Metabolite Profiling and Molecular Network Shows Kinkeloids as Promoting of Collagen Synthesis from Combretum micranthum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Material and Sample Preparation
2.2.1. Grinding
2.2.2. Extraction
2.3. Fractionation and Analytical Characterization
2.3.1. Preparative Chromatography Fractionation
2.3.2. UHPLC-UV-ESI-QTOF-MS/MS
2.4. NMR Characterization
2.5. Determination of Total Polyphenols Content
2.6. In Tubo and In Vitro Biological Activities
2.6.1. DPPH Radical Scavenging Activity Assay
- A control: Absorbance measured with DPPH and without sample (solvent).
- A sample: Absorbance recorded for the sample when combined with the DPPH reagent.
2.6.2. Tyrosinase Assay
- A control: Absorbance measured for the enzyme and substrate mixture without the sample.
- A blank control: Absorbance measured for the enzyme alone.
- A sample: Absorbance recorded for the sample when combined with the enzyme and substrate.
- A blank sample: Absorbance obtained for the sample when mixed with the enzyme only.
2.6.3. Anti-Inflammatory Effect on Skin Cells (PGE2)
- A control: Absorbance measured for the buffer without the sample.
- A sample: Absorbance recorded for the sample.
2.6.4. Collagen I Synthesis
- F control: Fluorescence measured for the buffer without the sample.
- F sample: Fluorescence recorded for the sample.
2.7. Molecular Network Design
3. Results and Discussion
3.1. Fractionation, MSMS, and NMR Analyses
3.2. UHPLC-HRMS and Polyphenol Content Analyses
3.3. Analyses of In Tubo Biological Activities
3.4. Analyses of Molecular Network and In Vitro Activities
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hama, O.; Kamou, H.; Abdou, M.M.A.; Saley, K. Connaissances Ethnobotaniques et Usages de Combretum micranthum Dans La Pharmacopée Traditionnelle Au Sud-Ouest de Tahoua (Niger, Afrique de l’Ouest). Int. J. Biol. Chem. Sci. 2019, 13, 2173. [Google Scholar] [CrossRef]
- Tine, Y.; Sene, M.; Gaye, C.; Diallo, A.; Ndiaye, B.; Ndoye, I.; Wele, A. Combretum micranthum G. Don (Combretaceae): A Review on Traditional Uses, Phytochemistry, Pharmacology and Toxicology. Chem. Biodivers. 2024, 14, e202301606. [Google Scholar] [CrossRef]
- Le Grand, A.; Wondergem, P.A.; Verpoorte, R.; Pousset, J.L. Anti-Infectious Phytotherapies of the Tree-Savannah of Senegal (West-Africa) II. Antimicrobial Activity of 33 Species. J. Ethnopharmacol. 1988, 22, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Tignokpa, M.; Laurens, A.; Mboup, S.; Sylla, O. Popular medicinal plants of the markets of Dakar (Senegal). Int. J. Crude Drug Res. 1986, 24, 75–80. [Google Scholar] [CrossRef]
- Welch, C.; Zhen, J.; Bassène, E.; Raskin, I.; Simon, J.E.; Wu, Q. Bioactive Polyphenols in Kinkéliba Tea (Combretum micranthum) and Their Glucose-Lowering Activities. J. Food Drug Anal. 2018, 26, 487–496. [Google Scholar] [CrossRef]
- Bony, N.F.; Libong, D.; Solgadi, A.; Bleton, J.; Champy, P.; Malan, A.K.; Chaminade, P. Establishing High Temperature Gas Chromatographic Profiles of Non-Polar Metabolites for Quality Assessment of African Traditional Herbal Medicinal Products. J. Pharm. Biomed. Anal. 2014, 88, 542–551. [Google Scholar] [CrossRef]
