In Situ Formed Organic Ion-Associate Liquid-Phase Microextraction without Centrifugation from Aqueous Solutions Using Thymol Blue and Estrogens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Equipment
2.3. IALP Formation and Separation Investigated Using TB
2.4. Effects of Organic Cation/Anion Concentrations and Standing Time on IALP Volume
2.5. BPA and Estrogen Analysis via HPLC-FLD Coupled with IALP Extraction
2.6. Investigation of Optimal Conditions for HPLC-FL Analysis
2.7. Extraction and Distribution of BPA and Estrogens to IALP
2.8. Detection Limits, Concentration Factor, and Detection Sensitivity
2.9. Application to Real Samples
2.10. Spontaneous Separation of IALP
3. Results and Discussion
3.1. IALP Formation and Separation Investigated Using Thymol Blue (TB)
3.2. Effects of Organic Ion Concentrations and Standing Time on IALP Volume
3.3. pH of Aqueous Phase
3.4. Optimal HPLC-FLD Conditions
3.5. Effects of Centrifugation
3.6. Effects of Organic-Ion Addition Order
3.7. Effects of Standing Time on Analyte Peak Height
3.8. Distribution of Estrogens to Different IALPs
3.9. Detection Limits, Concentration Factors, and Sensitivities
3.10. Application to Real Samples
3.10.1. Discharged Water from a Sewage Treatment Plant
3.10.2. Seawater
3.10.3. River Water
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F.S.; Lambin, E.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. Planetary Boundaries: Exploring the Safe Operating Space for Humanity. Ecol. Soc. 2009, 14, 32. [Google Scholar] [CrossRef]
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; Vries, W.; Wit, C.A.; et al. Planetary boundaries: Guiding human development on a changing planet. Science 2015, 347, 1259855. [Google Scholar] [CrossRef]
- Richardson, K.; Steffen, W.; Lucht, W.; Bendtsen, J.; Cornell, S.E.; Donges, J.F.; Drüke, M.; Fetzer, I.; Bala, G.; Bloh, W.; et al. Earth beyond six of nine planetary boundaries. Sci. Adv. 2023, 9, 2458. [Google Scholar] [CrossRef] [PubMed]
- Morin-Crini, N.; Lichtfouse, E.; Liu, G.; Balaram, V.; Ribeiro, A.R.L.; Lu, Z.; Stock, F.; Carmona, E.; Teixeira, M.R.; Picos-Corrales, L.A.; et al. Worldwide cases of water pollution by emerging contaminants: A review. Environ. Chem. Lett. 2022, 20, 2311–2338. [Google Scholar] [CrossRef]
- Bayabil, H.K.; Teshome, F.T.; Li, Y.C. Emerging Contaminants in Soil and Water. Front. Environ. Sci. 2022, 10, 873499. [Google Scholar] [CrossRef]
- Arman, N.Z.; Salmiati, S.; Aris, A.; Salim, M.R.; Nazifa, T.H.; Muhamad, M.S.; Marpongahtun, M. A Review on Emerging Pollutants in the Water Environment: Existences, Health Effects and Treatment Processes. Water 2021, 13, 3258. [Google Scholar] [CrossRef]
- Ahmadi, R.; Azooz, E.A.; Yamini, Y.; Ramezani, A.M. Liquid–liquid microextraction techniques based on in–situ formation/decomposition of deep eutectic solvents. TrAC Trends Anal. Chem. 2023, 161, 117019. [Google Scholar] [CrossRef]
- Snigur, D.; Azooz, E.A.; Zhukovetska, O.; Guzenko, O.; Mortada, W. Recent innovations in cloud point extraction towards a more efficient and environmentally friendly procedure. TrAC Trends Anal. Chem. 2023, 164, 117113. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, M.; Wang, X.; Zhou, Y.; Xu, M.; Zhang, Z. Development and validation of vortex–assisted dispersive liquid–liquid microextraction method based on solidification of floating hydrophobic deep eutectic solvent for the determination of endocrine disrupting chemicals in sewage. Microchem. J. 2021, 163, 105915. [Google Scholar] [CrossRef]
