Extraction and Purification of Catechins from Tea Leaves: An Overview of Methods, Advantages, and Disadvantages
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Solvent Systems for Multi-Stage Separations
3.2. Complex Methods and Instrumentation for Separation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arts, I.C.; Hollman, P.C. Polyphenols and disease risk in epidemiologic studies. Am. J. Clin. Nutr. 2005, 81, 317S–325S. [Google Scholar] [CrossRef] [PubMed]
- Musial, C.; Kuban-Jankowska, A.; Gorska-Ponikowska, M. Beneficial properties of green tea catechins. Int. J. Mol. Sci. 2020, 21, 1744. [Google Scholar] [CrossRef] [PubMed]
- Cabrera, C.; Artacho, R.; Giménez, R. Beneficial effects of green tea—A review. J. Am. Coll. Nutr. 2006, 25, 79–99. [Google Scholar] [CrossRef] [PubMed]
- Farhan, M. Green tea catechins: Nature’s way of preventing and treating cancer. Int. J. Mol. Sci. 2022, 23, 10713. [Google Scholar] [CrossRef] [PubMed]
- Pervin, M.; Unno, K.; Takagaki, A.; Isemura, M.; Nakamura, Y. Function of green tea catechins in the brain: Epigallocatechin gallate and its metabolites. Int. J. Mol. Sci. 2019, 20, 3630. [Google Scholar] [CrossRef] [PubMed]
- Cerbin-Koczorowska, M.; Waszyk-Nowaczyk, M.; Bakun, P.; Goslinski, T.; Koczorowski, T. Current view on green tea catechins formulations, their interactions with selected drugs, and prospective applications for various health conditions. Appl. Sci. 2021, 11, 4905. [Google Scholar] [CrossRef]
- Paiva, L.; Rego, C.; Lima, E.; Marcone, M.; Baptista, J. Comparative analysis of the polyphenols, caffeine, and antioxidant activities of green tea, white tea, and flowers from Azorean Camellia sinensis varieties affected by different harvested and processing conditions. Antioxidants 2021, 10, 183. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, P.; Barooah, M. Tea Catechins: Beneficial Perspectives in Medicine, Food, and Cosmetics—A Review. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1334–1358. [Google Scholar]
- Wang, X.; Wang, S.; Huang, S.; Zhang, L.; Ge, Z.; Sun, L.; Zong, W. Purification of polyphenols from distiller’s grains by macroporous resin and analysis of the polyphenolic components. Molecules 2019, 24, 1284. [Google Scholar] [CrossRef] [PubMed]
- Candela, L.; Formato, M.; Crescente, G.; Piccolella, S.; Pacifico, S. Coumaroyl flavonol glycosides and more in marketed green teas: An intrinsic value beyond much-lauded catechins. Molecules 2020, 25, 1765. [Google Scholar] [CrossRef] [PubMed]
- Ohgitani, E.; Shin-Ya, M.; Ichitani, M.; Kobayashi, M.; Takihara, T.; Kawamoto, M.; Mazda, O. Significant inactivation of SARS-CoV-2 in vitro by a green tea catechin, a catechin-derivative, and black tea galloylated theaflavins. Molecules 2021, 26, 3572. [Google Scholar] [CrossRef] [PubMed]
- Ntezimana, B.; Li, Y.; He, C.; Yu, X.; Zhou, J.; Chen, Y.; Ni, D. Different withering times affect sensory qualities, chemical components, and nutritional characteristics of black tea. Foods 2021, 10, 2627. [Google Scholar] [CrossRef] [PubMed]
- Shikha, D.; Singh, A.; Rangra, N.K.; Monga, V.; Bhatia, R. Insights to therapeutic potentials, pharmaceutical formulations, chemistry and analytical methods of catechin. Phytochem. Rev. 2024, 23, 1–42. [Google Scholar] [CrossRef]
- Devi, S. Catechins. In A Centum of Valuable Plant Bioactives; Academic Press: Cambridge, MA, USA, 2021; pp. 525–544. [Google Scholar]
- Abdel-Aal, E.S.M.; Rabalski, I.; Mats, L.; Rai, I. Identification and quantification of anthocyanin and catechin compounds in purple tea leaves and flakes. Molecules 2022, 27, 6676. [Google Scholar] [CrossRef] [PubMed]
- Włodarczyk, M.; Ciebiera, M.; Nowicka, G.; Łoziński, T.; Ali, M.; Al-Hendy, A. Epigallocatechin Gallate for the Treatment of Benign and Malignant Gynecological Diseases—Focus on Epigenetic Mechanisms. Nutrients 2024, 16, 559. [Google Scholar] [CrossRef] [PubMed]
- Choung, M.G.; Hwang, Y.S.; Lee, M.S.; Lee, J.; Kang, S.T.; Jun, T.H. Comparison of extraction and isolation efficiency of catechins and caffeine from green tea leaves using different solvent systems. Int. J. Food Sci. Technol. 2014, 49, 1572–1578. [Google Scholar] [CrossRef]
- Daglia, M. Polyphenols as antimicrobial agents. Curr. Opin. Biotechnol. 2012, 23, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Ito, A.; Kamiya, J.; Katsuno, N.; Yanase, E. Alterations in Nonvolatile Components of Tea (Camellia sinensis) Induced by Insect Feeding under Field Conditions. Horticulturae 2023, 9, 1078. [Google Scholar] [CrossRef]