- Umoh, S.D.; Bojase, G.; Masesane, I.B.; Loeto, D.; Majinda, R.T. A Comprehensive Review of Combretum Flavonoids and Their Biological Activities: An Update between 1990 and 2022. Biochem. Syst. Ecol. 2023, 108, 104644. [Google Scholar] [CrossRef]
- Bougma, A.; Sere, A.; Bazie, B.S.R.; Sangare, H.; Ouilly, J.T.; Bassole, I.H.N. Composition and Physicochemical Properties of Combretum collinum, Combretum micranthum, Combretum nigricans, and Combretum niorense Seeds and Seed Oils from Burkina Faso. J. Am. Oil Chem. Soc. 2021, 98, 1083–1092. [Google Scholar] [CrossRef]
- Touré, A.; Xu, X.; Michel, T.; Bangoura, M. In Vitro Antioxidant and Radical Scavenging of Guinean Kinkeliba Leaf (Combretum micranthum G. Don) Extracts. Nat. Prod. Res. 2011, 25, 1025–1036. [Google Scholar] [CrossRef]
- Kpemissi, M.; Eklu-Gadegbeku, K.; Veerapur, V.P.; Potârniche, A.-V.; Adi, K.; Vijayakumar, S.; Banakar, S.M.; Thimmaiah, N.V.; Metowogo, K.; Aklikokou, K. Antioxidant and Nephroprotection Activities of Combretum micranthum: A Phytochemical, in-Vitro and Ex-Vivo Studies. Heliyon 2019, 5, e01365. [Google Scholar] [CrossRef]
- Kpemissi, M.; Eklu-Gadegbeku, K.; Veerapur, V.P.; Negru, M.; Taulescu, M.; Chandramohan, V.; Hiriyan, J.; Banakar, S.M.; Thimmaiah, N.V.; Suhas, D.S.; et al. Nephroprotective Activity of Combretum micranthum G. Don in Cisplatin Induced Nephrotoxicity in Rats: In-Vitro, In-Vivo and In-Silico Experiments. Biomed. Pharmacother. 2019, 116, 108961. [Google Scholar] [CrossRef] [PubMed]
- Olajide, O.A.; Makinde, J.M.; Okpako, D.T. Evaluation of the Anti-Inflammatory Property of the Extract of Combretum micranthum G. Don (Combretaceae). InflammoPharmacology 2003, 11, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Kpemissi, M.; Kantati, Y.T.; Veerapur, V.P.; Eklu-Gadegbeku, K.; Hassan, Z. Anti-Cholinesterase, Anti-Inflammatory and Antioxidant Properties of Combretum micranthum G. Don: Potential Implications in Neurodegenerative Disease. IBRO Neurosci. Rep. 2023, 14, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Mashi, R.L.; Abu, M.S.; Yakubu, O.E.; Silas, T.V.; Mayel, M.H. Antioxidant and Angiotensin-Converting Enzyme Inhibitory Activities of Fractionated Extract of Combretum micranthum Leaves. J. Biol. Sci. 2022, 22, 57–64. [Google Scholar] [CrossRef]
- Karou, D.; Dicko, M.H.; Simpore, J.; Traore, A.S. Antioxidant and Antibacterial Activities of Polyphenols from Ethnomedicinal Plants of Burkina Faso. Afr. J. Biotechnol. 2005, 4, 823–828. Available online: https://www.ajol.info/index.php/ajb/article/view/15190 (accessed on 24 March 2024).
- Ferrea, G.; Canessa, A.; Sampietro, F.; Cruciani, M.; Romussi, G.; Bassetti, D. In Vitro Activity of a Combretum micranthum Extract against Herpes Simplex Virus Types 1 and 2. Antivir. Res. 1993, 21, 317–325. [Google Scholar] [CrossRef]
- Benoit, F.; Valentin, A.; Yapo, A.; Marion, C.; Bastide, J.-M.; Kone, M.; Kone-Bamba, D.; Mallie, M.; Pelissier, Y.; Diafouka, F. In Vitro Antimalarial Activity of Vegetal Extracts Used in West African Traditional Medicine. Am. J. Trop. Med. Hyg. 1996, 54, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Simon, J.E.; Wu, Q.; Welch, C. Peperidine-Flavan Alkaloid Compounds Derived from African Herb Tea Kinkeliba as Anti-Diabetic Agents. U.S. Patent 8642769B2. Available online: https://patents.google.com/patent/US8642769B2/en (accessed on 24 March 2024).
