LC/MS-Based Profiling of Hedyotis aspera Whole-Plant Methanolic Extract and Evaluation of Its Nephroprotective Potential against Gentamicin-Induced Nephrotoxicity in Rats Supported by In Silico Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Plant Material and Extraction
2.2. Quantitative Phytochemical Analysis by LC-MS
2.3. In Silico Studies
2.3.1. Drug-Likeliness
2.3.2. ADMET Analysis
2.3.3. Molecular Docking
2.4. In Vitro Antioxidant Activity by the DPPH Method
2.5. The Investigation of Acute Toxicity
2.6. Nephroprotective Activity
2.6.1. Experimental Animals
2.6.2. Study Design
2.7. Determination of Biomarkers in Kidney
2.8. Determination of Proinflammatory Cytokines
2.9. Histopathological Analysis
2.10. Statistical Analysis
3. Results
3.1. HR-LC-MS Analysis of HAME
3.2. Drug-Likeliness
3.3. Molecular Docking Studies
3.4. ADMET Analysis
3.5. In Vitro Antioxidant Assay
3.6. In Vivo Assay
3.6.1. Effect of HAME on Serum Parameters
3.6.2. Effect of HAME on Kidney Antioxidant Parameters
3.6.3. The Impact of HAME on the Expression of TNF-α in the Kidney
3.7. Effect of HAME on Renal Histopathology
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El-Tantawy, W.H.; Mohamed, S.A.; Abd Al Haleem, E.N. Evaluation of biochemical effects of Casuarina equisetifolia extract on gentamicin-induced nephrotoxicity and oxidative stress in rats. Phytochemical analysis. J. Clin. Biochem. Nutr. 2013, 53, 158–165. [Google Scholar] [CrossRef]
- Boozari, M.; Hosseinzadeh, H. Natural medicines for acute renal failure: A review. Phytother. Res. 2017, 31, 1824–1835. [Google Scholar] [CrossRef] [PubMed]
- Casanova, A.G.; Vicente-Vicente, L.; Hernandez-Sanchez, M.T.; Pescador, M.; Prieto, M.; Martinez-Salgado, C.; Morales, A.I.; Lopez-Hernandez, F.J. Key role of oxidative stress in animal models of aminoglycoside nephrotoxicity revealed by a systematic analysis of the antioxidant-to-nephroprotective correlation. Toxicology 2017, 385, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Kopple, J.D.; Ding, H.; Letoha, A.; Ivanyi, B.; Qing, D.P.; Dux, L.; Wang, H.Y.; Sonkodi, S. L-carnitine ameliorates gentamicin-induced renal injury in rats. Nephrol. Dial. Transplant. 2002, 17, 2122–2131. [Google Scholar] [CrossRef]
- Mathew, T.H. Drug-induced renal disease. Med. J. Aust. 1992, 156, 724–728. [Google Scholar] [CrossRef] [PubMed]
- Qadir, M.I.; Tahir, M.; Lone, K.P.; Munir, B.; Sami, W. Protective role of ginseng against gentamicin induced changes in kidney of albino mice. J. Ayub Med. Coll. Abbottabad 2011, 23, 53–57. [Google Scholar]
- Walker, P.D.; Barri, Y.; Shah, S.V. Oxidant Mechanisms in Gentamicin Nephrotoxicity. Ren. Fail. 1999, 21, 433–442. [Google Scholar] [CrossRef]
- Doroshow, J.H.; Davies, K.J. Redox cycling of anthracyclines by cardiac mitochondria. II. Formation of superoxide anion, hydrogen peroxide, and hydroxyl radical. J. Biol. Chem. 1986, 261, 3068–3074. [Google Scholar] [CrossRef]