- Lungu, I.; Huzum, B.; Humulescu, I.A.; Cioanca, O.; Morariu, D.; Șerban, I.L.; Hancianu, M. Flavonoids as promising therapeutic and dietary agents. Med.-Surg. J. 2020, 124, 151–156. [Google Scholar]
- Sosa, A.M.; Moya Alvarez, A.; Bracamonte, E.; Korenaga, M.; Marco, J.D.; Barroso, P.A. Efficacy of topical treatment with (−)-epigallocatechin gallate, a green tea catechin, in mice with cutaneous leishmaniasis. Molecules 2020, 25, 1741. [Google Scholar] [CrossRef] [PubMed]
- Ziyatdinova, G.; Nizamova, A.; Budnikov, H. Novel Coulometric Approach to Evaluation of Total Free Polyphenols in Tea and Coffee Beverages in Presence of Milk Proteins. Food Anal. Meth. 2010, 4, 334–340. [Google Scholar] [CrossRef]
- Choung, M.G.; Lee, M.S. Optimal extraction conditions for simultaneous determination of catechins and caffeine in green tea leaves. Food Sci. Biotechnol. 2011, 20, 327–333. [Google Scholar] [CrossRef]
- Munteanu, I.G.; Apetrei, C. Assessment of the antioxidant activity of catechin in nutraceuticals: Comparison between a newly developed electrochemical method and spectrophotometric methods. Int. J. Mol. Sci. 2022, 23, 8110. [Google Scholar] [CrossRef] [PubMed]
- Motilva, M.J.; Serra, A.; Macia, A. Analysis of food polyphenols by ultra high-performance liquid chromatography coupled to mass spectrometry: An overview. J. Chromatogr. A 2013, 1292, 66–82. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.P.; Shih, Y.T.; Lin, B.R.; Chiu, C.F.; Lin, C.C. Inhibitory effect and mechanisms of an anthocyanins- and anthocyanidins-rich extract from purple-shoot tea on colorectal carcinoma cell proliferation. J. Agric. Food Chem. 2012, 60, 3686–3692. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.P.; Fei, X.Y.; Liang, M.Z.; Wang, L.B.; Lin, Z. Analysis of Anthocyanins in Zijuan Tea. Food Sci. 2012, 33, 203–206. [Google Scholar]
- Robbins, R.J. Phenolic Acids in Foods: An Overview of Analytical Methodology. J. Agric. Food Chem. 2003, 51, 866–2887. [Google Scholar] [CrossRef] [PubMed]
- Bravo, L. Polyphenols: Chemistry, Dietary Sources, Metabolism, and Nutritional Significance. Nutr. Rev. 1998, 56, 317–333. [Google Scholar] [CrossRef] [PubMed]
- Lucci, P.; Saurina, J.; Núñez, O. Trends in LC-MS and LC-HRMS analysis and characterization of polyphenols in food. TrAC Trends Anal. Chem. 2017, 88, 1–24. [Google Scholar] [CrossRef]
- Luo, X.; Xu, L.; Huang, P.; Wang, Y.; Liu, J.; Hu, Y.; Wang, P.; Kang, Z. Nondestructive Testing Model of Tea Polyphenols Based on Hyperspectral Technology Combined with Chemometric Methods. Agriculture 2021, 11, 673. [Google Scholar] [CrossRef]
- Hidayat, M.A.; Jannah, F.; Kuswandi, B. Development of Paper Based Sensor for the Determination of Total Phenolic Content in Green Tea Beverages. Agric. Sci. Procedia 2016, 9, 424–430. [Google Scholar] [CrossRef]
- Eguilaz, M.; Gutierrez, A.; Gutierrez, F.; Gonzalez-Dominguez, J.M.; Anson-Casaos, A.; Hernandez-Ferrer, J.; Ferreyra, N.F.; Martinez, M.T.; Rivas, G. Covalent functionalization of single-walled carbon nanotubes with polytyrosine: Characterization and analytical applications for the sensitive quantification of polyphenols. Anal. Chim. Acta. 2016, 909, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Ng, T.K.; Chu, K.O.; Wang, C.C.; Pang, C.P. Green tea catechins as therapeutic antioxidants for glaucoma treatment. Antioxidants 2023, 12, 1320. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Barimah, A.O.; Yin, L.; Chen, Q.; Shi, J.; El-Seedi, H.R.; Zou, X. Intelligent evaluation of taste constituents and polyphenolsto-amino acids ratio in matcha tea powder using near infrared spectroscopy. Food Chem. 2021, 353, 129372. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Xu, W.; Chen, Q. Determination of tea polyphenols in green tea by homemade color sensitive sensor combined with multivariate analysis. Food Chem. 2020, 319, 126584. [Google Scholar] [CrossRef] [PubMed]
- Xiong, C.; Liu, C.; Pan, W.; Ma, F.; Xiong, C.; Qi, L.; Chen, F.; Lu, X.; Yang, J.; Zheng, L. Non-destructive determination of total polyphenols content and classification of storage periods of Iron Buddha tea using multispectral imaging system. Food Chem. 2015, 176, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Martin, C.S.; Maximino, M.D.; Pereira, M.S.; Alessio, P. Polyphenol Detection in Mate Tea Samples Using Iron Tetrasulfonated Phthalocyanine Modified Screen-Printed Electrode. IEEE Sens. J. 2019, 19, 10686–10692. [Google Scholar] [CrossRef]