- Niu, R.; Qin, H.; Tao, Y.; Li, L.; Qiao, L. In situ formation of deep eutectic solvents based dispersive liquid–liquid microextraction for the enrichment of trace phthalate esters in aqueous samples. Microchem. J. 2023, 189, 108537. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, J.; Guo, R.; Nie, Q.; Zhu, G. Acid induce dispersive liquid–liquid microextraction based on in situ formation of hydrophobic deep eutectic solvents for the extraction of bisphenol A and alkylphenols in water and beverage samples. Food Chem. 2024, 442, 138425. [Google Scholar] [CrossRef] [PubMed]
- Hata, N.; Kasahara, I.; Taguchi, S. Micro-phase sorbent extraction for trace analysis via in situ sorbent formation: Application to the preconcentration and the spectrophotometric determination of trace ammonia. Anal. Sci. 2002, 18, 697–699. [Google Scholar] [CrossRef] [PubMed]
- Hata, N.; Yuwatini, E.; Ando, K.; Yamada, M.; Kasahara, I.; Taguchi, S. Micro-organic ion-associate phase extraction via in situ fresh phase formation for the preconcentration and determination of di(2-ethylhexyl)phthalate in river water by HPLC. Anal. Sci. 2004, 20, 149–152. [Google Scholar] [CrossRef] [PubMed]
- Hata, N.; Hieda, S.; Yamada, M.; Yasui, R.; Kuramitz, H.; Taguchi, S. Formation of a liquid organic ion associate in aqueous solution and its application to the GF-AAS determination of trace cadmium in environmental water as a complex with 2-(5-bromo-2-pyridylazo)5-(N-propyl-N-sulfopropylamino)phenol. Anal. Sci. 2008, 24, 925–928. [Google Scholar] [CrossRef]
- Mizuna, K.; Murashima, R.; Okazaki, T.; Sazawa, K.; Kuramitz, H.; Taguchi, S.; Nakayama, K.; Yamamoto, T.; Takamura, Y.; Hata, N. Organic Ion-associate Phase Extraction/Back-microextraction for the Preconcentration and Determination of Lithium Using 2,2,6,6-Tetramethyl-3,5-heptanedione by Liquid Electrode Plasma Atomic Emission Spectrometry and GF-AAS in Environmental Water. Anal. Sci. 2020, 36, 595–600. [Google Scholar] [CrossRef] [PubMed]
- Kosugi, M.; Mizuna, K.; Sazawa, K.; Okazaki, T.; Kuramitz, H.; Taguchi, S.; Hata, N. Organic Ion-Associate Phase Microextraction/Back-Microextraction for Preconcentration: Determination of Nickel in Environmental Water Using 2-Thenoyltrifluoroacetone via GF-AAS. Appl. Chem. 2021, 1, 130–141. [Google Scholar] [CrossRef]
- Hata, N.; Igarashi, A.; Matsushita, M.; Kohama, N.; Komiyama, T.; Sazawa, K.; Kuramitz, H.; Taguchi, S. Evaluation of an Ion-Associate Phase Formed in Situ from the Aqueous Phase by Adding Benzethonium Chloride and Sodium Ethylbenzenesulfonate for Microextraction. Appl. Chem. 2023, 3, 32–44. [Google Scholar] [CrossRef]
- Hata, N.; Takahashi, S.; Osada, S.; Katagiri, S.; Naruse, M.; Igarashi, A.; Sazawa, K.; Taguchi, S.; Kuramitz, H. In Situ Formation of a Relatively Transparent Ion-Associate Liquid Phase from an Aqueous Phase and Its Application to Microextraction/High-Performance Liquid Chromatography–Fluorescence Detection of Bisphenol A in Water. Molecles 2023, 28, 7525. [Google Scholar] [CrossRef] [PubMed]
