Efficient Separation of Re (VII) and Mo (VI) by Extraction Using E-1006–Ammonium Sulfate Aqueous Two-Phase System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Apparatus
2.2. Experimental Methods
2.2.1. Phase Diagram of the ATPS
2.2.2. Re-Mo Separation
3. Results and Discussion
3.1. Phase Diagrams
3.2. The Separation of Re (VII) and Mo (VI)
3.2.1. Effect of pH
3.2.2. Effect of Temperature
3.2.3. Effect of cE-1006
3.2.4. Effect of c(NH4)SO4
3.2.5. Effect of cRe and cMo
3.2.6. Effect of Extraction Time
3.3. Separation of Re (VII) and Mo (VI) under Suitable Conditions
4. Conclusions
- (1)
- A phase equilibrium diagram of the ATPS, composed of E-1006, (NH4)2SO4, and water, was developed.
- (2)
- The effects of pH, temperature, concentrations of ATPS components, and metal ions on the separation of Re (VII) and Mo (VI) were investigated. The results show that pH plays an important role in the separation of Re (VII) and Mo (VI). At pH 7.0, Mo (VI) almost transitioned into the (NH4)2SO4-rich phase, while Re (VII) was extracted into the E-1006-rich phase, and the separation factor of Re (VII) and Mo (VI) reached a maximum of 129.67. The extraction efficiency of Re (VII) is higher at low temperatures. The increase in temperature promotes the transition of Mo (VI) to the salt-rich phase, and the separation factor of Re (VII) and Mo (VI) reaches a maximum of 139.37 at 323.15 K. The separation of Re (VII) and Mo (VI) is favored by increasing the concentrations of E-1006 and (NH4)2SO4. An increase in the Re (VII) concentration decreases the extraction efficiency of Re (VII). An increase in the Mo (VII) concentration promotes the extraction of Re (VII) and Re-Mo separation.
- (3)
- The suitable conditions for the separation of Re (VII) and Mo (VI) were achieved using an ATPS composed of 200 g/L of E-1006, 200 g/L of (NH4)2SO4, and water at a pH 7.0 heated to 323.15 K for 2 h. A mixed solution of 0.1 g/L of Re (VII) and 5 g/L of Mo (VI) was separated by the ATPS. The extraction efficiency of Re (VII) reached 97.2%, and the separation factor of Re (VII) and Mo (VI) reached 2700. A diluted simulated leaching solution consisting of 0.1 g/L of Re and 5 g/L of Mo was separated using the ATPS. The extraction efficiency of Re (VII) reached 99.1%, and the separation factor of Re (VII) and Mo (VI) reached 5100.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, W.; Wang, W.; Chen, S.; Zhang, R.; Wang, Y.; Zhang, Q.; Yuwen, L.; Yang, W.J.; Wang, L. Molybdenum disulfide (MoS2) nanosheets-based hydrogels with light-triggered self-healing property for flexible sensors. J. Colloid Interface Sci. 2020, 586, 601–612. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Zhang, B.; Han, G.; Wang, M.; Huang, Y.; Su, S.; Xue, Y.; Wang, Y. Clean separation and purification for strategic metals of molybdenum and rhenium from minerals and waste alloy scraps—A review. Resour. Conserv. Recycl. 2022, 181, 106232. [Google Scholar] [CrossRef]
- Hori, H.; Yonezato, Y.; Ito, K. Recovery of platinum and rhenium using selective precipitation induced by two-stage photochemical treatment. Hydrometallurgy 2022, 211, 105883. [Google Scholar] [CrossRef]