- Qadir, M.; Muhammad, T.; Bakri, M.; Gao, F. Determination of total polyphenols in tea by a flow injection-fiber optic spectrophotometric system. Instrum. Sci. Technol. 2017, 46, 185–193. [Google Scholar] [CrossRef]
- Maximino, M.D.; Martin, C.S.; Paulovich, F.V.; Alessio, P. Layer-by-Layer Thin Film of Iron Phthalocyanine as a Simple and Fast Sensor for Polyphenol Determination in Tea Samples. J. Food Sci. 2016, 81, C2344–C2351. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Chen, F.; Zhao, S.; Ye, C.; Lin, C.-T.; Zhu, J.; Fu, L. Preparation of cassava fiber-iron nanoparticles composite for electrochemical determination of tea polyphenol. J. Food Meas. Charact. 2021, 15, 4711–4717. [Google Scholar] [CrossRef]
- Dwiecki, K.; Nogala-Kałucka, M.; Polewski, K. Determination of Total Phenolic Compounds in Common Beverages Using CdTe Quantum Dots. J. Food Process. Preserv. 2017, 41, e12863. [Google Scholar] [CrossRef]
- Hao, Z.; Zheng, Q.; Jin, L.; Zhou, S.; Chen, H.; Liu, X.; Lu, C. Rapid measurement of total polyphenol content in tea by kinetic matching approach on microfluidic paper-based analytical devices. Food Chem. 2021, 342, 128368. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhang, S.F.; Shuang, S.M.; Dong, C. Determination of Tea Polyphenols in Tea by 1.10-phenanthroline-iron (II) Indicator. Food Sci. 2008, 29, 403–405. [Google Scholar]
- Dong, P.; Zhang, Y. Study on extraction of tea polyphenols from tea by ultrasonic method. Food Sci. Technol. 2018, 43, 62–65. [Google Scholar]
- Fraga, C.G.; Galleano, M.; Verstraeten, S.V.; Oteiza, P.I. Basic biochemical mechanisms behind the health benefits of polyphenols. Mol. Asp. Med. 2010, 31, 435–445. [Google Scholar] [CrossRef] [PubMed]
- Francis, P.S.; Costin, J.W.; Conlan, X.A.; Bellomarino, S.A.; Barnett, J.A.; Barnett, N.W. A rapid antioxidant assay based on acidic potassium permanganate chemiluminescence. Food Chem. 2010, 122, 926–929. [Google Scholar] [CrossRef]
- García-Ruiz, A.; Baig, M.N.; Rodríguez-Pérez, C. Optimization of the ultrasound-assisted extraction of catechins from green tea using green solvents. Molecules 2018, 23, 1687. [Google Scholar]
- Hollman, P.C.; Katan, M.B. Health effects and bioavailability of dietary flavonols. Free Radic. Res. 1999, 31, S75–S80. [Google Scholar] [CrossRef] [PubMed]
- Jabeen, A.; Hussain, S. Green tea (Camellia sinensis) polyphenols: Nutraceutical perspectives. Food Sci. Technol. Int. 2017, 23, 555–567. [Google Scholar]
- Lungu, I.L.; Batir-Marin, D.; Panainte, A.; Mircea, C.; Tuchilus, C.; Stefanache, A.; Szasz, F.A.; Grigorie, D.; Robu, S.; Cioanca, O.; et al. Catechin-Zinc-Complex: Synthesis, Characterization and Biological Activity Assessment. Farmacia 2023, 71, 755–763. [Google Scholar] [CrossRef]
- Jeon, J.H.; Lim, D.W.; Lee, J.W.; Kim, Y.T. Antioxidant and anti-inflammatory activities of selected medicinal plants and fungi containing phenolic and flavonoid compounds. Korean J. Physiol. Pharmacol. 2018, 22, 227–236. [Google Scholar]
- Katiyar, S.K.; Agarwal, R. Green tea prevents non-melanoma skin cancer by enhancing DNA repair. Arch. Dermatol. 2002, 138, 1409–1413. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.; Mukhtar, H. Tea polyphenols for health promotion. Life Sci. 2007, 81, 519–533. [Google Scholar] [CrossRef]
- Pongsuwan, W.; Bamba, T.; Harada, K.; Yonetani, T.; Kobayashi, A.; Fukusaki, E. High-throughput technique for comprehensive analysis of Japanese green tea quality assessment using ultra-performance liquid chromatography with time-of-flight mass spectrometry (UPLC/TOF MS). J. Agric. Food Chem. 2008, 56, 10705–10708. [Google Scholar] [CrossRef]
- Paiva, L.; Lima, E.; Motta, M.; Marcone, M.; Baptista, J. Variability of antioxidant properties, catechins, caffeine, L-theanine and other amino acids in different plant parts of Azorean Camellia sinensis. Curr. Res. Food Sci. 2020, 3, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Esveld, E.; Vincken, J.P.; Bruins, M.E. Pulsed Electric Field as an Alternative Pre-treatment for Drying to Enhance Polyphenol Extraction from Fresh Tea Leaves. Food Bioproc. Tech. 2019, 12, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Sentkowska, A. Content of selenoaminoacids and catechins in Chinese green teas. Eur. Food Res. Technol. 2020, 247, 613–622. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, S.; Lv, L.; Sang, S. A new method to prepare and redefine black tea thearubigins. J. Chromatogr. A 2018, 1563, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, G.J.; Zhang, W.; Zhou, Y.L.; Ling, T.J.; Wan, X.C.; Bao, G.H. Novel Flavoalkaloids from White Tea with Inhibitory Activity against the Formation of Advanced Glycation End Products. J. Agric. Food Chem. 2018, 66, 4621–4629. [Google Scholar] [CrossRef] [PubMed]