- Hussain, K.; Nisar, M.F.; Majeed, A.; Nawaz, K.; Bhatti, K.H. Ethnomedicinal survey for important plants of Jalalpur Jattan, district Gujrat, Punjab, Pakistan. Ethnobot. Leafl. 2010, 2010, 11. [Google Scholar]
- Ghatapanadi, S.; Johnson, N.; Rajasab, A. Documentation of Folk Knowledge on Medicinal Plants of Gulbarga District, Karnataka; NISCAIR-CSIR: New Delhi, India, 2011. [Google Scholar]
- Mabberley, D.J. Mabberley’s Plant-Book: A Portable Dictionary of Plants, Their Classification and Uses; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Ye, J.-H.; Liu, M.-H.; Zhang, X.-L.; He, J.-Y. Chemical Profiles and Protective Effect of Hedyotis diffusa Willd in Lipopolysaccharide-Induced Renal Inflammation Mice. Int. J. Mol. Sci. 2015, 16, 27252–27269. [Google Scholar] [CrossRef]
- Li, Y.; Ding, T.; Chen, J.; Ji, J.; Wang, W.; Ding, B.; Ge, W.; Fan, Y.; Xu, L. The protective capability of Hedyotis diffusa Willd on lupus nephritis by attenuating the IL-17 expression in MRL/lpr mice. Front. Immunol. 2022, 13, 943827. [Google Scholar] [CrossRef]
- Noumi, E.; Snoussi, M.; Anouar, E.H.; Alreshidi, M.; Veettil, V.N.; Elkahoui, S.; Adnan, M.; Patel, M.; Kadri, A.; Aouadi, K.; et al. Hr-lcms-based metabolite profiling, antioxidant, and anticancer properties of Teucrium polium l. Methanolic extract: Computational and in vitro study. Antioxidants 2020, 9, 1089. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.K.; Singh, J.; Medhi, T.; Kumar, A. Phytochemical Screening, Quantification, FT-IR Analysis, and In Silico Characterization of Potential Bio-active Compounds Identified in HR-LC/MS Analysis of the Polyherbal Formulation from Northeast India. ACS Omega 2022, 7, 33067–33078. [Google Scholar] [CrossRef] [PubMed]
- Setlur, A.S.; Naik, S.Y.; Skariyachan, S. Herbal Lead as Ideal Bioactive Compounds Against Probable Drug Targets of Ebola Virus in Comparison with Known Chemical Analogue: A Computational Drug Discovery Perspective. Interdiscip. Sci. 2017, 9, 254–277. [Google Scholar] [CrossRef] [PubMed]
- Prasanth, D.; Panda, S.P.; Rao, A.L.; Chakravarti, G.; Teja, N.; Vani, V.B.N.; Sandhya, T. In-silico strategies of some selected phytoconstituents from zingiber officinale as SARS CoV-2 main protease (COVID-19) inhibitors. Indian J. Pharm. Educ. Res. 2020, 54, s552–s559. [Google Scholar] [CrossRef]
- Lin, S.H.; Huang, K.J.; Weng, C.F.; Shiuan, D. Exploration of natural product ingredients as inhibitors of human HMG-CoA reductase through structure-based virtual screening. Drug Des. Dev. Ther. 2015, 9, 3313–3324. [Google Scholar] [CrossRef]
- Sharma, V.; Pattanaik, K.K.; Jayprakash, V.; Basu, A.; Mishra, N. A utility script for automating and integrating AutoDock and other associated programs for virtual screening. Bioinformation 2009, 4, 84–86. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Ban, X.; He, J.; Tong, J.; Tian, J.; Wang, Y. Hepatoprotective and antioxidant activity of ethanolic extracts of edible lotus (Nelumbo nucifera Gaertn.) leaves. Food Chem. 2010, 120, 873–878. [Google Scholar] [CrossRef]
