J.; Chang, Z.; He, X.; Li, F.; Pan, B. Inhibition mechanisms of biochar-derived dissolved organic matter to triclosan photodegradation: A remarkable role of aliphatics. Environ. Pollut. 2024, 342, 123056. [Google Scholar] [CrossRef]
- Nfodzo, P.; Choi, H. Triclosan decomposition by sulfate radicals: Effects of oxidant and metal doses. Chem. Eng. J. 2011, 174, 629–634. [Google Scholar] [CrossRef]
- Son, H.S.; Khim, J.; Zoh, K.D. Degradation of triclosan in the combined reaction of Fe2+ and UV-C: Comparison with the Fenton and photolytic reactions. Environ. Prog. Sustain. Energy 2010, 29, 415–420. [Google Scholar] [CrossRef]
- Wu, C.; Zhou, J.; Pang, S.; Yang, L.; Li, X.; Lichtfouse, E.; Xia, S.; Liu, H. Enhanced removal of 2, 4-dichlorophenol by coupling of Pd nanoparticles with biofilm. J. Environ. Chem. Eng. 2024, 12, 112176. [Google Scholar] [CrossRef]
- Iovino, P.; Chianese, S.; Prisciandaro, M.; Musmarra, D. Triclosan photolysis: Operating condition study and photo-oxidation pathway. Chem. Eng. J. 2019, 377, 121045. [Google Scholar] [CrossRef]
- Orhon, K.B.; Orhon, A.K.; Dilek, F.B.; Yetis, U. Triclosan removal from surface water by ozonation—Kinetics and by-products formation. J. Environ. Manag. 2017, 204, 327–336. [Google Scholar] [CrossRef]
- Canosa, P.; Morales, S.; Rodríguez, I.; Rubí, E.; Cela, R.; Gómez, M. Aquatic degradation of triclosan and formation of toxic chlorophenols in presence of low concentrations of free chlorine. Anal. Bioanal. Chem. 2005, 383, 1119–1126. [Google Scholar] [CrossRef]
Exp. | Time (h) | Irradiance (W m−2) | %Deg |
---|---|---|---|
1 | 2 | 450 | 70.6 |
2 | 6 | 450 | 75.1 |
3 | 4 | 450 | 75.2 |
4 | 2 | 600 | 50.5 |
5 | 6 | 300 | 51.5 |
6 | 2 | 600 | 50.1 |
7 | 2 | 300 | 25.4 |
8 | 6 | 600 | 75.1 |
9 | 4 | 600 | 74.8 |
10 | 6 | 300 | 51.4 |
11 | 4 | 300 | 70.2 |
12 | 6 | 600 | 74.0 |
Parameter | Value |
---|---|
Max %Deg (experimental) | 75.2 |
Max %Deg (model) | 79.4 |
Time (h) | 2 |
Irradiance (W m−2) | 450 |
Deviation (%) | 5.6 |
UV-C Degradation | Solar Degradation | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
(mg L−1) | (s−1) | R2 | (L mg−1 s−1) | R2 (%) | ΦTCS (mol Einstein−1) | (s−1) | R2 (%) | (L mg−1 s−1) | R2 | ΦTCS (mol Einstein−1) |
10 | 1456 | 0.8745 | 9400 | 0.9990 | 3953 | 542 | 0.7525 | 810 | 0.9995 | 341 |
20 | 148 | 0.8514 | 850 | 0.9894 | 358 | 152 | 0.8525 | 30 | 0.9899 | 13 |
30 | 50 | 0.8899 | 230 | 0.9994 | 97 | 63 | 0.8936 | 13 | 0.9895 | 5.5 |
40 | 22 | 0.9115 | 140 | 0.9996 | 59 | 15 | 0.8877 | 5 | 0.9974 | 2 |
60 | 2.5 | 0.9417 | 16 | 0.9973 | 7 | 6 | 0.7999 | 1.5 | 0.9989 | 0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Fernández, L.A.; Chems, M.; Medellín-Castillo, N.A.; Castillo-Ramos, V.; Sánchez-Polo, M.; Vilasó-Cadre, J.E.; Ocampo-Pérez, R. Comparative Kinetic Analysis of Triclosan Degradation under UV-C and Simulated Solar Irradiation. Separations 2024, 11, 131. https://doi.org/10.3390/separations11050131
González-Fernández LA, Chems M, Medellín-Castillo NA, Castillo-Ramos V, Sánchez-Polo M, Vilasó-Cadre JE, Ocampo-Pérez R. Comparative Kinetic Analysis of Triclosan Degradation under UV-C and Simulated Solar Irradiation. Separations. 2024; 11(5):131. https://doi.org/10.3390/separations11050131
Chicago/Turabian StyleGonzález-Fernández, Lázaro Adrián, Myriam Chems, Nahum Andrés Medellín-Castillo, Ventura Castillo-Ramos, Manuel Sánchez-Polo, Javier E. Vilasó-Cadre, and Raúl Ocampo-Pérez. 2024. "Comparative Kinetic Analysis of Triclosan Degradation under UV-C and Simulated Solar Irradiation" Separations 11, no. 5: 131. https://doi.org/10.3390/separations11050131
APA StyleGonzález-Fernández, L. A., Chems, M., Medellín-Castillo, N. A., Castillo-Ramos, V., Sánchez-Polo, M., Vilasó-Cadre, J. E., & Ocampo-Pérez, R. (2024). Comparative Kinetic Analysis of Triclosan Degradation under UV-C and Simulated Solar Irradiation. Separations, 11(5), 131. https://doi.org/10.3390/separations11050131