- Wangkarn, S.; Grudpan, K.; Khanongnuch, C.; Pattananandecha, T.; Apichai, S.; Saenjum, C. Development of HPLC Method for Catechins and Related Compounds Determination and Standardization in Miang (Traditional Lanna Fermented Tea Leaf in Northern Thailand). Molecules 2021, 26, 6052. [Google Scholar] [CrossRef] [PubMed]
- . He, H.-F. Research progress on theaflavins: Efficacy, formation, and preparation. Food Nutr. Res. 2017, 61, 1344521. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.K.; Lin-Shiau, S.Y. Mechanisms of hypolipidemic and anti-obesity effects of tea and tea polyphenols. Mol. Nutr. Food Res. 2006, 50, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Loo, B.M. Simplified high-performance liquid chromatographic method for the quantitation of tea catechins. J. Chromatogr. A 1998, 793, 53–57. [Google Scholar]
- Zhang, L.; Lin, D.; Chen, D.; Ge, J.; Zhou, T. Determination of total polyphenols content in tea using a novel biosensor based on magnetic graphene oxide supported laccase. Anal. Methods 2022, 14, 414–422. [Google Scholar]
- Khan, M.I.; Hussain, S.; Aman, N.; Mirza, B. An ecofriendly and cost-effective microwave-assisted extraction approach for the extraction of polyphenols from tea leaves. Prep. Biochem. Biotechnol. 2021, 51, 693–701. [Google Scholar]
- Zhang, M.; Xu, Q.; Li, S.; Chen, W.; Wen, Y.; Chen, Z.; Deng, Y. Enhanced extraction of polyphenols from green tea using a combination of enzyme and microwave-assisted extraction. Food Chem. 2020, 310, 125915. [Google Scholar]
- Wu, D.; Cheng, X.; Zhang, J.; Liu, Z.; Li, J. Comparison of the effects of different extraction methods on the yield and quality of theophylline and polyphenols from green tea. Food Sci. Nutr. 2019, 7, 4016–4024. [Google Scholar]
- Ruslan, M.S.H.; Idham, Z.; Nian Yian, L.; Ahmad Zaini, M.A.; Che Yunus, M.A. Effect of operating conditions on catechin extraction from betel nuts using supercritical CO2-methanol extraction. Sep. Sci. Technol. 2018, 53, 662–670. [Google Scholar] [CrossRef]
- García-Marino, M.; Rivas-Gonzalo, J.C.; Ibáñez, E.; García-Moreno, C. Recovery of catechins and proanthocyanidins from winery by-products using subcritical water extraction. Anal. Chim. Acta 2006, 563, 44–50. [Google Scholar] [CrossRef]
- Wang, Y.; Qian, J.; Cao, J.; Wang, D.; Liu, C.; Yang, R.; An, X. Determination of tea polyphenols by using gold nanoparticle-based localized surface plasmon resonance with spectral fitting. Food Chem. 2017, 232, 656–663. [Google Scholar]
- Lu, H.; Meng, X.; Yang, C.S. Enzymology of methylation of tea catechins and inhibition of catechol-O-methyltransferase by (−)-epigallocatechin gallate. Drug Metab. Dispos. 2003, 31, 572–579. [Google Scholar] [CrossRef] [PubMed]
- Maalik, A.; Khan, F.A.; Mumtaz, A. Health implications of tea: Herbal and green tea. J. Food Process. Beverages 2019, 7, 6–11. [Google Scholar]
- Kupnik, K.; Leitgeb, M.; Primožič, M.; Postružnik, V.; Kotnik, P.; Kučuk, N.; Marevci, M.K. Supercritical fluid and conventional extractions of high value-added compounds from pomegranate peels waste: Production, quantification and antimicrobial activity of bioactive constituents. Plants 2022, 11, 928. [Google Scholar] [CrossRef] [PubMed]
- Nakachi, K.; Suemasu, K.; Suga, K.; Takeo, T.; Imai, K.; Higashi, Y.; Fukuda, S. Influence of drinking green tea on breast cancer malignancy among Japanese patients. J. Epidemiol. Community Health 1998, 52, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Nehlig, A. Effects of coffee/caffeine on brain health and disease: What should I tell my patients? Pract. Neurol. 2018, 18, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod. 2012, 75, 311–335. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Gong, Y.; Xie, T.; Wu, C. Optimization of enzyme assisted extraction of catechins from green tea using response surface methodology. J. Food Eng. 2008, 83, 9–16. [Google Scholar]