- Jonsson, M.; Jestoi, M.; Nathanail, A.V.; Kokkonen, U.-M.; Anttila, M.; Koivisto, P.; Karhunen, P.; Peltonen, K. Application of OECD Guideline 423 in assessing the acute oral toxicity of moniliformin. Food Chem. Toxicol. 2013, 53, 27–32. [Google Scholar] [CrossRef]
- Govindappa, P.K.; Gautam, V.; Tripathi, S.M.; Sahni, Y.P.; Raghavendra, H.L.S. Effect of Withania somnifera on gentamicin induced renal lesions in rats. Rev. Bras. Farm. 2019, 29, 234–240. [Google Scholar] [CrossRef]
- Chaware, V.; Chaudhary, B.; Vaishnav, M.; Biyani, K. Protective effect of the aqueous extract of Momordica charantia leaves on gentamicin induced nephrotoxicity in rats. Int. J. PharmTech Res. 2011, 3, 553–555. [Google Scholar]
- Lakshmi, B.; Sudhakar, M. Protective effect of Zingiber officinale on gentamicin-induced nephrotoxicity in rats. IJP-Int. J. Pharmacol. 2010, 6, 58–62. [Google Scholar] [CrossRef]
- Sedlak, J.; Lindsay, R.H. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal. Biochem. 1968, 25, 192–205. [Google Scholar] [CrossRef]
- Aebi, H. Catalase in vitro. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1984; Volume 105, pp. 121–126. [Google Scholar]
- Marklund, S.; Marklund, G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 1974, 47, 469–474. [Google Scholar] [CrossRef]
- Cardiff, R.D.; Miller, C.H.; Munn, R.J. Manual hematoxylin and eosin staining of mouse tissue sections. Cold Spring Harb. Protoc. 2014, 2014, pdb-prot073411. [Google Scholar] [CrossRef] [PubMed]
- Ha, N.X.; Anh, H.T.N.; Khanh, P.N.; Ha, V.T.; Ha, N.V.; Huong, T.T.; Cuong, N.M. In silico and ADMET study of Morinda longissima phytochemicals against TNF-α for treatment of inflammation-mediated diseases. Vietnam. J. Chem. 2023, 61, 57–63. [Google Scholar]
- Ferreira, L.L.G.; Andricopulo, A.D. ADMET modeling approaches in drug discovery. Drug Discov. Today 2019, 24, 1157–1165. [Google Scholar] [CrossRef] [PubMed]
- Killari, K.N.; Polimati, H.; Prasanth, D.; Singh, G.; Panda, S.P.; Vedula, G.S.; Tatipamula, V.B. Salazinic acid attenuates male sexual dysfunction and testicular oxidative damage in streptozotocin-induced diabetic albino rats. RSC Adv. 2023, 13, 12991–13005. [Google Scholar] [CrossRef]
- Norinder, U.; Bergstrom, C.A. Prediction of ADMET Properties. ChemMedChem 2006, 1, 920–937. [Google Scholar] [CrossRef]
- Bickerton, G.R.; Paolini, G.V.; Besnard, J.; Muresan, S.; Hopkins, A.L. Quantifying the chemical beauty of drugs. Nat. Chem. 2012, 4, 90–98. [Google Scholar] [CrossRef]
- Olasupo, S.B.; Uzairu, A.; Shallangwa, G.A.; Uba, S. Unveiling novel inhibitors of dopamine transporter via in silico drug design, molecular docking, and bioavailability predictions as potential antischizophrenic agents. Future J. Pharm. Sci. 2021, 7, 63. [Google Scholar] [CrossRef]
- Pardridge, W.M. The Blood-Brain Barrier: Bottleneck in Brain Drug Development. Neurotherapeutics 2005, 2, 3–14. [Google Scholar] [CrossRef]
- Ejeh, S.; Uzairu, A.; Shallangwa, G.A.; Abechi, S.E. In silico design, drug-likeness and ADMET properties estimation of some substituted thienopyrimidines as HCV NS3/4A protease inhibitors. Chem. Afr. 2021, 4, 563–574. [Google Scholar] [CrossRef]