- Zeitoun, H.; Jubeli, R.M.; El Khoury, R.; Baillet-Guffroy, A.; Tfayli, A.; Salameh, D.; Lteif, R. Skin Lightening Effect of Natural Extracts Coming from Senegal Botanical Biodiversity. Int. J. Dermatol. 2020, 59, 178–183. [Google Scholar] [CrossRef]
- Hu, S.; Simon, J.E.; Wu, Y.; Wang, M.; Wu, Q. Use of Combretum micranthum Extract in Cosmetics. World Intellectual Property Organization. WO2020052571A1. Available online: https://patents.google.com/patent/WO2020052571A1/en (accessed on 24 March 2024).
- Mintel. Combretum micranthum—March 2024. 2024. Available online: https://clients.mintel.com/ (accessed on 11 March 2024).
- Welch, C.R. Chemistry and Pharmacology of Kinkéliba (Combretum micranthum), a West African Medicinal Plant. Doctor’s Dissertation, Rutgers University, Graduate School, New Brunswick, NJ, USA, 2010. [Google Scholar] [CrossRef]
- Lee, S.K.; Mbwambo, Z.H.; Chung, H.; Luyengi, L.; Gamez, E.J.C.; Mehta, R.G.; Kinghorn, A.D.; Pezzuto, J.M. Evaluation of the Antioxidant Potential of Natural Products. Comb. Chem. High Throughput Screen. 1998, 1, 35–46. [Google Scholar] [CrossRef]
- Lim, T.Y.; Yule, C. Evaluation of Antioxidant, Antibacterial and Anti-Tyrosinase Activities of Four Macaranga Species. Food Chem. 2009, 114, 594–599. [Google Scholar] [CrossRef]
- 14:00–17:00. “ISO 4831:2006.” ISO. Available online: https://www.iso.org/fr/standard/38280.html (accessed on 25 April 2024).
- Zhen, J.; Welch, C.; Guo, Y.; Bassène, E.; Raskin, I.; Simon, J.E.; Wu, Q. Novel Skeleton Flavan-Alkaloids from African Herb Tea Kinkéliba: Isolation, Characterization, Semisynthesis, and Bioactivities. In African Natural Plant Products, Volume III: Discoveries and Innovations in Chemistry, Bioactivity, and Applications; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2020; Volume 1361, pp. 297–312. [Google Scholar] [CrossRef]
- Zhen, J.; Simon, J.E.; Wu, Q. Total Synthesis of Novel Skeleton Flavan-Alkaloids. Molecules 2020, 25, 4491. [Google Scholar] [CrossRef] [PubMed]
- Abdullahi, M.H.; Anuka, J.A.; Yaro, A.H.; Musa, A. Effect of Aqueous Leaf Extract of Combretum micranthum g. Don (Combretaceae) on Gastro Intestinal Smooth Muscle. Bayero J. Pure Appl. Sci. 2014, 7, 21–25. [Google Scholar] [CrossRef]
- Osonwa, U.E.; Umeyor, C.E.; Okon, U.V.; Uronnachi, E.M.; Nwakile, C.D. Stability Studies on the Aqueous Extract of the Fresh Leaves of Combretum micranthum G. Don used as Antibacterial Agent. J. Chem. 2012, 6, 417–424. [Google Scholar]
- 8 Final Report on the Safety Assessment of Butylene Glycol, Hexylene Glycol, Ethoxydiglycol, and Dipropylene Glycol. J. Am. Coll. Toxicol. 1985, 4, 223–248. [CrossRef]
- Sethi, A.; Kaur, T.; Malhotra, S.; Gambhir, M.L. Moisturizers: The Slippery Road. Indian J. Dermatol. 2016, 61, 279. [Google Scholar] [CrossRef] [PubMed]