- Hata, N.; Teraguchi, K.; Yamaguchi, M.; Kasahara, I.; Taguchi, S.; Goto, K. Spectrophotometric Determination of Ammonia-Nitrogen After Preconcentration as Indothymol on a Glass-Fiber Filter in the Presence of a Cationic Surfactant. Mikrochim. Acta 1992, 106, 101–108. [Google Scholar] [CrossRef]
- Seebunrueng, K.; Santaladchaiyakit, Y.; Srijaranai, S. Vortex-assisted low density solvent based demulsified dispersive liquid-liquid microextraction and high-performance liquid chromatography for the determination of organophosphorus pesticides in water samples. Chemosphere 2014, 103, 51–58. [Google Scholar] [CrossRef]
- Dinis, T.B.V.; Passos, H.; Lima, D.L.D.; Esteves, V.I.; Coutinho, J.A.P.; Mara, G.; Freire, M.G. One-step extraction and concentration of estrogens for an adequate monitoring of wastewater using ionic-liquid-based aqueous biphasic systems. Green Chem. 2015, 17, 2570–2579. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Ye, J.; Zhang, Y.; Wang, Z.; Ren, S.; Li, X.; Jin, Y. Centrifugation free and air-assisted liquid-liquid microextraction based on deep eutectic solvent for determination of rare ginsenosides in Kang’ai injection. Microchem. J. 2018, 142, 313–320. [Google Scholar] [CrossRef]
- Mostafavi, B.; Feizbakhsh, A.; Konoz, E.; Faraji, H. Hydrophobic deep eutectic solvent based on centrifugation-free dispersive liquid–liquid microextraction for speciation of selenium in aqueous samples: One step closer to green analytical chemistry. Microchem. J. 2019, 148, 582–590. [Google Scholar] [CrossRef]
- Zhou, Q.; Jin, Z.; Li, J.; Wang, B.; Wei, X.; Chen, J. A novel air-assisted liquid-liquid microextraction based on in-situ phase separation for the HPLC determination of bisphenols migration from disposable lunch boxes to contacting water. Talanta 2018, 189, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Ciślak, M.; Kruszelnicka, I.; Zembrzuska, J.; Ginter-Kramarczyk, D. Estrogen pollution of the European aquatic environment: A critical review. Water Res. 2023, 229, 119413. [Google Scholar] [CrossRef]
- Ministry of the Environment, Government of Japan. Drinking Water Quality Standards, Water Quality Control Target Setting Items. Available online: https://www.env.go.jp/content/000216459.pdf (accessed on 12 April 2024).
- Environment Protection and Heritage Council; National Health and Medical Research Council; Natural Resource Management Ministerial Council. Australian Guidelines for Water Recycling, Augmentation of Drinking Water Supplies. 2008. Available online: https://www.nhmrc.gov.au/about-us/publications/australian-guidelines-water-recycling (accessed on 4 March 2024).
- European Union (2018). Commission Implementing Decision (EU) 2018/840 of 5 June 2018. Off. J. Eur. Union 2018, 141, 9–12. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018D0840 (accessed on 4 March 2024).
- European Union (2022). Commission Implementing Decision (EU) 2022/679 of 19 January 2022. Off. J. Eur. Union 2022, 124, 41–43. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32022D0679 (accessed on 19 April 2024).
- United States Environmental Protection Agency (US EPA, Washington, DC, USA). KOWWIN 1.68 in “Estimation Programs Interface Suite™ for Microsoft® Windows, v. 4.11]”. 2012. Available online: https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface (accessed on 4 March 2024).