- Lounkine, E.; Keiser, M.J.; Whitebread, S.; Mikhailov, D.; Hamon, J.; Jenkins, J.L.; Lavan, P.; Weber, E.; Doak, A.K.; Cote, S.; et al. Large-scale prediction and testing of drug activity on side-effect targets. Nature 2012, 486, 361–367. [Google Scholar] [CrossRef]
- Pantaleão, S.Q.; Fernandes, P.O.; Gonçalves, J.E.; Maltarollo, V.G.; Honorio, K.M. Recent advances in the prediction of pharmacokinetics properties in drug design studies: A review. ChemMedChem 2022, 17, e202100542. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, K.P.; Kim, M.-R.; Kim, B.S.; Moon, B.S.; Shin, C.H.; Baek, S.; Hong, B.S. A network pharmacology approach to explore the potential role of Panax ginseng on exercise performance. Phys. Act. Nutr. 2021, 25, 28. [Google Scholar] [CrossRef]
- Han, C.; Wang, B. Factors that impact the developability of drug candidates: An overview. Drug Deliv. Princ. Appl. 2005, 1–14. [Google Scholar] [CrossRef]
- Waring, M.J.; Arrowsmith, J.; Leach, A.R.; Leeson, P.D.; Mandrell, S.; Owen, R.M.; Pairaudeau, G.; Pennie, W.D.; Pickett, S.D.; Wang, J. An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat. Rev. Drug Discov. 2015, 14, 475–486. [Google Scholar] [CrossRef]
- Al-Rajhi, A.M.H.; Qanash, H.; Almashjary, M.N.; Hazzazi, M.S.; Felemban, H.R.; Abdelghany, T.M. Anti-Helicobacter pylori, Antioxidant, Antidiabetic, and Anti-Alzheimer’s Activities of Laurel Leaf Extract Treated by Moist Heat and Molecular Docking of Its Flavonoid Constituent, Naringenin, against Acetylcholinesterase and Butyrylcholinesterase. Life 2023, 13, 1512. [Google Scholar] [CrossRef] [PubMed]
- Osukoya, O.A.; Oyinloye, B.E.; Ajiboye, B.O.; Olokode, K.A.; Adeola, H.A. Nephroprotective and anti-inflammatory potential of aqueous extract from Persea americana seeds against cadmium-induced nephrotoxicity in Wistar rats. Biometals 2021, 34, 1141–1153. [Google Scholar] [CrossRef] [PubMed]
- Yassir, M.; Tir, M.; Mufti, A.; Feriani, A.; Faidi, B.; Tlili, N.; Sobeh, M. Millettia ferruginea extract attenuates cisplatin-induced alterations in kidney functioning, DNA damage, oxidative stress, and renal tissue morphology. Arab. J. Chem. 2022, 15, 104037. [Google Scholar] [CrossRef]
- Hanigan, M.H.; Devarajan, P. Cisplatin nephrotoxicity: Molecular mechanisms. Cancer Ther. 2003, 1, 47. [Google Scholar]
- Ueda, N.; Kaushal, G.P.; Shah, S.V. Apoptotic mechanisms in acute renal failure. Am. J. Med. 2000, 108, 403–415. [Google Scholar] [CrossRef]
- Karahan, İ.; Ateşşahin, A.; Yılmaz, S.; Çeribaşı, A.; Sakin, F. Protective effect of lycopene on gentamicin-induced oxidative stress and nephrotoxicity in rats. Toxicology 2005, 215, 198–204. [Google Scholar] [CrossRef]