- Pan, M.H.; Ho, C.T. Chemopreventive effects of natural dietary compounds on cancer development. Chem. Soc. Rev. 2008, 37, 2558–2574. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Wan, L.; Wu, C.; Fang, Y.; Han, G.; Li, H.; Wang, H. Simultaneous determination of 14 phenolic compounds in grape canes by HPLC-DAD-UV using wavelength switching detection. Molecules 2013, 18, 14241–14257. [Google Scholar] [CrossRef] [PubMed]
- Ito, A.; Matsui, Y.; Takeshita, M.; Katashima, M.; Goto, C.; Kuriki, K. Gut microbiota-mediated associations of green tea and catechin intakes with glucose metabolism in individuals without type 2 diabetes mellitus: A four-season observational study with mediation analysis. Arch. Microbiol. 2023, 205, 191. [Google Scholar] [CrossRef] [PubMed]
- Khalatbary, A.R.; Khademi, E. The green tea polyphenolic catechin epigallocatechin gallate and neuroprotection. Nutr. Neurosci. 2020, 23, 281–294. [Google Scholar] [CrossRef] [PubMed]
- Özduran, G.; Becer, E.; Vatansever, H.S. The role and mechanisms of action of catechins in neurodegenerative diseases. J. Am. Nutr. Assoc. 2023, 42, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Bavi, E.P.; Shakerinasab, E.; Hamidinezhad, H.; Nazifi, E. A green and facile approach for fabrication of biocompatible anti-Parkinson chitosan-gelatin-green tea extract composite particles with neuroprotective and Neurotherapeutic effects: In vitro evaluation. Int. J. Biol. Macromol. 2023, 224, 1183–1195. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Gao, H.; Wang, Q.; Lei, L.; Zhu, J.; Wang, X. Simultaneous determination of catechins, caffeine and gallic acids in green, Oolong, black and pu-erh teas using HPLC with a photodiode array detector. J. Chromatogr. B 2018, 1092, 384–393. [Google Scholar]
- Yu, S.; Zhang, R.; Xie, J. High-performance liquid chromatography coupled with mass spectrometry detection for the determination of catechins in tea extracts: A review. J. Chromatogr. B 2019, 1117, 1–13. [Google Scholar]
- Lv, H.P.; Zhang, Y.J.; Lin, Z.; Liang, Y.R. Determination of polyphenols in tea using liquid chromatography with electrospray ionization mass spectrometry detection. J. Food Compos. Anal. 2020, 92, 103573. [Google Scholar]
- Lin, Y.S.; Tsai, Y.C.; Chen, J.W.; Chang, W.H.; Wu, C.H. Analysis of green tea catechins using capillary electrophoresis. Electrophoresis 2021, 42, 344–352. [Google Scholar]
- Lee, H.S.; Quon, M.J. Measuring nitric oxide bioavailability to assess endothelial dysfunction. J. Physiol. 2014, 590, 1177–1186. [Google Scholar]
- Zhang, Y.; Zhao, M.; Chen, Z.; Lin, L. Identification of catechins in green tea using an array-based sensor. Food Chem. 2017, 237, 1067–1073. [Google Scholar]
- Wang, C.; Liu, S.; Liu, Z.; Li, W.; Chen, X. Determination of catechins in tea by high performance liquid chromatography with photodiode array detection. Food Chem. 2016, 194, 643–647. [Google Scholar]
- Jaiswal, R.; Karaköse, H.; Rühmann, S.; Goldner, K.; Neumüller, M.; Treutter, D. Identification of hydroxycinnamoyl derivatives and flavonoids in mate (Ilex paraguariensis) leaves by HPLC-MS/MS. J. Agric. Food Chem. 2017, 65, 9509–9518. [Google Scholar]
- Zuo, Y.; Chen, H.; Deng, Y. Simultaneous determination of catechins, caffeine and gallic acids in green, Oolong, black and pu-erh teas using HPLC with a photodiode array detector. Talanta 2002, 57, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.S.; Wu, S.S.; Lin, J.K. Determination of Tea Polyphenols and Caffeine in Tea Flowers (Camellia sinensis) and Their Hydroxyl Radical Scavenging and Nitric Oxide Suppressing Effects. J. Agric. Food Chem. 2003, 51, 975–980. [Google Scholar] [CrossRef] [PubMed]
- Sakakibara, H.; Honda, Y.; Nakagawa, S.; Ashida, H.; Kanazawa, K. Simultaneous Determination of All Polyphenols in Vegetables, Fruits, and Teas. J. Agric. Food Chem. 2003, 51, 571–581. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Xu, H.; Heritier, J.; Andlauer, W. Determination of catechins and flavonol glycosides in Chinese tea varieties. Food Chem. 2012, 132, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Samanidou, V.; Tsagiannidis, A.; Sarakatsianos, I. Simultaneous determination of polyphenols and major purine alkaloids in Greek Sideritis species, herbal extracts, green tea, black tea, and coffee by high-performance liquid chromatography-diode array detection. J. Sep. Sci. 2012, 35, 608–615. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.K.; Patel, N.J. Review on green tea constituents and its hidden benefits. Int. J. Pharm. Pharm. Sci. 2015, 7, 30–35. [Google Scholar]