- Yi, A.; Jiang, H. Rhenium-molybdenum separation in an alkaline leaching solution of a waste superalloy by N263 extraction. Arab. J. Chem. 2023, 16, 104516. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, S.; Ma, X.; Cao, Z.; Zhang, C.; Zhong, H. A green production process of electrolytic manganese metal based on solvent extraction. Colloids Surf. A Physicochem. Eng. Asp. 2023, 670, 131517. [Google Scholar] [CrossRef]
- Joo, S.-H.; Kim, Y.-U.; Kang, J.-G.; Kumar, J.R.; Yoon, H.-S.; Parhi, P.K.; Shin, S.M. Recovery of Rhenium and Molybdenum from Molybdenite Roasting Dust Leaching Solution by Ion Exchange Resins. Mater. Trans. 2012, 53, 2034–2037. [Google Scholar] [CrossRef]
- Feng, J.; Li, J.; Liao, Y.; Liu, F.; Li, H.; Jiang, Q.; Huang, B.; Wang, Y.; Xiao, L.; Liu, H.; et al. Rhenium recovery from roasting leachate of molybdenum concentrate by N-methylimidazole functionalized anion exchange resin. J. Radioanal. Nucl. Chem. 2023, 332, 747–760. [Google Scholar] [CrossRef]
- Fu, Z.; Hou, Y.; Huang, J.; Cheng, D.; Li, G. Separation and recovery of rhenium(VII) from molybdenum concentrate oxygen pressure leach solution by modified D201 resin. Conserv. Util. Miner. Resour. 2022, 42, 115–122. [Google Scholar]
- Wang, J.; Yu, Z.; Xiao, X. A novel hydroxyapatite super-hydrophilic membrane for efficient separation of oil-water emulsions, desalting and removal of metal ions. Desalination Int. J. Sci. Technol. Desalt. Water Purif. 2023, 565, 116864. [Google Scholar] [CrossRef]
- Long, X.; Zhao, G.Q.; Zheng, Y.; Hu, J.; Zuo, Y.; Luo, W.; Jiao, F. A precise pyromellitic acid grafting prepared multifunctional MXene membranes for efficient oil-in-water emulsion separation and heavy metal ions removal. Chem. Eng. J. 2023, 472, 144904. [Google Scholar] [CrossRef]
- Kang, S.; Qin, S.-J.; Wang, Q.; Hao, L.; Pang, W.; Li, S. Research Progress on Separation Enrichment and Extraction Techology of Rhenium. Nonferrous Met. Smelt. Compon. 2023, 66–74. [Google Scholar]
- Salehi, H.; Tavakoli, H.; Aboutalebi, M.R.; Samim, H.R. Recovery of molybdenum and rhenium in scrub liquors of fumes and dusts from roasting molybdenite concentrates. Hydrometallurgy 2019, 185, 142–148. [Google Scholar] [CrossRef]
- Kim, H.S.; Park, J.S.; Seo, S.Y.; Tran, T.; Kim, M.J. Recovery of rhenium from a molybdenite roaster fume as high purity ammonium perrhenate. Hydrometallurgy 2015, 156, 158–164. [Google Scholar] [CrossRef]
- Srivastava, R.R.; Kim, M.; Lee, J.; Ilyas, S. Liquid–liquid extraction of rhenium(VII) from an acidic chloride solution using Cyanex 923. Hydrometallurgy 2015, 157, 33–38. [Google Scholar] [CrossRef]
- Hong, T.; Liu, M.; Ma, J.; Yang, G.; Li, L.; Mumford, K.A.; Stevens, G.W. Selective recovery of Rhenium from industrial leach solutions by synergistic solvent extraction. Sep. Purif. Technol. 2020, 236, 116281. [Google Scholar] [CrossRef]
- Assis, R.C.; Mageste, A.B.; de Lemos, L.R.; Orlando, R.M.; Rodrigues, G.D. Application of aqueous two-phase system for selective extraction and clean-up of emerging contaminants from aqueous matrices. Talanta 2021, 223, 121697. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Jia, A.; Guo, Q.; Sun, T.; Li, P.; Wang, P.; Pan, Y.; Zhang, Y. Mass transfer of molybdenum in L35 + sodium sulfate + H2O aqueous two-phase system with a packed column. Sep. Purif. Technol. 2018, 204, 304–313. [Google Scholar] [CrossRef]