- Cuzzocrea, S.; Mazzon, E.; Dugo, L.; Serraino, I.; Di Paola, R.; Britti, D.; De Sarro, A.; Pierpaoli, S.; Caputi, A.P.; Masini, E. A role for superoxide in gentamicin-mediated nephropathy in rats. Eur. J. Pharmacol. 2002, 450, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Al-Majed, A.A.; Mostafa, A.M.; Al-Rikabi, A.C.; Al-Shabanah, O.A. Protective effects of oral arabic gum administration on gentamicin-induced nephrotoxicity in rats. Pharmacol. Res. 2002, 46, 445–451. [Google Scholar] [CrossRef] [PubMed]
- Erdem, A.; Gündogan, N.Ü.; Usubütün, A.; Kılınç, K.; Erdem, R.N.; Kara, A.; Bozkurt, A. The protective effect of taurine against gentamicin-induced acute tubular necrosis in rats. Nephrol. Dial. Transplant. 2000, 15, 1175–1182. [Google Scholar] [CrossRef]
- Harlalka, G.V.; Patil, C.R.; Patil, M.R. Protective effect of Kalanchoe pinnata pers. (Crassulaceae) on gentamicin-induced nephrotoxicity in rats. Indian J. Pharmacol. 2007, 39, 201. [Google Scholar] [CrossRef]
- Thounaojam, M.C.; Jadeja, R.N.; Devkar, R.V.; Ramachandran, A. Sida rhomboidea. Roxb leaf extract ameliorates gentamicin induced nephrotoxicity and renal dysfunction in rats. J. Ethnopharmacol. 2010, 132, 365–367. [Google Scholar] [CrossRef] [PubMed]
- Arunkumar, P.; Viswanatha, G.; Radheshyam, N.; Mukund, H.; Belliyappa, M. Science behind cisplatin-induced nephrotoxicity in humans: A clinical study. Asian Pac. J. Trop. Biomed. 2012, 2, 640–644. [Google Scholar] [CrossRef]
- Neeraj, K.G.; Sharad, M.; Tejram, S.; Abhinav, M.; Suresh, P.V.; Rajeev, K.T. Evaluation of anti–apoptotic activity of different dietary antioxidants in renal cell carcinoma against hydrogen peroxide. Asian Pac. J. Trop. Biomed. 2011, 1, 57–63. [Google Scholar] [CrossRef]
- Lopez-Novoa, J.M.; Quiros, Y.; Vicente, L.; Morales, A.I.; Lopez-Hernandez, F.J. New insights into the mechanism of aminoglycoside nephrotoxicity: An integrative point of view. Kidney Int. 2011, 79, 33–45. [Google Scholar] [CrossRef]
- Quiros, Y.; Vicente-Vicente, L.; Morales, A.I.; López-Novoa, J.M.; López-Hernández, F.J. An integrative overview on the mechanisms underlying the renal tubular cytotoxicity of gentamicin. Toxicol. Sci. 2011, 119, 245–256. [Google Scholar] [CrossRef]
- Mestry, S.N.; Gawali, N.B.; Pai, S.A.; Gursahani, M.S.; Dhodi, J.B.; Munshi, R.; Juvekar, A.R. Punica granatum improves renal function in gentamicin-induced nephropathy in rats via attenuation of oxidative stress. J. Ayurveda Integr. Med. 2020, 11, 16–23. [Google Scholar] [CrossRef]
- Nitha, B.; Janardhanan, K. Aqueous-ethanolic extract of morel mushroom mycelium Morchella esculenta, protects cisplatin and gentamicin induced nephrotoxicity in mice. Food Chem. Toxicol. 2008, 46, 3193–3199. [Google Scholar] [CrossRef]
- Farombi, E.; Ekor, M. Curcumin attenuates gentamicin-induced renal oxidative damage in rats. Food Chem. Toxicol. 2006, 44, 1443–1448. [Google Scholar] [CrossRef]
- Zrouri, H.; Elbouzidi, A.; Bouhrim, M.; Bencheikh, N.; Kharchoufa, L.; Ouahhoud, S.; Ouassou, H.; El Assri, S.; Choukri, M. Phytochemical analysis, antioxidant activity, and nephroprotective effect of the Raphanus sativus aqueous extract. Mediterr. J. Chem. 2021, 11, 84–94. [Google Scholar] [CrossRef]