- Peng, P.; Wang, L.; Shu, G.; Li, J.; Chen, L. Nutrition and aroma challenges of green tea product as affected by emerging superfine grinding and traditional extraction. Food Sci. Nutr. 2020, 8, 4565–4572. [Google Scholar]
- Pietta, P.G.; Simonetti, P.; Gardana, C. Catechin metabolites after intake of green tea infusions. BioFactors 1998, 8, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Nian, B.; Chen, L.; Yi, C.; Shi, X.; Jiang, B.; Jiao, W.; Liu, Q.; Lv, C.; Ma, Y.; Zhao, M. A high performance liquid chromatography method for simultaneous detection of 20 bioactive components in tea extracts. Electrophoresis 2019, 40, 2837–2844. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Li, S.; Wang, J.; Zhang, Q. Progress in the determination and extraction of catechins in tea. J. Food Sci. Technol. 2020, 37, 123–130. [Google Scholar]
- Li, Y.F.; Ouyang, S.H.; Chang, Y.Q.; Wang, T.M.; Li, W.X.; Tian, H.Y.; Cao, H.; Kurihara, H.; He, R.R. A comparative analysis of chemical compositions in Camellia sinensis var. puanensis Kurihara, a novel Chinese tea, by HPLC and UFLC-Q-TOF-MS/MS. Food Chem. 2017, 216, 282–288. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Wu, Y.; Long, P.; Ho, C.T.; Wang, Y.; Kan, Z.; Cao, L.; Zhang, L.; Wan, X. LC-MS-Based Metabolomics Reveals the Chemical Changes of Polyphenols during High-Temperature Roasting of Large-Leaf Yellow Tea. J. Agric. Food Chem. 2019, 67, 5405–5412. [Google Scholar] [CrossRef] [PubMed]
- Sökmen, M.; Demir, E.; Alomar, S.Y. Optimization of sequential supercritical fluid extraction (SFE) of caffeine and catechins from green tea. J. Supercrit. Fluids 2018, 133, 171–176. [Google Scholar] [CrossRef]
- Ray, P.D.; Huang, B.W.; Tsuji, Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal. 2012, 24, 981–990. [Google Scholar] [CrossRef] [PubMed]
- Ly, T.K.; Ho, T.D.; Behra, P.; Nhu-Trang, T.T. Determination of 400 pesticide residues in green tea leaves by UPLC-MS/MS and GC-MS/MS combined with QuEChERS extraction and mixed-mode SPE clean-up method. Food Chem. 2020, 326, 126928. [Google Scholar] [CrossRef] [PubMed]
- Sanada, T.; Okano, M. Systematic extraction of catechins from green tea using ascorbic acid and basic methanol treatment. J. Chromatogr. A 2003, 1011, 189–199. [Google Scholar]
- Cheng, J.; Wu, F.H.; Wang, P.; Ke, J.P.; Wan, X.C.; Qiu, M.H.; Bao, G.H. Flavoalkaloids with a Pyrrolidinone Ring from Chinese Ancient Cultivated Tea Xi-Gui. J. Agric. Food Chem. 2018, 66, 7948–7957. [Google Scholar] [CrossRef] [PubMed]
- Gaur, R.; Ke, J.P.; Zhang, P.; Yang, Z.; Bao, G.H. Novel Cinnamoylated Flavoalkaloids Identified in Tea with Acetylcholinesterase Inhibition Effect. J. Agric. Food Chem. 2020, 68, 3140–3148. [Google Scholar] [CrossRef] [PubMed]
- Sang, S.; Lambert, J.D.; Ho, C.-T.; Yang, C.-S. The chemistry and biotransformation of tea constituents. Pharmacol. Res. 2011, 64, 87–99. [Google Scholar] [CrossRef] [PubMed]
- Scalbert, A.; Manach, C.; Morand, C.; Rémésy, C.; Jiménez, L. Dietary polyphenols and the prevention of diseases. Crit. Rev. Food Sci. Nutr. 2005, 45, 287–306. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, M.; Deguchi, T.; Lim, J.T.; Moriwaki, H.; Kopelovich, L.; Weinstein, I.B. Chemoprevention of azoxymethane-induced rat colon carcinogenesis by the naturally occurring flavonoids, diosmin and hesperidin. Carcinogenesis 2008, 29, 105–111. [Google Scholar]
- Si, W.; Gong, J. Green tea and its extracts in cancer prevention and therapy. Front. Biosci. 2019, 24, 1535–1549. [Google Scholar]
- Chen, Y.; Lai, L.; You, Y.; Gao, R.; Xiang, J.; Wang, G.; Yu, W. Quantitative Analysis of Bioactive Compounds in Commercial Teas: Profiling Catechin Alkaloids, Phenolic Acids, and Flavonols Using Targeted Statistical Approaches. Foods 2023, 12, 3098. [Google Scholar] [CrossRef] [PubMed]
- Krahe, J.; Krahe, M.A. Optimizing the quality and commercial value of gyokuro-styled green tea grown in Australia. Beverages 2022, 8, 22. [Google Scholar] [CrossRef]
- García-Martínez, D.J.; Arroyo-Hernández, M.; Posada-Ayala, M.; Santos, C. The high content of quercetin and catechin in airen grape juice supports its application in functional food production. Foods 2021, 10, 1532. [Google Scholar] [CrossRef] [PubMed]