- Fischnaller, M.; Bakry, R.; Bonn, G.K. A simple method for the enrichment of bisphenols using boron nitride. Food Chem. 2016, 194, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Neale, P.; Escher, B.; Schäfer, A. Quantification of Solute–Solute Interactions Using Negligible-Depletion Solid-Phase Microextraction: Measuring the Affinity of Estradiol to Bulk Organic Matter. Environ. Sci. Technol. 2008, 42, 2886–2892. [Google Scholar] [CrossRef]
- Beri, K.Y.V.; Barbosa, D.P.; Zbair, M.; Ojala, S.; Oliveira, S.B. Adsorption of Estradiol from aqueous solution by hydrothermally carbonized and steam activated palm kernel shells, Adsorption of Estradiol from aqueous solution by hydrothermally carbonized and steam activated palm kernel shells. Energy Nexus 2021, 1, 100009. [Google Scholar] [CrossRef]
- Hurwitz, A.R.; Liu, S.T. Determination of aqueous solubility and pKa values of estrogens. J. Pharm. Sci. 1977, 66, 624–627. [Google Scholar] [CrossRef] [PubMed]
- Ministry of the Environment, Japan. Tentative Manual for Investigation of Exogenous Endocrine Disrupting Chemicals (Water Quality, Sediment, Aquatic Organisms). 1998. Available online: https://www.env.go.jp/content/900408782.pdf (accessed on 7 March 2024).
- Ministry of the Environment, Japan. Manual for Investigation of Items Requiring Investigation, etc. (Water Quality, Sediment, Aquatic Organisms). 2003. Available online: https://www.env.go.jp/content/900539405.pdf (accessed on 7 March 2024).
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Streuli, C.A.; Meites, L. Inorganic Volumetric Analysis. In Handbook of Analytical Chemistry, 1st ed.; Meites, L., Ed.; McGraw-Hill: New York, NY, USA, 1963; p. 358. [Google Scholar]
- Atamna, H.; Krugliak, M.; Shalmiev, G.; Deharo, E.; Pescarmona, G.; Ginsburg, H. Mode of antimalarial effect of methylene blue and some of its analogues on Plasmodium falciparum in culture and their inhibition of P. vinckei petteri and P. yoelii nigeriensis in vivo. Biochem. Pharmacol. 1996, 51, 693–700. [Google Scholar] [CrossRef] [PubMed]
- Samayoa-Oviedo, H.Y.; Mehnert, S.A.; Espenship, M.F.; Weigand, M.R.; Laskin, J. Measurement of the Speciation Diagram of Thymol Blue Using Spectrophotometry. J. Chem. Educ. 2023, 100, 815–821. [Google Scholar] [CrossRef]
- American Chemical Society, American Chemical Society SciFinder. Substance Research for 3-(2-Ethylhexyloxy)propylamine, Calculated Using Advanced Chemistry Development (ACD/Labs) Software V11.02 (© 1994–2023 ACD/Labs). Available online: https://sso.cas.org/as/authorization.oauth2?response_type=code&client_id=scifinder-n&redirect_uri=https%3A%2F%2Fscifinder-n.cas.org%2Fpa%2Foidc%2Fcb&state=eyJ6aXAiOiJERUYiLCJhbGciOiJkaXIiLCJlbmMiOiJBMTI4Q0JDLUhTMjU2Iiwia2lkIjoidUhCLUNSTzY2MHRNS3RNSkNpa3BXQ0pwZ09rIiwic3VmZml4IjoicWgyYUFiLjE3MTY3MDA5MTgifQ..AkVHiX3KFU3ezY2zLCuR4w.DtjVq-7qjAIb7fkOoDzLt-JAOu18RqXn_YabnOlvhKbC3mhp1VezR7aB9ybg7URJh_uzQvx1wzUZ0RGMYU9vBg.Nx1bqLbnyvzJkJ89lHJIjw&nonce=7pHzcQBk_3pp_hznXR1PEsuA6W63YPRCs3gXa5ylgIk&scope=openid%20address%20email%20phone%20profile&vnd_pi_requested_resource=https%3A%2F%2Fscifinder-n.cas.org%2F&vnd_pi_application_name=SciFinder-nIDF (accessed on 23 December 2023).