Centre | x | y | z |
Tumor necrosis factor (TNF-α) | −19.409600 | 74.650750 | 33.849550 |
Size | x | y | z |
10 | 10 | 10 | |
Exhaustiveness | 8 |
Name | Formula | Mass | Base Peak | m/z | Start | RT | End | Height | Diff (DB, ppm) |
---|---|---|---|---|---|---|---|---|---|
Hellicoside | C29H36O17 | 656.1995 | 383.1276 | 701.1998 | 1.479 | 1.541 | 1.602 | 26,279 | −6.5 |
Fagopyritol B3 | C24H42O21 | 666.2295 | 113.0266 | 665.2224 | 1.555 | 1.555 | 1.555 | 15,120 | −11.49 |
Gossypol | C30H30O8 | 518.1924 | 101.0261 | 563.1906 | 1.528 | 1.608 | 1.688 | 20,437 | 3.27 |
1-O-Caffeoyl-(b-D-glucose 6-O-sulfate) | C15H18O12 S | 422.0554 | 301.0038 | 481.0693 | 1.855 | 1.925 | 1.995 | 15,048 | −8.41 |
Copalliferol B | C42H32O9 | 680.2041 | 284.0359 | 739.218 | 6.548 | 6.642 | 6.736 | 28,041 | 0.75 |
Allivicin | C27H30O16 | 610.1615 | 300.0322 | 609.154 | 6.685 | 6.775 | 6.864 | 66,525 | −13.26 |
Myricitrin | C21H20O12 | 464.103 | 271.0297 | 463.0954 | 6.883 | 6.957 | 7.031 | 55,896 | −16.18 |
Vitisifuran B | C56H40O12 | 904.2379 | 193.0536 | 903.231 | 7.138 | 7.251 | 7.363 | 18,530 | 15.61 |
Coumeroic acid | C17H14N2O7 | 358.075 | 227.0396 | 417.0886 | 7.853 | 7.934 | 8.015 | 16,502 | 14.29 |
Glucoheptonic acid | C7H14O8 | 226.0676 | 119.0539 | 271.0658 | 9.872 | 9.964 | 10.057 | 14,829 | 5.47 |
Makisterone A | C28H46O7 | 494.3228 | 503.3426 | 539.3228 | 11.271 | 11.349 | 11.428 | 11,939 | 3.16 |
Esculentic acid (Phytolacca) | C30H46O6 | 502.3376 | 501.3294 | 501.33 | 11.876 | 11.876 | 11.876 | 17,037 | −16.24 |
Madasiatic acid | C30H48O5 | 488.3581 | 487.3507 | 487.3508 | 13.482 | 13.569 | 13.656 | 55,354 | −16.2 |
3-trans-p-Coumaroylrotundic acid | C39H54O7 | 634.3969 | 145.033 | 633.3898 | 15.726 | 15.824 | 15.922 | 30,116 | −15.65 |
Lansioside B | C36H58O8 | 618.4027 | 175.0439 | 663.4009 | 16.126 | 16.126 | 16.126 | 11,957 | 16.93 |
Ganoderiol I | C31H50O5 | 502.3741 | 279.237 | 501.3668 | 17.672 | 17.762 | 17.852 | 12,621 | −16.57 |
12-Hydroxy-8,10-octadecadienoic acid | C18H32O3 | 296.2405 | 183.0155 | 295.2332 | 17.809 | 17.809 | 17.809 | 12,661 | −18.05 |
Ammothamnine | C15H24N2O2 | 264.1766 | 183.016 | 309.1801 | 19.984 | 20.076 | 20.168 | 63,397 | 27.16 |
Bullatetrocin | C37H66O8 | 638.4821 | 281.2547 | 697.4932 | 20.272 | 20.272 | 20.272 | 15,555 | −9.99 |
9-Oxoasimicinone | C37H64O8 | 636.4712 | 152.9989 | 695.4753 | 20.402 | 20.503 | 20.603 | 18,698 | −17.48 |
Lamprolobine | C15H24N2 O2 | 264.1753 | 183.0164 | 309.1797 | 21.1 | 21.191 | 21.283 | 36,612 | 32.09 |
12,15-cis-Squamostatin A | C37H66O8 | 638.4814 | 281.2539 | 697.4901 | 21.571 | 21.571 | 21.571 | 17,171 | −8.83 |
Muzanzagenin | C27 H38O5 | 442.2675 | 441.2621 | 441.2605 | 22.129 | 22.212 | 22.294 | 12,469 | 9.92 |
Ganoderic acid K | C32H46O9 | 574.304 | 445.2131 | 619.3031 | 23.291 | 23.291 | 23.291 | 12,520 | 17.8 |
14,19-Dihydroaspidospermatine | C21H28N2 O2 | 340.2134 | 183.0168 | 339.2065 | 23.704 | 23.797 | 23.89 | 38,698 | 4.81 |
Lycocernuine | C16H26N2O2 | 278.1978 | 183.0156 | 337.2117 | 24.006 | 24.097 | 24.188 | 55,859 | 5.76 |