- Pan, Y.; Sun, X.; Qi, M.; Qin, R.; Che, X.; Zhang, Y. A clean and efficient method for separation of vanadium and molybdenum by aqueous two-phase systems. J. Mol. Liq. 2020, 313, 113540. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, D.; Chen, S.; Su, M.; Chen, Y.; Yuvaraja, G. A green method for recovery of thallium and uranium from wastewater using polyethylene glycol and ammonium sulfate based on aqueous two-phase system. J. Clean. Prod. 2021, 297, 126452. [Google Scholar] [CrossRef]
- Li, R.; Qin, R.; Li, Q.; Zhang, Y.; Zhang, Y. Study on extraction and separation of tungsten and molybdenum by nonionic surfactant Triton X-100/Na2SO4 two-phase aqueous system. Chem. World 2023, 64, 342–347. [Google Scholar] [CrossRef]
- Leite, D.D.S.; Carvalho, P.L.G.; De Lemos, L.R.; Mageste, A.B.; Rodrigues, G.D. Hydrometallurgical separation of copper and cobalt from lithium-ion batteries using aqueous two-phase systems. Hydrometallurgy 2017, 169, 245–252. [Google Scholar] [CrossRef]
- García-González, L.; Shirayama, S.; Morita, K. Cobalt and nickel separation in aqueous two-phase systems with polyethylene glycol 20,000 and sodium electrolytes. Hydrometallurgy 2023, 222, 106180. [Google Scholar] [CrossRef]
- Hishida, M.; Kaneko, Y.; Yamamura, Y.; Saito, K. Salt Effects on Lamellar Structure of Nonionic Surfactants. J. Solut. Chem. 2016, 45, 1612–1619. [Google Scholar] [CrossRef]
- Lindman, B.; Medronho, B.; Karlström, G. Clouding of nonionic surfactants. Curr. Opin. Colloid Interface Sci. 2016, 22, 23–29. [Google Scholar] [CrossRef]
- Guedes De Carvalho, R.A.; Sampaio, M.N.M. Solvent extraction of tungsten by alkylamines hydrochloric acid and alkylamines-sulphuric acid systems. Hydrometallurgy 1991, 26, 137–150. [Google Scholar] [CrossRef]
- Fei, Y.; Gou, S.; He, Y.; Zhou, L.; Peng, C.; Zhang, H.; Zhang, Q.; Wu, Y. The properties of polyoxyethylene polymers with temperature-sensitive and instant-solubility. J. Mol. Liq. 2019, 275, 146–156. [Google Scholar] [CrossRef]
- Tang, Z.; Wang, H.; Wu, P.-F.; Zhou, S.-Y.; Huang, Y.-C.; Zhang, R.; Sun, D.; Tang, Y.-G.; Wang, H.-Y. Electrode–Electrolyte Interfacial Chemistry Modulation for Ultra-High Rate Sodium-Ion Batteries. Angew. Chem. Int. Ed. 2022, 61, e202200475. [Google Scholar] [CrossRef] [PubMed]
- Vasylieva, A.; Doroshenko, I.; Vaskivskyi, Y.; Chernolevska, Y.; Pogorelov, V. FTIR study of condensed water structure. J. Mol. Struct. 2018, 1167, 232–238. [Google Scholar] [CrossRef]
- Han, D.; Li, X.; Cui, Y.; Yang, X.; Chen, X.; Xu, L.; Peng, J.; Li, J.; Zhai, M. Polymeric ionic liquid gels composed of hydrophilic and hydrophobic units for high adsorption selectivity of perrhenate. RSC Adv. 2018, 8, 9011–9319. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, T.; Hou, Q.; Guo, Q.; Lu, T.; Guo, Y.; Yan, C. A green method for extracting molybdenum (VI) from aqueous solution with aqueous two-phase system without any extractant. Sep. Purif. Technol. 2016, 169, 151–157. [Google Scholar] [CrossRef]