- Lima, D.L.D.; Silva, C.P.; Otero, M.; Esteves, V.I. Low cost methodology for estrogens monitoring in water samples using dispersive liquid–liquid microextraction and HPLC with fluorescence detection. Talanta 2013, 115, 980–985. [Google Scholar] [CrossRef] [PubMed]
- de Liz, M.V.; do Amaral, B.; Stets, S.; Nagata, N.; Peralta-Zamora, P. Sensitive Estrogens Determination in Wastewater Samples by HPLC and Fluorescence Detection. J. Braz. Chem. Soc. 2017, 28, 1453–1460. [Google Scholar] [CrossRef]
- Ferreira, F.N.; Benevides, A.P.; Cesar, D.V.; Aderval, S.; Luna, A.S.; de Gois, J.S. Magnetic solid-phase extraction and pre-concentration of 17β-estradiol and 17α-ethinylestradiol in tap water using maghemite-graphene oxide nanoparticles and determination via HPLC with a fluorescence detector. Microchem. J. 2020, 157, 104947. [Google Scholar] [CrossRef]
- Valderrama, L.; Valderrama, P.; Paulo Henrique Março, P.H.; Merib, J.; Carasek, E. Estrogens determination through disposable pipette extraction coupled to ultraviolet spectroscopy and nonlinear pseudo-univariate calibration: Solving rank deficiency problems. J. Chemom. 2020, 34, e3276. [Google Scholar] [CrossRef]
- Mpupa, A.; Nqombolo, A.; Mizaikoff, B.; Nomngongo, P.N. Beta-Cyclodextrin-Decorated Magnetic Activated Carbon as a Sorbent for Extraction and Enrichment of Steroid Hormones (Estrone, β-Estradiol, Hydrocortisone and Progesterone) for Liquid Chromatographic Analysis. Molecules 2022, 27, 248. [Google Scholar] [CrossRef]
- Makkliang, F.; Pianjing, P.; Kanatharana, P.; Thavarungkul, P.; Thammakhet-Buranachai, C. Natural Luffa cylindrica sponge sorbent for the solid phase extraction of estrone, 17-β-estradiol, and testosterone in aquaculture water. Microchem. J. 2023, 191, 108892. [Google Scholar] [CrossRef]
Analytes | Abbreviation | CAS. No | Formula | Mw (Da) | log Kowwin 1, [30] | pKa 2 [31,32,33,34] | GVs (µg L−1) | MAMDL 3 (ng L−1) [28] | TDL 4 | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Japan [27] | Australia [26] | EU [29] | (ng L−1) [35] | ||||||||
Bisphenol A | BPA | 80–05–7 | C15H24O2 | 228.29 | 3.64 | 9.6 | 100 | 200 | -- | -- | -- |
17β-Estradiol | E2 | 50–28–2 | C18H24O2 | 272.39 | 3.94 | 10.23 | 0.08 | 0.175 | 0.001 | 0.4 | 0.1 |
Ethinyl estradiol | EE2 | 57–63–6 | C20H24O2 | 296.44 | 4.12 | 10.4 | 0.02 | 0.0015 | -- | 0.035 | 0.1 |
Estrone | E1 | 53–16–7 | C18H22O2 | 270.40 | 3.43 | 10.26 | -- | 0.03 | -- | 0.4 | 0.1 |
Dye | Abbreviation | CAS. No | Formula | Mw (Da) | log Kowwin 1, [30] | pKa 2 (pKa1) | Color at pH 2 |
---|---|---|---|---|---|---|---|