- Steinmann, J.; Buer, J.; Pietschmann, T.; Steinmann, E. Anti-infective properties of epigallocatechin-3-gallate (EGCG), a component of green tea. Br. J. Pharmacol. 2009, 168, 1059–1073. [Google Scholar] [CrossRef] [PubMed]
- Koch, W.; Kukula-Koch, W.; Komsta, Ł.; Marzec, Z.; Szwerc, W.; Głowniak, K. Green tea quality evaluation based on its catechins and metals composition in combination with chemometric analysis. Molecules 2018, 23, 1689. [Google Scholar] [CrossRef] [PubMed]
- De Camargo, A.C.; Schwember, A.R.; Parada, R.; Garcia, S.; Maróstica Júnior, M.R.; Franchin, M.; Regitano-d’Arce, M.A.B.; Shahidi, F. Opinion on the hurdles and potential health benefits in value-added use of plant food processing by-products as sources of phenolic compounds. Int. J. Mol. Sci. 2018, 19, 3498. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.L.; Leung, L.K.; Huang, Y.; Chen, Z.-Y. Stability of tea theaflavins and catechins. Food Chem. 2003, 83, 189–195. [Google Scholar]
- Acuña-Avila, P.E.; Vasquez-Murrieta, M.S.; Cortés-Camargo, S.; Hernández-Botello, M.T.; Ramos-Monroy, O.; López-Cortéz, M.D.S. Wine Polyphenol Content during the Fermentation of Vitis vinifera CS Grapes and Its Relationship with the Presence of Minerals in the Resulting Wine. Appl. Sci. 2023, 13, 8314. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Q. Determination of catechins in tea by high performance liquid chromatography. China Tea 2018, 40, 7–10. [Google Scholar]
- EFSA Panel on Food Additives and Nutrient Sources Added to Food (ANS); Younes, M.; Aggett, P.; Aguilar, F.; Crebelli, R.; Dusemund, B.; Filipič, M.; Frutos, M.J.; Galtier, P.; Gott, D.; et al. Scientific opinion on the safety of green tea catechins. EFSA J. 2018, 16, e05239. [Google Scholar] [PubMed]
- Liu, C.T.; Tzen, J.T. Exploring the relative astringency of tea catechins and distinct astringent sensation of catechins and flavonol glycosides via an in vitro assay composed of artificial oil bodies. Molecules 2022, 27, 5679. [Google Scholar] [CrossRef] [PubMed]
- Teng, H.; Chen, L.; Huang, Q. Chemical characteristics of tea catechins. Food Sci. 2018, 39, 313–319. [Google Scholar]
Technique | Description | Advantages | Disadvantages |
---|---|---|---|
HPLC (High-Performance Liquid Chromatography) | Separates catechins based on differences in polarity and interaction with stationary phase. | High resolution and sensitivity | Requires expensive equipment and consumables |
Wide range of column and solvent options | Time-consuming analysis | ||
Quantitative analysis capability | |||
TLC (Thin-Layer Chromatography) | Separates catechins on a thin layer of adsorbent material, often silica gel, based on polarity. | Simple, inexpensive setup | Lower resolution compared to HPLC |
Rapid screening of samples | Less quantitative compared to HPLC | ||
Visual detection of separated compounds | |||
SFE (Supercritical Fluid Extraction) | Extracts total catechins using supercritical fluids, typically CO2, which offers tunable selectivity. | Selective extraction of target compounds | Requires specialized equipment and expertise |
Environmentally friendly process | High initial setup costs | ||
Can be combined with other separation techniques | Limited scalability |
Tea Types | Targets | Analytical Method | Mobile Phase (Solutions A and B) | Solid to Liquid Ratio (g/mL) | References |
---|---|---|---|---|---|
Fresh tea leaves | EC, EGC, ECG, and EGCG | UHPLC–ESI–MS/MS | A (0.1% formic acid); B (acetonitrile containing 0.1% formic acid) | 1:100 | [56] |
Green tea | Methylselenocysteine, seelenomethionine, selenocysteine, catechin, epicatechin, EGCG | HILIC–MS/MS | A (methanol); B (8 mM ammonium acetate pH 7 (85/15, v/v)) | 1:50 | [57] |
Black tea | Apigenin/quercetin/kaempferol glycosides, theaflavins, theasinensin and galloylglucoses | HPLC–MS/MS | A (0.1% formic acid in water with 5% methanol); B (0.1% formic acid in methanol with 5% water) | 1:60 | [58] |
White tea | 4 flavoalkaloids | UHPLC–ESI–MS/MS | A (0.1% aqueous formic acid); B (0.1% formic acid acetonitrile) | 1:40 | [59] |
Flower tea | 10 phenolic acids and 10 flavonoid glycosides | UHPLC–ESI–MS/MS | A (0.1% aqueous formic acid); B (acetonitrile) | 1:50 | [60] |
Factor | Influence on Separation and Purification | Significance |
---|---|---|
Plant Source | The source plant’s catechin content affects extraction yield and composition, e.g., green tea leaves, cocoa beans, berries, and apples. | Determines initial catechin concentration and composition, impacting overall process efficiency and product quality. |