- Ahsaie, F.G.; Pazuki, G. Effect of carbohydrates, choline chloride based deep eutectic solvents and salts on the phase behavior of PEG-PPG copolymer ATPSs and partitioning of penicillin G. J. Mol. Liq. 2021, 339, 117152. [Google Scholar] [CrossRef]
- Sinoimeri, E.; Pescheux, A.-C.; Guillotte, I.; Cognard, J.; Svecova, L.; Billard, I. Fate of metal ions in PEG-400/Na2SO4/H2O aqueous biphasic system: From eviction to extraction towards the upper polymer-rich phase. Sep. Purif. Technol. 2023, 308, 122854. [Google Scholar] [CrossRef]
- Jin, L.; Jarand, C.W.; Brader, M.L.; Reed, W.F. Angle-dependent effects in DLS measurements of polydisperse particles. Meas. Sci. Technol. 2022, 33, 045202. [Google Scholar] [CrossRef]
- Akach, J.; Kabuba, J.; Ochieng, A. Simulation of the Light Distribution in a Solar Photocatalytic Bubble Column Reactor Using the Monte Carlo Method. Ind. Eng. Chem. Res. 2020, 59, 17708–17719. [Google Scholar] [CrossRef]
- Lou, Z.; Guo, C.; Feng, X.; Zhang, S.; Xing, Z.; Shan, W.; Xiong, Y. Selective extraction and separation of Re(VII) from Mo(VI) by TritonX-100/N235/iso-amyl alcohol/n-heptane/NaCl microemulsion system. Hydrometallurgy 2015, 157, 199–206. [Google Scholar] [CrossRef]
- Boysen, R.I.; Wang, Y.; Keah, H.H.; Hearn, M.T. Observations on the origin of the non-linear van’t Hoff behaviour of polypeptides in hydrophobic environments. Biophys. Chem. 1999, 77, 79–97. [Google Scholar] [CrossRef]
pH | <1.8 | <2.5 | <4 | <5 | <7 | >7 |
---|---|---|---|---|---|---|
Species | MoO22+ | H2Mo7O244− | HMo7O245− | Mo7O246− | Mo2O72− | MoO42− |
|z|/n | 0.6667 | 0.1212 | 0.1562 | 0.1935 | 0.2222 | 0.4000 |
|z|/M | 0.01562 | 0.003774 | 0.004726 | 0.005682 | 0.006579 | 0.01250 |
Sample Number | Zeta Potential (mV) |
---|---|
1 | −0.642 |
2 | 0.110 |
3 | −1.230 |
cE-1006/ g L−1 | c(NH4)2SO4/ g L−1 | pH | Temperature/ K | ERe/% | EMo/% | SRe/Mo |
---|---|---|---|---|---|---|
200 | 200 | 7.0 | 323.15 | 97.2 (±0.4) | 1.3 (±0.1) | 2700 (±200) |
cE-1006/ g L−1 | c(NH4)2SO4/ g L−1 | pH | Temperature/ K | ERe/% | EMo/% | SRe/Mo |
---|---|---|---|---|---|---|
200 | 200 | 7.0 | 323.15 | 99.1 (±0.1) | 2.1 (±0.2) | 5100 (±400) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, L.; Li, W.; Dai, Z.; Zhou, M.; Qiu, Y. Efficient Separation of Re (VII) and Mo (VI) by Extraction Using E-1006–Ammonium Sulfate Aqueous Two-Phase System. Separations 2024, 11, 142. https://doi.org/10.3390/separations11050142
Fan L, Li W, Dai Z, Zhou M, Qiu Y. Efficient Separation of Re (VII) and Mo (VI) by Extraction Using E-1006–Ammonium Sulfate Aqueous Two-Phase System. Separations. 2024; 11(5):142. https://doi.org/10.3390/separations11050142
Chicago/Turabian StyleFan, Linlin, Wenhui Li, Zilong Dai, Min Zhou, and Yunren Qiu. 2024. "Efficient Separation of Re (VII) and Mo (VI) by Extraction Using E-1006–Ammonium Sulfate Aqueous Two-Phase System" Separations 11, no. 5: 142. https://doi.org/10.3390/separations11050142
APA StyleFan, L., Li, W., Dai, Z., Zhou, M., & Qiu, Y. (2024). Efficient Separation of Re (VII) and Mo (VI) by Extraction Using E-1006–Ammonium Sulfate Aqueous Two-Phase System. Separations, 11(5), 142. https://doi.org/10.3390/separations11050142