- Kis, N.; Gunnarsson, M.; Berkó, S.; Sparr, E. The Effects of Glycols on Molecular Mobility, Structure, and Permeability in Stratum Corneum. J. Control. Release 2022, 343, 755–764. [Google Scholar] [CrossRef]
- Kinnunen, T.; Koskela, M. Antibacterial and Antifungal Properties of Propylene Glycol, Hexylene Glycol, and 1,3-Butylene Glycol in Vitro. Acta Derm.-Venereol. 1991, 71, 148–150. [Google Scholar] [CrossRef]
m/z | Formula | Mass (MFG) | Diff (ppm) |
---|---|---|---|
374.1598 | C20H24NO6 | 374.1604 | 0.07 |
356.1490 | C20H22NO5 | 356.1498 | −3.33 |
339.1232 | C20H19O5 | 339.1232 | 1.21 |
321.1112 | C20H17O4 | 321.1127 | −1.97 |
285.0747 | C16H13O5 | 285.0763 | −3.76 |
234.1118 | C13H16NO3 | 234.113 | −2.79 |
222.1120 | C12H16NO3 | 222.113 | −2.02 |
217.0853 | C13H13O3 | 217.0865 | −2.03 |
175.0744 | C11H11O2 | 175.0759 | −7.17 |
163.0379 | C9H7O3 | 163.0395 | −6.48 |
150.0906 | C9H12NO | 150.0919 | −4.88 |
123.0433 | C7H7O2 | 123.0446 | −6.18 |
Kinkeloids B from Fraction 2 | Zhen Molecules 2020 [27] Kinkeloid B | |||
---|---|---|---|---|
n° | δH | δC | δH literature | δC literature |
2 | 4.74 | 78.8 | 5.00 | 79.57 |
3 | 2.08/1.88 | 30.3 | 2.13/1.87 | 30.48 |
4 | 2.63 | 19.9 | 2.62 | 20.03 |
5 | - | 155.5 | - | 155.62 |
6 | 6.06 | 95.7 | 6.07 | 102.97/96.01 |
7 | - | 158.0 | - | 155.07 |
8 | - | 106.9 | 6.07 | 96.01/102.97 |
9 | - | 157.4 | - | 157.96 |
10 | - | 102.3 | - | 103.12 |
1′ | - | 133.9 | - | 134.02 |
2′ | 6.84 | 114.1 | 6.85 | 106.16 |
3′ | - | 146.0 | - | 147.15 |
4′ | - | 146.0 | - | 145.1 |
5′ | 6.76 | 115.7 | 6.78 | 115.3 |
6′ | 6.72 | 118.4 | 6.72 | 106.16 |
1′′ | 4.54 | 54.5 | 4.54 | 54.76 |
3′′ | 3.39/2.98 | 46.4 | 3.4/2.97 | 46.83 |
4′′ | 1.84/1.64 | 23.4 | 1.89/1.62 | 24.24 |
5′′ | 1.84/1.64 | 23.4 | 1.89/1.62 | 23.54 |
6′′ | 2.28/1.84 | 29.3 | 2.31/1.87 | 29.57 |
Kinkeloids C from Fraction 2 | Kinkeloids D From Fraction 2 | |||
---|---|---|---|---|
n° | δH | δC | δH | δC |
2 | 5.00 | 78.8 | 4.93 | 79.2 |
3 | 2.13/1.87 | 30.3 | 4.17 | 67.1 |
4 | 2.62 | 19.9 | 2.82 | 28.5 |
5 | - | 155.5 | - | 155.5 |
6 | 6.07 | 95.7 | 6.06 | 95.7 |
7 | - | 158.0 | - | 158.0 |
8 | 6.07 | 106.9 | - | 106.9 |
9 | - | 157.4 | - | 157.4 |
10 | - | 102.3 | - | 101.1 |
1′ | - | 133.9 | - | 133.9 |
2′ | 6.41 | 106.2 | 6.41 | 106.2 |
3′ | - | 146.8 | - | 146.8 |
4′ | - | 133.4 | - | 133.4 |
5′ | - | 146.8 | - | 146.8 |
6′ | 6.41 | 106.2 | 6.41 | 106.2 |
1′′ | 4.54 | 54.5 | 4.54 | 54.5 |
3′′ | 3.4/2.97 | 46.4 | 3.39/2.98 | 46.4 |
4′′ | 1.89/1.62 | 23.4 | 1.84/1.64 | 23.4 |
5′′ | 1.89/1.62 | 23.4 | 1.84/1.64 | 23.4 |
6′′ | 2.28/1.84 | 29.3 | 2.28/1.84 | 29.3 |
Samples | %DPPH Radical Trapping | %Tyrosinase Inhibition | Collagen I Synthesis | Inflammatory Response (PEG2) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
CM butylene glycol extract | 91 ± 0.5% [] 3.2 mg/mL | 91 ± 0.1% [] 3.2 mg/mL | 66% * 176,151 ± 56,985 ** [] 0.002% | 71% 182,276 ± 89,369 [] 0.001% | 72% 183,155 ± 64,542 [] 0.0004% | Control 106,385 ± 28,312 | 35% * 3400 ± 408 *** [] 0.5% | 95% 4918 ± 319 [] 0.25% | 148% 6262 ± 1047 [] 0.125% | Control 2526 ± 239 |