Thymol blue | TB | 76–61–9 | C27H30O5S | 466.60 | 7.21 | 1.65 [38] | Red–Yellow |
Methylene blue | MB | 61–73–4 | C16H18Cl1N3S | 319.85 | 0.75 | 0–1 [39] | Blue |
Bromocresol green | BCG | 76–60–8 | C21H14Br4O5S | 698.02 | 7.86 | 4.90 [38] | Yellow |
Bromophenol blue | BPB | 115–39–9 | C19H10Br4O5S | 669.96 | 6.77 | 4.10 [38] | Yellow |
Phenol red | PR | 143–74–8 | C19H14O5S | 354.38 | 3.21 | 8.00 [38] | Yellow |
HPLC-FLD Conditions | |
---|---|
Injection volume | 20 µL |
Mobile phase | Acetonitrile:0.05 M KCl = 45:55 (v/v) |
Flow rate | 1.0 mL min−1 |
Column oven | 40 °C |
Excitation wavelength | 280 nm |
Fluorescence wavelength | 310 nm |
[EHOPA+]/[DS−] | 32 mM/15 mM |
31 mM/12 mM for sample | |
Temperature | 25 °C |
DL (μg L−1) | DL (μg L−1) | Enrichment Factor | Sensitivity | DL (μg L−1) | Enrichment Factor | Sensitivity | |
---|---|---|---|---|---|---|---|
Concentration | No | Concentration by IALP–ME 1 | |||||
[EHOPA+] (mM) | -- | 32 | 31 | ||||
[DS−] (mM) | -- | 15 | 12 | ||||
BPA | 3.04 | 0.028 | 47 | 109 | 0.020 | 56 | 151 |
E2 | 2.86 | 0.017 | 56 | 168 | 0.016 | 63 | 175 |
EE2 | 1.94 | 0.045 | 63 | 43 | 0.018 | 71 | 106 |
E1 | 31.4 | 0.27 | 57 | 116 | 0.26 | 64 | 121 |
No. of runs | 3 | 5 | 5 |
Concentration (μg L−1) | RSD1 1 (%) | RSD2 1 (%) | |
---|---|---|---|
BPA | 5 | 1.4 | 1.5 |
E2 | 5 | 1.3 | 1.2 |
EE2 | 5 | 3.5 | 4.5 |
E1 | 50 | 3.6 | 5.5 |
No. of runs | -- | 4 | 5 |
Sample Preparation | Analytical Method | Sample or Matrix | Extractants | Analytes | LCR (µg L−1) | DL (µg L−1) | Enrichment Factor | Reference | |
---|---|---|---|---|---|---|---|---|---|
Volume or Weight | Sensitivity | ||||||||
IALP–ME | HPLC-FLD | water | EHOPA+, DS− | BPA, E2, EE2, E1 | 0.2–5 2–50 | 0.02 0.3 | 56–71 | 106–171 | This work |
IALP–ME | HPLC-FLD | water | EHOPA+, DS− | BPA | 0.5–5 | 0.009 | 100 | 310 | [18] |
DLLME-SFHDES | HPLC-FLD | sewage | 1-dodecanol, octanoic acid | BPA, E2 | 0.00505–5 0.00558–5 | 0.00153 0.00189 | 111 106 | [9] | |
AR-VA-ISFDES-LLME | HPLC-FLD | water and beverage | sodium octanoate | BPA | 0.12–240 | 0.03–0.1 | 29 | [11] | |
ILBABS | HPLC-FLD | wastewater | 1-butyl-3-methylimidazolium dicyanamide, KNaC4H4O6 | EE2 | ND | ND | 1000 | ND | [21] |
DLLME | HPLC-FLD | surface and waste water | chlorobenzene | E2 EE2 | 0.01–0.3 0.01–0.5 | 0.002 0.0065 | 145 178 | [42] | |
SPE | HPLC-FLD | wastewater | C18 | E2, EE2 | 10–200 | 0.0025 | 2500 | [43] | |
MSPE | HPLC-FLD | tap water | MGON | E2, EE2 | 0.01–0.25 0.003–0.25 | 0.0027 0.0008 | 91 ± 6 119 ± 7 | [44] | |
DPX | UV/MCR-LS/SVM | river water | styrene-divinylbenzene | E2, EE2 | 10–50 | 0.06 0.002 | ND | [45] | |