Santalyl phenylacetate | C23H30O2 | 338.2118 | 183.0161 | 337.2116 | 25.106 | 25.207 | 25.308 | 17,850 | 37.86 |
Sr. No. | Title | MW | log P | Alog P | HBA | HBD | TPSA | AMR | Violated Lipinski’s Rule |
---|---|---|---|---|---|---|---|---|---|
1 | 12,15-cis-Squamostatin A | 572 | 7.914 | −8.59 | 8 | 0 | 44.8 | 140.2 | Yes |
2 | 12-Hydroxy-8,10-octadecadienoic acid | 264 | 5.929 | −2.07 | 3 | 0 | 17.1 | 74.92 | Yes |
3 | 14,19-Dihydroaspidospermatine | 312 | 2.053 | −1.42 | 4 | 0 | 32.8 | 96.54 | No |
4 | 1-O-Caffeoyl-(b-D-glucose 6-O-sulfate) | 403.9 | −1.72 | −1.75 | 12 | 0 | 87.3 | 92.55 | Yes |
5 | 3-trans-p-Coumaroylrotundic acid | 580 | 7.217 | 1.329 | 7 | 0 | 43.4 | 181.4 | Yes |
6 | 9-Oxoasimicinone | 572 | 7.052 | −7.68 | 8 | 0 | 78.9 | 140.4 | Yes |
7 | Allivicin | 579.9 | −1.56 | −4.86 | 16 | 0 | 63.2 | 147.2 | Yes |
8 | Ammothamnine | 244 | 0.7 | −2.31 | 2 | 0 | 43.4 | 61.02 | No |
9 | Bullatetrocin | 581 | 8.125 | −8.59 | 8 | 0 | 44.8 | 140.2 | Yes |
10 | Copalliferol B | 652 | 3.242 | 1.796 | 9 | 0 | 0 | 213.2 | Yes |
11 | Coumeroic acid | 344 | 1.937 | −1.07 | 9 | 0 | 60.4 | 92.72 | No |
12 | Esculentic acid | 459 | 5.855 | 0.157 | 6 | 0 | 34.1 | 137.5 | Yes |
13 | Fagopyritol B3 | 643 | −6.5 | −8.31 | 21 | 0 | 55.4 | 133 | Yes |
14 | Ganoderic acid K | 528 | 1.637 | −0.09 | 9 | 0 | 94.6 | 147.2 | Yes |
15 | Ganoderiol I | 457 | 3.3 | 1.518 | 5 | 0 | 26.3 | 144.4 | No |
16 | Glucoheptonic acid | 217 | −4.41 | −3.35 | 8 | 0 | 17.1 | 44.23 | No |
17 | Gossypol | 488 | 5.944 | 0.997 | 8 | 0 | 34.1 | 150.3 | Yes |
18 | Hellicoside | 631 | −2.17 | −3.56 | 17 | 0 | 63.2 | 157.9 | Yes |
19 | Lamprolobine | 242 | 1.022 | −2.18 | 4 | 0 | 40.6 | 63.73 | No |
20 | Lansioside B | 560 | 7.699 | 1.781 | 8 | 0 | 35.5 | 168.8 | Yes |
21 | Lycocernuine | 258 | 1.68 | −1.91 | 4 | 0 | 23.6 | 66.22 | No |
22 | Madasiatic acid | 440 | 6.479 | 0.495 | 5 | 0 | 17.1 | 136.8 | Yes |
23 | Makisterone A | 455 | 1.346 | −0.78 | 7 | 0 | 17.1 | 131.8 | No |
24 | Muzanzagenin | 412 | 2.728 | 0.096 | 5 | 0 | 35.5 | 119.3 | No |
25 | Myricitrin | 449 | 1.15 | −3.4 | 12 | 0 | 44.8 | 116.4 | Yes |
26 | Santalyl phenylacetate | 308 | 6.143 | 3.141 | 2 | 0 | 26.3 | 105.6 | Yes |
27 | Vitisifuran B | 863.9 | 4.767 | 2.136 | 12 | 0 | 27.7 | 284.6 | Yes |
Compounds | Binding Energies (kcal/mol) |
---|---|
14,19-Dihydroaspidospermatine | −6.9 |
Coumeroic acid | −6.3 |
Lycocernuine | −6.3 |
Muzanzagenin | −6.3 |
Ammothamnine | −6.1 |
Ganoderiol I | −5.2 |
Makisterone A | −5.2 |
Glucoheptonic acid | −4.6 |
Ligands | Binding Affinity, ΔG (Kcal/mol) | Amino Acids Involved and Distance (Å) | |
---|---|---|---|
Hydrogen-Bond Interactions | Hydrophobic Interactions | ||
14,19-Dihydroaspidospermatine | −8.9 | TYR A:151 (5.90) | LEU A:57 (5.04), TYR A:119 (4.48, 5.09) |
Coumeroic acid | −8.3 | TYR A:151 (6.04) | TYR A:119 (6.04) |
Lycocernuine | −8.3 | TYR A:151 (4.78) | TYR A:119 (4.32) |
Muzanzagenin | −8.3 | TYR A:151 (6.46) | - |