Fraction 1 | 26 ± 1.1% [] 1.6 mg/mL | 23 ± 0.4% [] 1.6 mg/mL | 9% 115,626 ± 47,184 [] 0.00036% | 33% 141,491 ± 33,628 [] 0.00018% | 0% 99,253 ± 14,329 [] 0.00009% | Control 106,385 ± 28,312 | NT | NT | NT | NT |
Fraction 2 | 81 ± 0.5% [] 0.8 mg/mL | 96 ± 1.1% [] 0.8 mg/mL | 159% 138,438 ± 92,622 [] 0.00015% | 164% 140,889 ± 69,336 [] 0.00008% | 142% 129,390 ± 90,969 [] 0.00004% | Control 53,411 ± 9096 | 29% 3943 ± 176 []0.05% | 56% 4770 ± 312 [] 0.025% | 9% 3334 ± 285 [] 0.0125% | Control 3049 ± 339 |
Fraction 3 | 79 ± 2.8% [] 0.8 mg/mL | 87 ± 4% [] 0.8 mg/mL | 73% 152,088 ± 86,959 [] 0.000012% | 50% 131,696 ± 89,110 [] 0.000006% | 76% 154,656 ± 76,739 [] 0.000003% | Control 87,690 ± 28,057 | NT | NT | NT | NT |
CM-MO supplementary water extract | NT | NT | NT | NT | NT | NT | −36% 484 ± 130 [] 0.5% | −26% 557 ± 181 [] 0.125% | −12% 665 ± 196 [] 0.0625% | Control 756 ± 221 |
Measured m/z [M + H]+ | Molecular Formula [M] | Calculated m/z [M + H]+ | Error (ppm) | Compound Assignment |
---|---|---|---|---|
342.1694 | C20H23NO4 | 342.1700 | 1.76 | Kinkeloid A |
358.1650 | C20H23NO5 | 358.1649 | 0.93 | Kinkeloid B1, B2, B3, B4 |
374.1593 | C20H23NO6 | 374.1598 | 0.24 | Kinkeloid C1, C2, C3 |
390.1551 | C20H23NO7 | 390.1547 | 0.86 | Kinkeloid D |
291.0860 | C15H14O6 | 291.0863 | 1.75 | Catechin |
291.0860 | C15H14O6 | 291.0863 | 1.74 | Epicatechin |
307.0808 | C15H14O7 | 307.0812 | 1.23 | Epigallocatechin |
449.1073 | C21H20O11 | 449.1006 | 0.78 | Isoorientin |
433.113 | C21H20O10 | 433.1129 | 0.11 | Isovitexin |
433.113 | C21H20O10 | 433.1129 | 0.11 | Vitexin |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Messaili, S.; Haggouch, D.; Bignard, M.; Campos, P.-E.; Destandau, E.; Delannay, E. Metabolite Profiling and Molecular Network Shows Kinkeloids as Promoting of Collagen Synthesis from Combretum micranthum. Separations 2024, 11, 132. https://doi.org/10.3390/separations11050132
Messaili S, Haggouch D, Bignard M, Campos P-E, Destandau E, Delannay E. Metabolite Profiling and Molecular Network Shows Kinkeloids as Promoting of Collagen Synthesis from Combretum micranthum. Separations. 2024; 11(5):132. https://doi.org/10.3390/separations11050132
Chicago/Turabian StyleMessaili, Souhila, Doha Haggouch, Mikaela Bignard, Pierre-Eric Campos, Emilie Destandau, and Eldra Delannay. 2024. "Metabolite Profiling and Molecular Network Shows Kinkeloids as Promoting of Collagen Synthesis from Combretum micranthum" Separations 11, no. 5: 132. https://doi.org/10.3390/separations11050132
APA StyleMessaili, S., Haggouch, D., Bignard, M., Campos, P. -E., Destandau, E., & Delannay, E. (2024). Metabolite Profiling and Molecular Network Shows Kinkeloids as Promoting of Collagen Synthesis from Combretum micranthum. Separations, 11(5), 132. https://doi.org/10.3390/separations11050132