Extraction Methods | The chosen extraction technique affects catechin yield and purity, e.g., solvent extraction, SFE, steam distillation, and SPE. | Determines how catechins are extracted, influencing both the quantity and quality of the final product. |
Solvent Selection | Choice of solvent impacts catechin extraction efficiency and purity, e.g., ethanol, methanol, water, ethyl acetate, acetone, and acetonitrile. | Solvents selectively extract catechins based on polarity, affecting the yield and purity of the extract. |
Temperature | Temperature influences extraction kinetics and catechin stability. Temperatures ranging between 50 °C and 80 °C are high enough to dissolve the catechins but low enough not to degrade them. | Balances extraction rate and catechin preservation, requiring optimization for maximal yield and quality. |
pH | pH affects catechin solubility and stability during extraction. An acidic pH between 3 and 5 is regarded as being optimal because, in this range, catechins tend to be more stable and soluble. An acidic environment also helps prevent the degradation of catechins. | Influences catechin solubility and integrity, requiring pH optimization for efficient extraction. |
Extraction Time | Duration of extraction impacts catechin yield and quality. The extraction time is also dependent on the method used. High extraction temperature and pressure methods are fast (under 1 h) and can easily degrade the catechins, while milder conditions require more time for maximum efficiency. | Balances yield and degradation, necessitating optimal extraction times for maximal efficiency. |
Particle Size | Finer particle size enhances surface area for extraction, increasing efficiency. | Increases contact between solvent and plant material, improving catechin extraction efficiency. |
Presence of Co-Extractives | Other compounds in the plant may interfere with catechin extraction. | Co-extractives can affect extraction selectivity and purity of the final product. |
Separation Technique | Various techniques isolate catechins from complex mixtures. | Essential for purifying catechins from complex matrices for analysis or application. |
Column Material (for Chromatography) | Choice of column material influences separation efficiency. C18 columns are the most commonly used and widely available for catechin analysis using HPLC. Phenyl-based stationary phases, such as phenyl-hexyl, can also be used and are effective for separating catechins. | Impacts interactions between catechins and stationary phase, affecting separation quality. |
Mobile Phase Composition (for Chromatography) | Mobile phase composition affects separation efficiency. | Alters catechin solubility and interactions, influencing separation quality. |
Purification Method | Various methods purify catechins from impurities. | Essential for obtaining high-purity catechin products for various applications. |
Stability | Catechin stability during processing impacts product quality. | Ensures preservation of catechin integrity throughout processing, preventing degradation. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cioanca, O.; Lungu, I.-I.; Mita-Baciu, I.; Robu, S.; Burlec, A.F.; Hancianu, M.; Crivoi, F. Extraction and Purification of Catechins from Tea Leaves: An Overview of Methods, Advantages, and Disadvantages. Separations 2024, 11, 171. https://doi.org/10.3390/separations11060171
Cioanca O, Lungu I-I, Mita-Baciu I, Robu S, Burlec AF, Hancianu M, Crivoi F. Extraction and Purification of Catechins from Tea Leaves: An Overview of Methods, Advantages, and Disadvantages. Separations. 2024; 11(6):171. https://doi.org/10.3390/separations11060171
Chicago/Turabian StyleCioanca, Oana, Ionut-Iulian Lungu, Ioana Mita-Baciu, Silvia Robu, Ana Flavia Burlec, Monica Hancianu, and Florina Crivoi. 2024. "Extraction and Purification of Catechins from Tea Leaves: An Overview of Methods, Advantages, and Disadvantages" Separations 11, no. 6: 171. https://doi.org/10.3390/separations11060171
APA StyleCioanca, O., Lungu, I. -I., Mita-Baciu, I., Robu, S., Burlec, A. F., Hancianu, M., & Crivoi, F. (2024). Extraction and Purification of Catechins from Tea Leaves: An Overview of Methods, Advantages, and Disadvantages. Separations, 11(6), 171. https://doi.org/10.3390/separations11060171