SPE | HPLC-DAD | wastewater | CDMACD | E2 E1 | 0.7–300 0.04–250 | 0.02 0.01 | 81 ± 3 93 ± 2 | [46] | |
VA-SPE | HPLC-DAD | aquaculture water | Luffa cylindrica | E2 E1 | 15–1000 | 9.8 ± 0.1 9.6 ± 0.1 | 4 | [47] |
Analyte | Added (μg L−1) | Detected (μg L−1) | RSD 1 (%) | Recovery (%) | %E | No. of Runs |
---|---|---|---|---|---|---|
BPA | - | 0.19 | 2.1 | - | - | 5 |
E2 | - | <0.02 | - | - | - | 5 |
EE2 | - | <0.02 | - | - | - | 5 |
E1 | - | <0.4 | - | - | - | 5 |
BPA | 0 | 0.28 | 11 | - | 89 | 3 |
5 | 4.4 | 7.3 | 88 | 3 | ||
10 | 8.9 | 9.2 | 89 | 3 | ||
E2 | 0 | <0.02 | 81 | - | 93 | 3 |
5 | 4.7 | 8.3 | 94 | 3 | ||
10 | 9.3 | 14 | 93 | 3 | ||
EE2 | 0 | <0.02 | 12 | - | 94 | 3 |
5 | 4.4 | 12 | 88 | 3 | ||
10 | 8.7 | 17 | 87 | 3 | ||
E1 | 0 | <0.4 | 75 | - | 92 | 3 |
50 | 45 | 12 | 89 | 3 | ||
100 | 87 | 16 | 87 | 3 |
Analyte | Added (μg L−1) | Detected (μg L−1) | RSD 1 (%) | Recovery (%) | No. of Runs |
---|---|---|---|---|---|
BPA | 0 | <0.02 | 32 | - | 5 |
2 | 1.74 | 3.3 | 87.2 | 5 | |
E2 | 0 | <0.02 | 15 | - | 5 |
2 | 1.59 | 4.0 | 79.5 | 5 | |
EE2 | 0 | <0.02 | 43 | - | 5 |
2 | 1.56 | 4.2 | 77.8 | 5 | |
E1 | 0 | <0.4 | 12 | - | 5 |
20 | 18.36 | 5.5 | 91.8 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osada, S.; Takahashi, S.; Sazawa, K.; Kuramitz, H.; Kohama, N.; Okazaki, T.; Taguchi, S.; Hata, N. In Situ Formed Organic Ion-Associate Liquid-Phase Microextraction without Centrifugation from Aqueous Solutions Using Thymol Blue and Estrogens. Separations 2024, 11, 173. https://doi.org/10.3390/separations11060173
Osada S, Takahashi S, Sazawa K, Kuramitz H, Kohama N, Okazaki T, Taguchi S, Hata N. In Situ Formed Organic Ion-Associate Liquid-Phase Microextraction without Centrifugation from Aqueous Solutions Using Thymol Blue and Estrogens. Separations. 2024; 11(6):173. https://doi.org/10.3390/separations11060173
Chicago/Turabian StyleOsada, Sachiko, Seira Takahashi, Kazuto Sazawa, Hideki Kuramitz, Nozomi Kohama, Takuya Okazaki, Shigeru Taguchi, and Noriko Hata. 2024. "In Situ Formed Organic Ion-Associate Liquid-Phase Microextraction without Centrifugation from Aqueous Solutions Using Thymol Blue and Estrogens" Separations 11, no. 6: 173. https://doi.org/10.3390/separations11060173
APA StyleOsada, S., Takahashi, S., Sazawa, K., Kuramitz, H., Kohama, N., Okazaki, T., Taguchi, S., & Hata, N. (2024). In Situ Formed Organic Ion-Associate Liquid-Phase Microextraction without Centrifugation from Aqueous Solutions Using Thymol Blue and Estrogens. Separations, 11(6), 173. https://doi.org/10.3390/separations11060173