Ammothamnine | −8.1 | LEU A:120 (6.87) | - |
Ganoderiol I | −5.2 | GLN A:61 (4.58), TYR A:151 (6.49) | TYR A:119 (4.14, 5.51), GLY A:121 (4.06) |
Makisterone A | −5.2 | TYR A:151 (5.12, 5.82), GLY A:121 (4.12) | - |
Glucoheptonic acid | −4.6 | SER A:60 (4.18), LEU A:120 (4.75), TYR A:151 (5.69, 5.99) | - |
Phytocompounds | Swiss ADME | ADMETSAR | PROTOX-II+ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
log P o/w | Water Solubility | GI Absorption | Lipinski Rule | Veber’s Rule | PAINS Alert | TPSA | Lead Likeliness | HIA | CaCO2 | CYP1A2 | CYP2C19 | CYP2C9 | CYP2D6 | LD50 (mg/kg) | Hepatotoxicity | Carcinogenicity | Mutagenicity | Cytotoxicity | |
14,19-Dihydroaspidospermatine | 3.17 | Soluble | High | Yes | Yes | 0 | 32.78 | Yes | 0.9876 | 0.7312 | 0.7957 | 0.8360 | 0.7483 | 0.9308 | 325 (Class 4) | Inactive | Inactive | Inactive | Inactive |
Coumeroic acid | 1.25 | Soluble | Low | Yes | No | 0 | 152.86 | No | 0.6350 | 0.7382 | 0.9477 | 0.8825 | 0.8960 | 0.9002 | 1500 (Class 4) | Inactive | Inactive | Inactive | Inactive |
Lycocernuine | 2.76 | Soluble | High | Yes | Yes | 0 | 43.78 | Yes | 0.9907 | 0.8063 | 0.5228 | 0.6371 | 0.8185 | 0.8590 | 4000 (Class 5) | Inactive | Inactive | Inactive | Inactive |
Muzanzagenin | 3.64 | Soluble | High | Yes | Yes | 0 | 75.99 | No | 0.9650 | 0.8957 | 0.9106 | 0.9025 | 0.7898 | 0.9116 | 3710 (Class 5) | Inactive | Inactive | Inactive | Inactive |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prasanth, D.; Reddy, L.S.S.; Dasari, T.; Bhavanam, P.R.; Ahmad, S.F.; Nalluri, R.; Pasala, P.K. LC/MS-Based Profiling of Hedyotis aspera Whole-Plant Methanolic Extract and Evaluation of Its Nephroprotective Potential against Gentamicin-Induced Nephrotoxicity in Rats Supported by In Silico Studies. Separations 2023, 10, 552. https://doi.org/10.3390/separations10110552
Prasanth D, Reddy LSS, Dasari T, Bhavanam PR, Ahmad SF, Nalluri R, Pasala PK. LC/MS-Based Profiling of Hedyotis aspera Whole-Plant Methanolic Extract and Evaluation of Its Nephroprotective Potential against Gentamicin-Induced Nephrotoxicity in Rats Supported by In Silico Studies. Separations. 2023; 10(11):552. https://doi.org/10.3390/separations10110552
Chicago/Turabian StylePrasanth, Dsnbk, Lingareddygari Siva Sanker Reddy, Tharani Dasari, Pamula Reddy Bhavanam, Sheikh F. Ahmad, Rahul Nalluri, and Praveen Kumar Pasala. 2023. "LC/MS-Based Profiling of Hedyotis aspera Whole-Plant Methanolic Extract and Evaluation of Its Nephroprotective Potential against Gentamicin-Induced Nephrotoxicity in Rats Supported by In Silico Studies" Separations 10, no. 11: 552. https://doi.org/10.3390/separations10110552
APA StylePrasanth, D., Reddy, L. S. S., Dasari, T., Bhavanam, P. R., Ahmad, S. F., Nalluri, R., & Pasala, P. K. (2023). LC/MS-Based Profiling of Hedyotis aspera Whole-Plant Methanolic Extract and Evaluation of Its Nephroprotective Potential against Gentamicin-Induced Nephrotoxicity in Rats Supported by In Silico Studies. Separations, 10(11), 552. https://doi.org/10.3390/separations10110552